2,946
Views
5
CrossRef citations to date
0
Altmetric
Review

Immune evasion and persistence in enteric bacterial pathogens

Article: 2163839 | Received 15 Aug 2022, Accepted 27 Dec 2022, Published online: 08 Jan 2023

References

  • Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008;153(Supplement_1):3–38. doi:10.1111/j.1365-2249.2008.03713.x.
  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–1359. doi:10.1126/science.1124234.
  • Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2015;7(1):a016246. doi:10.1101/cshperspect.a016246.
  • Brewer SM, Brubaker SW, Monack DM. Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Curr Opin Immunol. 2019;60:63–70. doi:10.1016/j.coi.2019.05.001.
  • Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA, Troeger CE, Andrews JR, Bhutta ZA, Crump JA, Im J, et al. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the global burden of disease study 2017. Lancet Infect Dis. 2019;19(4):369–381. doi:10.1016/S1473-3099(18)30685-6.
  • Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive nontyphoidal Salmonella disease. Emerg Infect Dis. 2015;2010:21.
  • Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular mechanisms of salmonella effector proteins: a comprehensive review. Infect Drug Resist. 2020;13:11–26. doi:10.2147/IDR.S230604.
  • Bernal-Bayard J, Ramos-Morales F. Molecular mechanisms used by salmonella to evade the immune system. Curr Issues Mol Biol. 2018;25:133–168. doi:10.21775/cimb.025.133.
  • Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe. 2017;22(2):217–231. doi:10.1016/j.chom.2017.07.009.
  • Lou L, Zhang P, Piao R, Wang Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol. 2019;9:270. doi:10.3389/fcimb.2019.00270.
  • Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, PLATT DJ, Olsen JE. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000;125(2):229–255. doi:10.1017/S0950268899004379.
  • Tsolis RM, Kingsley RA, Townsend SM, Ficht TA, Adams LG, Baumler AJ. Of mice, calves, and men. Comparison of the mouse typhoid model with other Salmonella infections. Adv Exp Med Biol. 1999;473:261–274.
  • Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Russmann H, Hardt W-D. Pretreatment of mice with streptomycin provides a salmonella enterica serovar typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 2003;71(5):2839–2858. doi:10.1128/IAI.71.5.2839-2858.2003.
  • Brown NF, Vallance BA, Coombes BK, Valdez Y, Coburn BA, Finlay BB, Isberg R. Salmonella pathogenicity island 2 Is expressed prior to penetrating the intestine. PLoS Pathog. 2005;1(3):e32. doi:10.1371/journal.ppat.0010032.
  • Gopinath A, Allen TA, Bridgwater CJ, Young CM, Worley MJ, Cascales E. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream. PLoS One. 2019;14(12):e0226126. doi:10.1371/journal.pone.0226126.
  • Thornbrough JM, Worley MJ, Zhou D. A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination. PLoS One. 2012;7(9):e45245. doi:10.1371/journal.pone.0045245.
  • Worley MJ, Nieman GS, Geddes K, Heffron F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc Natl Acad Sci U S A. 2006;103(47):17915–17920. doi:10.1073/pnas.0604054103.
  • Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. doi:10.1038/nri2653.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–672. doi:10.1038/nrmicro3344.
  • Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature. 2010;467(7314):426–429. doi:10.1038/nature09415.
  • Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, Sterzenbach T, Tsolis RM, Roth JR, Bäumler AJ, et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci U S A. 2011;108(42):17480–17485. doi:10.1073/pnas.1107857108.
  • Lopez CA, Winter SE, Rivera-Chavez F, Xavier MN, Poon V, Nuccio SP, et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration. mBio. 2012;3.
  • Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM, et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A. 2016;113(34):E5044–51. doi:10.1073/pnas.1608858113.
  • Rogers AWL, Tsolis RM, Baumler AJ. Salmonella versus the Microbiome. Microbiol Mol Biol Rev. 2021;85(1).
  • Jones BD, Ghori N, Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med. 1994;180(1):15–23. doi:10.1084/jem.180.1.15.
  • Patel S, McCormick BA. Mucosal inflammatory response to salmonella Typhimurium infection. Front Immunol. 2014;5:311. doi:10.3389/fimmu.2014.00311.
  • McCormick BA, Parkos CA, Colgan SP, Carnes DK, Madara JL. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol. 1998;160:455–466.
  • Mrsny RJ, Gewirtz AT, Siccardi D, Savidge T, Hurley BP, Madara JL, McCormick BA. Identification of hepoxilin A 3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc Natl Acad Sci U S A. 2004;101(19):7421–7426. doi:10.1073/pnas.0400832101.
  • Wall DM, Nadeau WJ, Pazos MA, Shi HN, Galyov EE, McCormick BA. Identification of the Salmonella enterica serotype Typhimurium SipA domain responsible for inducing neutrophil recruitment across the intestinal epithelium. Cell Microbiol. 2007;9(9):2299–2313. doi:10.1111/j.1462-5822.2007.00960.x.
  • Zhou D, Mooseker MS, Galan JE. Role of the S. typhimurium actin-binding protein sipa in bacterial internalization. Science. 1999;283(5410):2092–2095. doi:10.1126/science.283.5410.2092.
  • Srikanth CV, Wall DM, Maldonado-Contreras A, Shi H, Zhou D, Demma Z, Mumy KL, McCormick BA. Salmonella pathogenesis and processing of secreted effectors by caspase-3. Science. 2010;330(6002):390–393. doi:10.1126/science.1194598.
  • Sun L, Yang S, Deng Q, Dong K, Li Y, Wu S, Huang R. Salmonella effector SpvB disrupts intestinal epithelial barrier integrity for bacterial translocation. Front Cell Infect Microbiol. 2020;10:606541. doi:10.3389/fcimb.2020.606541.
  • Barnes PD, Bergman MA, Mecsas J, Isberg RR. Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J Exp Med. 2006;203(6):1591–1601. doi:10.1084/jem.20060905.
  • Voedisch S, Koenecke C, David S, Herbrand H, Forster R, Rhen M, Pabst O. Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar typhimurium and limit systemic disease in mice. Infect Immun. 2009;77(8):3170–3180. doi:10.1128/IAI.00272-09.
  • Bravo-Blas A, Utriainen L, Clay SL, Kastele V, Cerovic V, Cunningham AF, Henderson IR, Wall DM, Milling SWF. Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously. J Immunol. 2019;202(1):260–267. doi:10.4049/jimmunol.1701254.
  • Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30(1):69–94. doi:10.1146/annurev-immunol-020711-075011.
  • Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC, et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 1999;401(6755):804–808. doi:10.1038/44593.
  • Bianchi G, D’Amico G, Sozzani S, Mantovani A, Allavena P. Transendothelial migration and reverse transmigration of in vitro cultured human dendritic cells. Methods Mol Med. 2001;64:325–330. doi:10.1385/1-59259-150-7:325.
  • Muller AJ, Kaiser P, Dittmar KE, Weber TC, Haueter S, Endt K, Songhet P, Zellweger C, Kremer M, Fehling H-J, et al. Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microbe. 2012;11(1):19–32. doi:10.1016/j.chom.2011.11.013.
  • Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Caprioli F, Bottiglieri L, Oldani A, Viale G, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350(6262):830–834. doi:10.1126/science.aad0135.
  • Silva-Garcia O, Valdez-Alarcon JJ, Baizabal-Aguirre VM. Wnt/beta-catenin signaling as a molecular target by pathogenic bacteria. Front Immunol. 2019;10:2135. doi:10.3389/fimmu.2019.02135.
  • Lambert MA, Smith SG. The PagN protein of Salmonella enterica serovar Typhimurium is an adhesin and invasin. BMC Microbiol. 2008;8(1):142. doi:10.1186/1471-2180-8-142.
  • Mambu J, Virlogeux-Payant I, Holbert S, Grepinet O, Velge P, Wiedemann A. An updated view on the Rck invasin of salmonella: still much to discover. Front Cell Infect Microbiol. 2017;7:500. doi:10.3389/fcimb.2017.00500.
  • Chen D, Burford WB, Pham G, Zhang L, Alto LT, Ertelt JM, Winter MG, Winter SE, Way SS, Alto NM, et al. Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe. 2021;29(10):1531–1544.e9. doi:10.1016/j.chom.2021.08.012.
  • Fierer J. Extra-intestinal salmonella infections: the significance of spv genes. Clin Infect Dis. 2001;32(3):519–520. doi:10.1086/318505.
  • Zuo L, Zhou L, Wu C, Wang Y, Li Y, Huang R, Wu S. Salmonella spvC gene inhibits pyroptosis and intestinal inflammation to aggravate systemic infection in mice. Front Microbiol. 2020;11:562491. doi:10.3389/fmicb.2020.562491.
  • Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol. 2008;67(6):1371–1383. doi:10.1111/j.1365-2958.2008.06134.x.
  • Montenegro MA, Morelli G, Helmuth R. Heteroduplex analysis of salmonella virulence plasmids and their prevalence in isolates of defined sources. Microb Pathog. 1991;11(6):391–397. doi:10.1016/0882-4010(91)90035-9.
  • Fierer J, Krause M, Tauxe R, Guiney D. Salmonella typhimurium bacteremia: association with the virulence plasmid. J Infect Dis. 1992;166(3):639–642. doi:10.1093/infdis/166.3.639.
  • Patel JC, Galan JE. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol. 2006;175(3):453–463. doi:10.1083/jcb.200605144.
  • Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW. SopB, a protein required for virulence of salmonella Dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A. 1998;95(24):14057–14059. doi:10.1073/pnas.95.24.14057.
  • Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt W-D. SopE and SopE2 from salmonella typhimurium activate different sets of RhoGTPases of the Host Cell. J Biol Chem. 2001;276(36):34035–34040. doi:10.1074/jbc.M100609200.
  • Sun H, Kamanova J, Lara-Tejero M, Galán JE. Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nature Microbiol. 2018;3(10):1122–1130. doi:10.1038/s41564-018-0246-z.
  • Hardt W-D, Chen L-M, Schuebel KE, Bustelo XR, Galán JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93(5):815–826. doi:10.1016/s0092-8674(00)81442-7.
  • Kamanova J, Sun H, Lara-Tejero M, Galán JE, Baumler AJ. The salmonella effector protein SopA modulates innate immune responses by targeting TRIM E3 ligase family members. PLoS Pathog. 2016;12(4):e1005552. doi:10.1371/journal.ppat.1005552.
  • Lian H, Jiang K, Tong M, Chen Z, Liu X, Galan JE, Gao X. The Salmonella effector protein SopD targets Rab8 to positively and negatively modulate the inflammatory response. Nat Microbiol. 2021;6(5):658–671. doi:10.1038/s41564-021-00866-3.
  • Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010;11(9):633–643. doi:10.1038/nrm2957.
  • Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000;1488(1–2):1–19. doi:10.1016/S1388-1981(00)00105-0.
  • Ambrosi C, Pompili M, Scribano D, Limongi D, Petrucca A, Cannavacciuolo S, Schippa S, Zagaglia C, Grossi M, Nicoletti M, et al. The shigella flexneri OspB effector: an early immunomodulator. Int J Med Microbiol. 2015;305(1):75–84. doi:10.1016/j.ijmm.2014.11.004.
  • Newton HJ, Pearson JS, Badea L, Kelly M, Lucas M, Holloway G, Wagstaff KM, Dunstone MA, Sloan J, Whisstock JC, et al. The type III effectors NleE and NleB from Enteropathogenic E. coli and OspZ from shigella block nuclear translocation of NF-κB p65. PLoS Pathog. 2010;6(5):e1000898. doi:10.1371/journal.ppat.1000898.
  • Zurawski DV, Mitsuhata C, Mumy KL, McCormick BA, Maurelli AT. OspF and OspC1 Are Shigella flexneri Type III secretion system effectors that are required for postinvasion aspects of virulence. Infect Immun. 2006;74(10):5964–5976. doi:10.1128/IAI.00594-06.
  • Samuelson DR, Eucker TP, Bell JA, Dybas L, Mansfield LS, Konkel ME. The Campylobacter jejuniCiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease. Cell Com Signal. 2013;11(1):79. doi:10.1186/1478-811X-11-79.
  • Scuron MD, Boesze-Battaglia K, Dlakic M, Shenker BJ. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a Tri-perditious toxin. Front Cell Infect Microbiol. 2016;6:168. doi:10.3389/fcimb.2016.00168.
  • Hickey TE, McVeigh AL, Scott DA, Michielutti RE, Bixby A, Carroll SA, Bourgeois AL, Guerry P. Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun. 2000;68(12):6535–6541. doi:10.1128/IAI.68.12.6535-6541.2000.
  • Saha C, Horst-Kreft D, Kross I, Van Der Spek PJ, Louwen R, Van Baarlen P. Campylobacter jejuni Cas9 Modulates the Transcriptome in Caco-2 intestinal epithelial cells. Genes. 2020;11(10):1193. doi:10.3390/genes11101193.
  • Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y, Kremers GJ, van Cappellen WA, Horst-Kreft D, Laffeber C, Lebbink JHG, et al. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Sci Adv. 2020;6(25):eaaz4849. doi:10.1126/sciadv.aaz4849.
  • Black DS, Bliska JB. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol. 2000;37(3):515–527. doi:10.1046/j.1365-2958.2000.02021.x.
  • Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol. 2000;36(3):737–748. doi:10.1046/j.1365-2958.2000.01898.x.
  • Medici NP, Rashid M, Bliska JB. Characterization of Pyrin dephosphorylation and inflammasome activation in macrophages as triggered by the Yersinia effectors YopE and YopT. Infect Immun. 2019;87(3):1–13.
  • Aepfelbacher M, Trasak C, Wilharm G, Wiedemann A, Trülzsch K, Krauss K, Gierschik P, Heesemann J. Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica-infected Cells. J Biol Chem. 2003;278(35):33217–33223. doi:10.1074/jbc.M303349200.
  • Zumbihl R, Aepfelbacher M, Andor A, Jacobi CA, Ruckdeschel K, Rouot B, Heesemann J. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J Biol Chem. 1999;274(41):29289–29293. doi:10.1074/jbc.274.41.29289.
  • Shao F, Vacratsis PO, Bao Z, Bowers KE, Fierke CA, Dixon JE. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc Natl Acad Sci U S A. 2003;100(3):904–909. doi:10.1073/pnas.252770599.
  • Rai AK, Chattopadhyay K. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxin V ibrio cholerae cytolysin. Mol Microbiol. 2015;97(6):1051–1062. doi:10.1111/mmi.13084.
  • Khilwani B, Mukhopadhaya A, Chattopadhyay K. Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6–dependent proinflammatory responses in monocytes and macrophages. Biochem J. 2015;466(1):147–161. doi:10.1042/BJ20140718.
  • Bitar A, Aung KM, Wai SN, Hammarström M-L. Vibrio cholerae derived outer membrane vesicles modulate the inflammatory response of human intestinal epithelial cells by inducing microRNA-146a. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-43691-9.
  • Hobbie S, Chen LM, Davis RJ, Galan JE. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J Immunol. 1997;159:5550–5559.
  • Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinstein SH, Galán JE, Isberg RR. Salmonella Typhimurium Type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog. 2009;5(8):e1000538. doi:10.1371/journal.ppat.1000538.
  • Galan JE. Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol. 2021;19(11):716–725. doi:10.1038/s41579-021-00561-4.
  • Kelly D, Conway S, Aminov R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 2005;26(6):326–333. doi:10.1016/j.it.2005.04.008.
  • Shibolet O, Podolsky DK. TLRs in the Gut. IV. negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1469–73. doi:10.1152/ajpgi.00531.2006.
  • Fu Y, Galán JE. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature. 1999;401(6750):293–297. doi:10.1038/45829.
  • Gibbs KD, Washington EJ, Jaslow SL, Bourgeois JS, Foster MW, Guo R, Brennan RG, Ko DC. The salmonella secreted effector SarA/SteE Mimics Cytokine Receptor Signaling to Activate STAT3. Cell Host Microbe. 2020;27(1):129–39 e4. doi:10.1016/j.chom.2019.11.012.
  • Panagi I, Jennings E, Zeng J, Gunster RA, Stones CD, Mak H, Jin E, Stapels DAC, Subari NZ, Pham THM, et al. Salmonella effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization. Cell Host Microbe. 2020;27(1):41–53 e6. doi:10.1016/j.chom.2019.11.002.
  • Sun H, Kamanova J, Lara-Tejero M, Galán JE, Philpott DJ. A family of salmonella type III secretion effector proteins selectively targets the NF-κB signaling pathway to preserve host homeostasis. PLoS Pathog. 2016;12(3):e1005484. doi:10.1371/journal.ppat.1005484.
  • Du F, Galán JE, Stebbins CE. Selective inhibition of type III secretion activated signaling by the salmonella effector AvrA. PLoS Pathog. 2009;5(9):e1000595. doi:10.1371/journal.ppat.1000595.
  • Jones RM, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. Cell Host Microbe. 2008;3(4):233–244. doi:10.1016/j.chom.2008.02.016.
  • Gunster RA, Matthews SA, Holden DW, Thurston TLM. SseK1 and SseK3 Type III Secretion System Effectors Inhibit NF-kappaB Signaling and Necroptotic Cell Death in Salmonella-Infected Macrophages. Infect Immun. 2017;85(3).
  • Newson JPM, Scott NE, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C, Gan J, Wang N, Strugnell RA, Brown NF, Cygler M, et al. Salmonella effectors SseK1 and SseK3 Target Death Domain Proteins in the TNF and TRAIL Signaling Pathways. Mol Cell Proteomics. 2019;18(6):1138–1156. doi:10.1074/mcp.RA118.001093.
  • Yang S, Deng Q, Sun L, Zhu Y, Dong K, Wu S, Huang R, Li Y. Salmonella Effector SpvB Inhibits NF-kappaB Activity via KEAP1-mediated downregulation of IKKbeta. Front Cell Infect Microbiol. 2021;11:641412. doi:10.3389/fcimb.2021.641412.
  • Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou J-M, Shao F. The phosphothreonine lyase activity of a bacterial type III effector family. Science. 2007;315(5814):1000–1003. doi:10.1126/science.1138960.
  • Rolhion N, Furniss RC, Grabe G, Ryan A, Liu M, Matthews SA, Holden DW. Inhibition of Nuclear Transport of NF-kB p65 by the salmonella type III secretion system effector SpvD. PLoS Pathog. 2016;12(5):e1005653. doi:10.1371/journal.ppat.1005653.
  • Sontag RL, Nakayasu ES, Brown RN, Niemann GS, Sydor MA, Sanchez O, et al. Identification of novel host interactors of effectors secreted by salmonella and citrobacter. mSystems. 2016;1(4).
  • Pilar AVC, Reid-Yu SA, Cooper CA, Mulder DT, Coombes BK, Schneider DS. GogB is an anti-inflammatory effector that limits tissue damage during salmonella infection through interaction with human FBXO22 and Skp1. PLoS Pathog. 2012;8(6):e1002773. doi:10.1371/journal.ppat.1002773.
  • Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM, Reja R, Cheung TK, Liang Y, Webster JD, Lehoux I, et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe. 2021;29(10):1521–30.e10. doi:10.1016/j.chom.2021.08.010.
  • De Jong MF, Liu Z, Chen D, Alto NM. Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nature Microbiol. 2016;1(7):16084. doi:10.1038/nmicrobiol.2016.84.
  • Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cellular Pediatrics. 2022;9(1). doi:10.1186/s40348-022-00145-z.
  • Ji C, Du S, Li P, Zhu Q, Yang X, Long C, Yu J, Shao F, Xiao J, et al. Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8. PLoS Pathog. 2019;15(6):e1007876. doi:10.1371/journal.ppat.1007876.
  • Ashida H, Kim M, Schmidt-Supprian M, Ma A, Ogawa M, Sasakawa C. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat Cell Biol. 2010;12(1):66–73. doi:10.1038/ncb2006.
  • Zheng Z, Wei C, Guan K, Yuan Y, Zhang Y, Ma S, Cao Y, Wang F, Zhong H, He X, et al. Bacterial E3 Ubiquitin Ligase IpaH4.5 of shigella flexneri targets TBK1 to dampen the host antibacterial response. J Immunol. 2016;196(3):1199–1208. doi:10.4049/jimmunol.1501045.
  • Ashida H, Nakano H, Sasakawa C, Tran Van Nhieu G. Shigella IpaH0722 E3 Ubiquitin Ligase Effector Targets TRAF2 to Inhibit PKC–NF-κB activity in invaded epithelial cells. PLoS Pathog. 2013;9(6):e1003409. doi:10.1371/journal.ppat.1003409.
  • Kim DW, Lenzen G, Page AL, Legrain P, Sansonetti PJ, Parsot C. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci U S A. 2005;102(39):14046–14051. doi:10.1073/pnas.0504466102.
  • Zhou Y, Dong N, Hu L, Shao F, Kwaik YA. The shigella type three secretion system effector OSPG directly and specifically binds to host ubiquitin for activation. PLoS ONE. 2013;8(2):e57558. doi:10.1371/journal.pone.0057558.
  • Sanada T, Kim M, Mimuro H, Suzuki M, Ogawa M, Oyama A, Ashida H, Kobayashi T, Koyama T, Nagai S, et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature. 2012;483(7391):623–626. doi:10.1038/nature10894.
  • Li YP, Vegge CS, Brondsted L, Madsen M, Ingmer H, Bang DD. Campylobacter jejuni induces an anti-inflammatory response in human intestinal epithelial cells through activation of phosphatidylinositol 3-kinase/Akt pathway. Vet Microbiol. 2011;148(1):75–83. doi:10.1016/j.vetmic.2010.08.009.
  • Ratner D, Orning MPA, Proulx MK, Wang D, Gavrilin MA, Wewers MD, Alnemri ES, Johnson PF, Lee B, Mecsas J, et al. The Yersinia pestis effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathog. 2016;12(12):e1006035. doi:10.1371/journal.ppat.1006035.
  • Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL, Chae JJ, Bliska JB. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome. Cell Host Microbe. 2016;20(3):296–306. doi:10.1016/j.chom.2016.07.018.
  • Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, Bliska JB, Medzhitov R. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe. 2010;7(5):376–387. doi:10.1016/j.chom.2010.04.009.
  • Dewoody R, Merritt PM, Marketon MM. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol. 2013;87(2):301–317. doi:10.1111/mmi.12099.
  • Zwack EE, Snyder AG, Wynosky-Dolfi MA, Ruthel G, Philip NH, Marketon MM, Francis MS, Bliska JB, Brodsky IE, et al. Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. mBio. 2015;6(1):e02095–14. doi:10.1128/mBio.02095-14.
  • Bishop AL, Patimalla B, Camilli A, Payne SM. Vibrio cholerae-Induced Inflammation in the Neonatal Mouse Cholera Model. Infect Immun. 2014;82(6):2434–2447. doi:10.1128/IAI.00054-14.
  • Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N, Danbara H, Okada N. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cell Microbiol. 2012;14(4):485–499. doi:10.1111/j.1462-5822.2011.01733.x.
  • Lu R, Wu S, Liu X, Xia Y, Zhang Y-G, Sun J, Bereswill S. Chronic Effects of a Salmonella Type III secretion effector protein AvrA In Vivo. PLoS ONE. 2010;5(5):e10505. doi:10.1371/journal.pone.0010505.
  • Grabe GJ, Zhang Y, Przydacz M, Rolhion N, Yang Y, Pruneda JN, et al. The Salmonella Effector SpvD Is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence. J Biol Chem. 2016;291(50):25853–25863. doi:10.1074/jbc.M116.752782.
  • Wall AA, Luo L, Hung Y, Tong SJ, Condon ND, Blumenthal A, Sweet MJ, Stow JL. Small GTPase Rab8a-recruited phosphatidylinositol 3-Kinase γ regulates signaling and cytokine outputs from endosomal toll-like receptors. J Biol Chem. 2017;292(11):4411–4422. doi:10.1074/jbc.M116.766337.
  • Luo L, Wall AA, Tong SJ, Hung Y, Xiao Z, Tarique AA, Sly PD, Fantino E, Marzolo M-P, Stow JL, et al. TLR crosstalk activates LRP1 to recruit Rab8a and PI3Kγ for suppression of inflammatory responses. Cell Rep. 2018;24(11):3033–3044. doi:10.1016/j.celrep.2018.08.028.
  • Tong SJ, Wall AA, Hung Y, Luo L, Stow JL. Guanine nucleotide exchange factors activate Rab8a for Toll-like receptor signalling. Small GTPases. 2021;12(1):27–43. doi:10.1080/21541248.2019.1587278.
  • Leppkes M, Neurath MF, Herrmann M, Becker C. Immune deficiency vs. immune excess in inflammatory bowel diseases- STAT3 as a rheo-STAT of intestinal homeostasis. J Leukoc Biol. 2016;99(1):57–66. doi:10.1189/jlb.5MR0515-221R.
  • Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016;31:1–15. doi:10.1016/j.cytogfr.2016.05.001.
  • Wemyss MA, Pearson JS. Host Cell Death Responses to Non-typhoidal Salmonella Infection. Front Immunol. 2019;10:1758. doi:10.3389/fimmu.2019.01758.
  • Chen LM, Kaniga K, Galan JE. Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol. 1996;21(5):1101–1115. doi:10.1046/j.1365-2958.1996.471410.x.
  • van der Velden AW, Lindgren SW, Worley MJ, Heffron F, O’Brien AD. Salmonella Pathogenicity Island 1-independent induction of apoptosis in infected macrophages by salmonella enterica serotype typhimurium. Infect Immun. 2000;68(10):5702–5709. doi:10.1128/IAI.68.10.5702-5709.2000.
  • Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A. 1999;96(5):2396–2401. doi:10.1073/pnas.96.5.2396.
  • Sundquist M, Wick MJ. Salmonella induces death of CD8 + dendritic cells but not CD11cintCD11b+ inflammatory cells in vivo via MyD88 and TNFR1. J Leukoc Biol. 2009;85(2):225–234. doi:10.1189/jlb.0708413.
  • van der Velden AW, Copass MK, Starnbach MN. Salmonella inhibit T cell proliferation by a direct, contact-dependent immunosuppressive effect. Proc Natl Acad Sci U S A. 2005;102(49):17769–17774. doi:10.1073/pnas.0504382102.
  • Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella virulence and immune escape. Microorganisms. 2020;9(1):8. doi:10.3390/microorganisms9010008.
  • Bayer-Santos E, Durkin CH, Rigano LA, Kupz A, Alix E, Cerny O, Jennings E, Liu M, Ryan AS, Lapaque N, et al. The salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T Cell activation. Cell Host Microbe. 2016;20(5):584–595. doi:10.1016/j.chom.2016.10.007.
  • Srinivasan A, Nanton M, Griffin A, McSorley SJ. Culling of Activated CD4 T Cells during typhoid is driven by salmonella virulence genes. J Immunol. 2009;182(12):7838–7845. doi:10.4049/jimmunol.0900382.
  • Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 2014;22(11):648–655. doi:10.1016/j.tim.2014.06.007.
  • Gonzalez-Escobedo G, Marshall JM, Gunn JS. Chronic and acute infection of the gall bladder by Salmonella Typhi: understanding the carrier state. Nat Rev Microbiol. 2011;9(1):9–14. doi:10.1038/nrmicro2490.
  • Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, Saliba AE, Blommestein I, Vogel J, Helaine S. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science. 2018;362(6419):1156–1160. doi:10.1126/science.aat7148.
  • Pham THM, Brewer SM, Thurston T, Massis LM, Honeycutt J, Lugo K, Jacobson AR, Vilches-Moure JG, Hamblin M, Helaine S, et al. Salmonella-driven polarization of granuloma macrophages antagonizes TNF-mediated pathogen restriction during persistent infection. Cell Host Microbe. 2020;27(1):54–67 e5. doi:10.1016/j.chom.2019.11.011.
  • Eisele A, Nicholas, Ruby T, Jacobson A, Manzanillo S, Paolo, Cox S, Jeffery, Lam L, Mukundan L, Chawla A, Monack D. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe. 2013;14(2):171–182. doi:10.1016/j.chom.2013.07.010.
  • Foster N, Tang Y, Berchieri A, Geng S, Jiao X, Barrow P. Revisiting Persistent Salmonella Infection and the Carrier State: what Do We Know? Pathogens. 2021;10(10):1299. doi:10.3390/pathogens10101299.
  • JB A, Hill J, JB C, JP A. Host restriction, pathogenesis and chronic carriage of typhoidal Salmonella. FEMS Microbiol Rev. 2021;45(5).
  • Mutai WC, Muigai AWT, Waiyaki P, Kariuki S. Multi-drug resistant Salmonella enterica serovar Typhi isolates with reduced susceptibility to ciprofloxacin in Kenya. BMC Microbiol. 2018;18(1):18. doi:10.1186/s12866-018-1161-4.
  • Bhan MK, Bahl R, Bhatnagar S. Typhoid and paratyphoid fever. Lancet. 2005;366(9487):749–762. doi:10.1016/S0140-6736(05)67181-4.
  • Gaind R, Paglietti B, Murgia M, Dawar R, Uzzau S, Cappuccinelli P, Deb M, Aggarwal P, Rubino S. Molecular characterization of ciprofloxacin-resistant Salmonella enterica serovar Typhi and Paratyphi A causing enteric fever in India. J Antimicrob Chemother. 2006;58(6):1139–1144. doi:10.1093/jac/dkl391.
  • Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Monack DM, Isburg R. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2006;2(2):e11. doi:10.1371/journal.ppat.0020011.
  • Brink T, Leiss V, Siegert P, Jehle D, Ebner JK, Schwan C, Shymanets A, Wiese S, Nürnberg B, Hensel M, et al. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog. 2018;14(8):e1007248. doi:10.1371/journal.ppat.1007248.
  • McLaughlin LM, Govoni GR, Gerke C, Gopinath S, Peng K, Laidlaw G, Chien Y-H, Jeong H-W, Li Z, Brown MD, et al. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog. 2009;5(11):e1000671. doi:10.1371/journal.ppat.1000671.
  • Carden SE, Walker GT, Honeycutt J, Lugo K, Pham T, Jacobson A, Bouley D, Idoyaga J, Tsolis RM, Monack D, et al. Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host Microbe. 2017;21(2):182–194. doi:10.1016/j.chom.2017.01.009.
  • Rakov AV, Mastriani E, Liu SL, Schifferli DM. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genomics. 2019;20(1):429. doi:10.1186/s12864-019-5809-8.
  • McLaughlin LM, Xu H, Carden SE, Fisher S, Reyes M, Heilshorn SC, Monack DM. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. Integr Biol (Camb). 2014;6(4):438–449. doi:10.1039/C3IB40177D.
  • Shappo MOE, Li Q, Lin Z, Hu M, Ren J, Xu Z, Pan Z, Jiao X. SspH2 as anti-inflammatory candidate effector and its contribution in Salmonella Enteritidis virulence. Microb Pathog. 2020;142:104041. doi:10.1016/j.micpath.2020.104041.
  • Bernal-Bayard J, Ramos-Morales F. Salmonella Type III Secretion Effector SlrP Is an E3 Ubiquitin Ligase for Mammalian Thioredoxin. J Biol Chem. 2009;284(40):27587–27595. doi:10.1074/jbc.M109.010363.
  • Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Reiner RC, Fullman N, Thompson RL, Abajobir A, Ahmed M, et al. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis. 2017;17(9):909–948. doi:10.1016/S1473-3099(17)30276-1.
  • Kotloff KL, Riddle MS, Platts-Mills JA, Pavlinac P, Zaidi AKM. Shigellosis. Lancet. 2018;391(10122):801–812. doi:10.1016/S0140-6736(17)33296-8.
  • Baker S, The HC. Recent insights into Shigella. Curr Opin Infect Dis. 2018;31(5):449–454. doi:10.1097/QCO.0000000000000475.
  • Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol. 2017;7:64. doi:10.3389/fcimb.2017.00064.
  • Yang JY, Lee SN, Chang SY, Ko HJ, Ryu S, Kweon MN. A mouse model of shigellosis by intraperitoneal infection. J Infect Dis. 2014;209(2):203–215. doi:10.1093/infdis/jit399.
  • Qsm PH, Ledwaba SE, Bolick DT, Giallourou N, Yum LK, Costa DVS, Oriá RB, Barry EM, Swann JR, Lima AÂM, et al. A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes. 2019;10(5):615–630. doi:10.1080/19490976.2018.1564430.
  • Yum LK, Agaisse H. Mechanisms of bacillary dysentery: lessons learnt from infant rabbits. Gut Microbes. 2020;11(3):597–602. doi:10.1080/19490976.2019.1667726.
  • Shim DH, Suzuki T, Chang SY, Park SM, Sansonetti PJ, Sasakawa C, Kweon M-N. New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies. J Immunol. 2007;178(4):2476–2482. doi:10.4049/jimmunol.178.4.2476.
  • Niu C, Yang J, Liu H, Cui Y, Xu H, Wang R, Liu X, Feng E, Wang D, Pan C, et al. Role of the virulence plasmid in acid resistance of Shigella flexneri. Sci Rep. 2017;7(1):46465. doi:10.1038/srep46465.
  • Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson GH. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med. 2001;7(2):180–185. doi:10.1038/84627.
  • Tran ENH, Papadopoulos M, Morona R. Relationship between O-antigen chain length and resistance to colicin E2 in Shigella flexneri. Microbiology. 2014;160(3):589–601. doi:10.1099/mic.0.074955-0.
  • Vargas M, Gascon J, De Anta MT J, Vila J. Prevalence of Shigella Enterotoxins 1 and 2 among Shigella Strains Isolated from Patients with Traveler’s Diarrhea. J Clin Microbiol. 1999;37(11):3608–3611. doi:10.1128/JCM.37.11.3608-3611.1999.
  • Yavzori M, Cohen D, Orr N. Prevalence of the genes for shigella enterotoxins 1 and 2 among clinical isolates of shigella in Israel. Epidemiol Infect. 2002;128(3):533–535. doi:10.1017/S0950268802006866.
  • Farfan MJ, Toro CS, Barry EM, Nataro JP. Shigella enterotoxin-2 is a type III effector that participates in Shigella -induced interleukin 8 secretion by epithelial cells. FEMS Immunol Med Microbiol. 2011;61(3):332–339. doi:10.1111/j.1574-695X.2011.00778.x.
  • Anderson MC, Vonaesch P, Saffarian A, Marteyn BS, Sansonetti PJ. Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy. Cell Host Microbe. 2017;21(6):769–76.e3. doi:10.1016/j.chom.2017.05.004.
  • Rey C, Chang -Y-Y, Latour-Lambert P, Varet H, Proux C, Legendre R, Coppée J-Y, Enninga J. Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination. PLoS Pathog. 2020;16(4):e1008446. doi:10.1371/journal.ppat.1008446.
  • Schroeder GN, Hilbi H. Molecular Pathogenesis of Shigella spp.: controlling Host Cell Signaling, Invasion, and Death by Type III Secretion. Clin Microbiol Rev. 2008;21(1):134–156. doi:10.1128/CMR.00032-07.
  • Arizmendi O, Picking WD, Picking WL, Payne SM. Macrophage Apoptosis Triggered by IpaD from Shigella flexneri. Infect Immun. 2016;84(6):1857–1865. doi:10.1128/IAI.01483-15.
  • Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B, et al. Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J. 2002;21(19):5069–5078. doi:10.1093/emboj/cdf522.
  • Pendaries C, Tronchère H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B, et al. PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J. 2006;25(5):1024–1034. doi:10.1038/sj.emboj.7601001.
  • Günther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF, et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477(7364):335–339. doi:10.1038/nature10400.
  • Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, Akakura R, Yoshida M, Kawalec M, Reichhart J-M, et al. The Shigella OspC3 Effector Inhibits Caspase-4, Antagonizes Inflammatory Cell Death, and Promotes Epithelial Infection. Cell Host Microbe. 2013;13(5):570–583. doi:10.1016/j.chom.2013.04.012.
  • Ashida H, Sasakawa C, Suzuki T. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase‐8. EMBO J. 2020;39.
  • Ashida H, Suzuki T, Sasakawa C. Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Curr Opin Microbiol. 2021;59:1–7. doi:10.1016/j.mib.2020.07.007.
  • Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell. 2012;150(5):1029–1041. doi:10.1016/j.cell.2012.06.050.
  • Burnaevskiy N, Peng T, Reddick E,L, Hang C, Howard, Alto M,N. Myristoylome Profiling Reveals a Concerted Mechanism of ARF GTPase Deacylation by the Bacterial Protease IpaJ. Mol Cell. 2015;58(1):110–122. doi:10.1016/j.molcel.2015.01.040.
  • Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A. 1989;86(10):3867–3871. doi:10.1073/pnas.86.10.3867.
  • Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. Escape of Intracellular Shigella from Autophagy. Science. 2005;307(5710):727–731. doi:10.1126/science.1106036.
  • Miura M, Terajima J, Izumiya H, Mitobe J, Komano T, Watanabe H. OspE2 of Shigella sonnei Is Required for the Maintenance of Cell Architecture of Bacterium-Infected Cells. Infect Immun. 2006;74(5):2587–2595. doi:10.1128/IAI.74.5.2587-2595.2006.
  • McCormick BA, Siber AM, Maurelli AT, Barbieri JT. Requirement of the Shigella flexneri Virulence Plasmid in the Ability To Induce Trafficking of Neutrophils across Polarized Monolayers of the Intestinal Epithelium. Infect Immun. 1998;66(9):4237–4243. doi:10.1128/IAI.66.9.4237-4243.1998.
  • Fukazawa A, Alonso C, Kurachi K, Gupta S, Lesser CF, McCormick BA, Reinecker H-C. GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog. 2008;4(11):e1000228. doi:10.1371/journal.ppat.1000228.
  • Phalipon A, Sansonetti PJ. Shigella’ s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol. 2007;85(2):119–129. doi:10.1038/sj.icb7100025.
  • Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, Muchardt C, Sansonetti P, Arbibe L. Shigella flexneri targets the HP 1γ subcode through the phosphothreonine lyase O sp F. EMBO J. 2014;33(22):2606–2622. doi:10.15252/embj.201489244.
  • Reiterer V, Grossniklaus L, Tschon T, Kasper CA, Sorg I, Arrieumerlou C. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection. Cell Signal. 2011;23(7):1188–1196. doi:10.1016/j.cellsig.2011.03.006.
  • Linkous A, Yazlovitskaya E. Cytosolic phospholipase A2 as a mediator of disease pathogenesis. Cell Microbiol. 2010;12(10):1369–1377. doi:10.1111/j.1462-5822.2010.01505.x.
  • Wood TE, Westervelt KA, Yoon JM, Eshleman HD, Levy R, Burnes H, et al. The Shigella Spp. Type III Effector Protein OspB Is a Cysteine Protease mBio. 2022;13:e0127022.
  • Ashida H, Sasakawa C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front Cell Infect Microbiol. 2015;5:100. doi:10.3389/fcimb.2015.00100.
  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. Type III Secretion Effectors of the IpaH Family Are E3 Ubiquitin Ligases. Cell Host Microbe. 2007;1(1):77–83. doi:10.1016/j.chom.2007.02.002.
  • Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci. 2022;23(14):7725. doi:10.3390/ijms23147725.
  • Okuda J, Toyotome T, Kataoka N, Ohno M, Abe H, Shimura Y, Seyedarabi A, Pickersgill R, Sasakawa C. Shigella effector IpaH9.8 binds to a splicing factor U2AF(35) to modulate host immune responses. Biochem Biophys Res Commun. 2005;333(2):531–539. doi:10.1016/j.bbrc.2005.05.145.
  • Alphonse N, Wanford JJ, Voak AA, Gay J, Venkhaya S, Burroughs O, Mathew S, Lee T, Evans SL, Zhao W, et al. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell. 2022;185(13):2354–69.e17. doi:10.1016/j.cell.2022.04.028.
  • Pinaud L, Samassa F, Porat Z, Ferrari ML, Belotserkovsky I, Parsot C, Sansonetti PJ, Campbell-Valois F-X, Phalipon A. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc Natl Acad Sci U S A. 2017;114(37):9954–9959. doi:10.1073/pnas.1707098114.
  • Samassa F, Ferrari ML, Husson J, Mikhailova A, Porat Z, Sidaner F, Brunner K, Teo T-H, Frigimelica E, Tinevez J-Y, et al. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell Microbiol. 2020;22(5):e13166. doi:10.1111/cmi.13166.
  • Nothelfer K, Arena ET, Pinaud L, Neunlist M, Mozeleski B, Belotserkovsky I, Parsot C, Dinadayala P, Burger-Kentischer A, Raqib R, et al. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. J Exp Med. 2014;211(6):1215–1229. doi:10.1084/jem.20130914.
  • Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella -mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother. 2019;15(6):1317–1325. doi:10.1080/21645515.2019.1594132.
  • Otsubo R, Mimuro H, Ashida H, Hamazaki J, Murata S, Sasakawa C. Shigella effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol. 2019;21(3):e12974. doi:10.1111/cmi.12974.
  • Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, Bartolo V, Scott-Algara D, Rodrigues C, Sansonetti P, Phalipon A, et al. The Shigella flexneri Type Three Secretion System Effector IpgD Inhibits T Cell Migration by Manipulating Host Phosphoinositide Metabolism. Cell Host Microbe. 2011;9(4):263–272. doi:10.1016/j.chom.2011.03.010.
  • Bengtsson RJ, Dallman TJ, Allen H, De Silva PM, Stenhouse G, Pulford CV, et al. Accessory Genome Dynamics and Structural Variation of Shigella from Persistent Infections. mBio. 2021;12(2).
  • Bardsley M, Jenkins C, Mitchell HD, Mikhail AFW, Baker KS, Foster K, et al. Persistent Transmission of Shigellosis in England Is Associated with a Recently Emerged Multidrug-Resistant Strain of Shigella sonnei. J Clin Microbiol. 2020;58(4).
  • Charles H, Prochazka M, Thorley K, Crewdson A, Greig DR, Jenkins C, Painset A, Fifer H, Browning L, Cabrey P, et al. Outbreak of sexually transmitted, extensively drug-resistant Shigella sonnei in the UK, 2021–22: a descriptive epidemiological study. Lancet Infect Dis. 2022;22(10):1503–1510. doi:10.1016/S1473-3099(22)00370-X.
  • Marder EP, Cieslak PR, Cronquist AB, Dunn J, Lathrop S, Rabatsky-Ehr T, et al. Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food and the Effect of Increasing Use of Culture-Independent Diagnostic Tests on Surveillance — foodborne Diseases Active Surveillance Network, 10 U.S. Sites. MMWR Morbidity and Mortality Weekly Report 2017. Vol. 66. 397–403. 2013–2016.
  • Callahan SM, Dolislager CG, Johnson JG, Ottemann KM. The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun. 2021;89(8):e0011621. doi:10.1128/IAI.00116-21.
  • Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: pathogenicity factors and prevention methods—new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol. 2020;104(24):10409–10436. doi:10.1007/s00253-020-10974-5.
  • Elmi A, Nasher F, Dorrell N, Wren B, Gundogdu O. Revisiting Campylobacter jejuni Virulence and Fitness Factors: role in Sensing, Adapting, and Competing. Front Cell Infect Microbiol. 2020;10:607704. doi:10.3389/fcimb.2020.607704.
  • Burnham PM, Hendrixson DR. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol. 2018;16(9):551–565. doi:10.1038/s41579-018-0037-9.
  • Babakhani FK, Bradley GA, Joens LA. Newborn piglet model for campylobacteriosis. Infect Immun. 1993;61(8):3466–3475. doi:10.1128/iai.61.8.3466-3475.1993.
  • Fox JG, Ackerman JI, Taylor N, Claps M, Murphy JC. Campylobacter jejuni infection in the ferret: an animal model of human campylobacteriosis. Am J Vet Res. 1987;48:85–90.
  • Askoura M, Stintzi A. Using Galleria mellonella as an Infection Model for Campylobacter jejuni Pathogenesis. Methods Mol Biol. 2017;1512:163–169.
  • Davis L, DiRita V. Experimental Chick Colonization by Campylobacter jejuni. Curr Protoc Microbiol. 2008;11(1). Chapter 8:Unit 8A 3. doi:10.1002/9780471729259.mc08a03s11.
  • Giallourou N, Medlock GL, Bolick DT, Medeiros PH, Ledwaba SE, Kolling GL, Tung K, Guerry P, Swann JR, Guerrant RL, et al. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog. 2018;14(3):e1007083. doi:10.1371/journal.ppat.1007083.
  • Chang C, Miller JF. Campylobacter jejuni Colonization of Mice with Limited Enteric Flora. Infect Immun. 2006;74(9):5261–5271. doi:10.1128/IAI.01094-05.
  • Hofreuter D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol. 2014;4:137. doi:10.3389/fcimb.2014.00137.
  • Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, et al. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front Microbiol. 2019;10:2864. doi:10.3389/fmicb.2019.02864.
  • Hatayama S, Shimohata T, Amano S, Kido J, Nguyen AQ, Sato Y, Kanda Y, Tentaku A, Fukushima S, Nakahashi M, et al. Cellular Tight Junctions Prevent Effective Campylobacter jejuni Invasion and Inflammatory Barrier Disruption Promoting Bacterial Invasion from Lateral Membrane in Polarized Intestinal Epithelial Cells. Front Cell Infect Microbiol. 2018;8:15. doi:10.3389/fcimb.2018.00015.
  • Sharafutdinov I, Esmaeili DS, Harrer A, Tegtmeyer N, Sticht H, Backert S. Campylobacter jejuni Serine Protease HtrA Cleaves the Tight Junction Component Claudin-8. Front Cell Infect Microbiol. 2020;10:590186. doi:10.3389/fcimb.2020.590186.
  • Harrer A, Bücker R, Boehm M, Zarzecka U, Tegtmeyer N, Sticht H, Chang F-Y, Lin J-C. Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathog. 2019;11:11. doi:10.1186/s13099-019-0285-x.
  • Hoy B, Geppert T, Boehm M, Reisen F, Plattner P, Gadermaier G, Sewald N, Ferreira F, Briza P, Schneider G, et al. Distinct Roles of Secreted HtrA Proteases from Gram-negative Pathogens in Cleaving the Junctional Protein and Tumor Suppressor E-cadherin. J Biol Chem. 2012;287(13):10115–10120. doi:10.1074/jbc.C111.333419.
  • Louwen R, Nieuwenhuis EES, Van Marrewijk L, Horst-Kreft D, De Ruiter L, Heikema AP, van Wamel WJB, Wagenaar JA, Endtz HP, Samsom J, et al. Campylobacter jejuni Translocation across Intestinal Epithelial Cells Is Facilitated by Ganglioside-Like Lipooligosaccharide Structures. Infect Immun. 2012;80(9):3307–3318. doi:10.1128/IAI.06270-11.
  • Grant CC, Konkel ME, Cieplak W, Tompkins LS. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun. 1993;61(5):1764–1771. doi:10.1128/iai.61.5.1764-1771.1993.
  • Harvey P, Battle T, Leach S. Different invasion phenotypes of Campylobacter isolates in Caco-2 cell monolayers. J Med Microbiol. 1999;48(5):461–469. doi:10.1099/00222615-48-5-461.
  • Konkel ME, Mead DJ, Hayes SF, Cieplak W Jr. Translocation of Campylobacter jejuni across human polarized epithelial cell monolayer cultures. J Infect Dis. 1992;166(2):308–315. doi:10.1093/infdis/166.2.308.
  • Boehm M, Hoy B, Rohde M, Tegtmeyer N, Bæk KT, Oyarzabal OA. Immune response to and histopathology of Campylobacter jejuni infection in ferrets (Mustela putorius furo). Comp Med. 2009;59:363–371.
  • Beltinger J, Buono JD, Skelly MM, Thornley J, Spiller RC, Stack WA, Hawkey CJ. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells. World J Gastroenterol. 2008;14(48):7345. doi:10.3748/wjg.14.7345.
  • Van Deun K, Pasmans F, Van Immerseel F, Ducatelle R, Haesebrouck F. Butyrate protects Caco-2 cells from Campylobacter jejuni invasion and translocation. Brit J Nutrition. 2008;100(3):480–484. doi:10.1017/S0007114508921693.
  • Kalischuk LD, Inglis GD, Buret AG. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog. 2009;1(1):2. doi:10.1186/1757-4749-1-2.
  • Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog. 2020;16(2):e1008304. doi:10.1371/journal.ppat.1008304.
  • Backert S, Boehm M, Wessler S, Tegtmeyer N. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both? Cell Com Signal. 2013;11(1):72. doi:10.1186/1478-811X-11-72.
  • Everest PH, Goossens H, Sibbons P, Lloyd DR, Knutton S, Leece R, Ketley JM, Williams PH. Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J Med Microbiol. 1993;38(5):316–321. doi:10.1099/00222615-38-5-316.
  • Nemelka KW, Brown AW, Wallace SM, Jones E, Asher LV, Pattarini D, Applebee L, Gilliland TC, Guerry P, Baqar S, et al. Immune response to and histopathology of Campylobacter jejuni infection in ferrets (Mustela putorius furo). Comp Med. 2009;59(4):363–371.
  • Vuckovic D, Abram M, Doric M. Primary Campylobacter jejuni infection in different mice strains. Microb Pathog. 1998;24(4):263–268. doi:10.1006/mpat.1997.0194.
  • Watson KG, Holden DW. Dynamics of growth and dissemination of Salmonella in vivo. Cell Microbiol. 2010;12(10):1389–1397. doi:10.1111/j.1462-5822.2010.01511.x.
  • Lamb-Rosteski JM, Kalischuk LD, Inglis GD, Buret AG. Epidermal Growth Factor Inhibits Campylobacter jejuni -Induced Claudin-4 Disruption, Loss of Epithelial Barrier Function, and Escherichia coli Translocation. Infect Immun. 2008;76(8):3390–3398. doi:10.1128/IAI.01698-07.
  • Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Front Cell Infect Microbiol. 2017;7:428. doi:10.3389/fcimb.2017.00428.
  • Ruby T, McLaughlin L, Gopinath S, Monack D. Salmonella ‘s long-term relationship with its host. FEMS Microbiol Rev. 2012;36(3):600–615. doi:10.1111/j.1574-6976.2012.00332.x.
  • Guerry P, Poly F, Riddle M, Maue AC, Chen YH, Monteiro MA. Campylobacter polysaccharide capsules: virulence and vaccines. Front Cell Infect Microbiol. 2012;2:7. doi:10.3389/fcimb.2012.00007.
  • Kreutzberger MAB, Ewing C, Poly F, Wang F, Egelman EH. Atomic structure of the Campylobacter jejuni flagellar filament reveals how ε Proteobacteria escaped Toll-like receptor 5 surveillance. Proc Natl Acad Sci U S A. 2020;117(29):16985–16991. doi:10.1073/pnas.2010996117.
  • Frirdich E, Biboy J, Pryjma M, Lee J, Huynh S, Parker CT, Girardin SE, Vollmer W, Gaynor EC. The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Mol Microbiol. 2019;112(1):280–301. doi:10.1111/mmi.14269.
  • Neal-McKinney JM, Konkel ME. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front Cell Infect Microbiol. 2012;2:31. doi:10.3389/fcimb.2012.00031.
  • Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J. Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus. J Bacteriol. 2004;186(11):3296–3303. doi:10.1128/JB.186.11.3296-3303.2004.
  • Lara-Tejero M, Galan JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science. 2000;290(5490):354–357. doi:10.1126/science.290.5490.354.
  • Tang Y, Fang L, Xu C, Zhang Q. Antibiotic resistance trends and mechanisms in the foodborne pathogen, Campylobacter. Anim Health Res Rev. 2017;18(2):87–98. doi:10.1017/S1466252317000135.
  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi:10.1038/nature11550.
  • Bandoy DDR, Weimer BC. Biological Machine Learning Combined with Campylobacter Population Genomics Reveals Virulence Gene Allelic Variants Cause Disease. Microorganisms. 2020;8(4):549. doi:10.3390/microorganisms8040549.
  • Artymovich K, Kim J-S, Linz JE, Hall DF, Kelley LE, Kalbach HL, Kathariou S, Gaymer J, Paschke B. A “successful allele” at Campylobacter jejuni contingency locus Cj0170 regulates motility; “successful alleles” at locus Cj0045 are strongly associated with mouse colonization. Food Microbiol. 2013;34(2):425–430. doi:10.1016/j.fm.2013.01.007.
  • Gupta V, Gulati P, Bhagat N, Dhar MS, Virdi JS. Detection of Yersinia enterocolitica in food: an overview. Eur J Clinic Microbiol Infect Dis. 2015;34(4):641–650. doi:10.1007/s10096-014-2276-7.
  • Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol. 2020;74(1):221–245. doi:10.1146/annurev-micro-020518-120221.
  • Zhang L, Mei M, Yu C, Shen W, Ma L, He J, Yi LI. The Functions of Effector Proteins in Yersinia Virulence. Pol J Microbiol. 2016;65(1):5–12. doi:10.5604/17331331.1197324.
  • Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)–useful tools for bacteria and humans alike. Virulence. 2017;8(7):1124–1147. doi:10.1080/21505594.2017.1303588.
  • Carter PB. Animal model of human disease. Yersinia enteritis. Animal model: oral Yersinia enterocolitica infection of mice. Am J Pathol. 1975;81:703–706.
  • Hancock GE, Schaedler RW, MacDonald TT. Yersinia enterocolitica infection in resistant and susceptible strains of mice. Infect Immun. 1986;53(1):26–31. doi:10.1128/iai.53.1.26-31.1986.
  • Hooker-Romero D, Schwiesow L, Wei Y, Auerbuch V. Mouse Models of Yersiniosis. Methods Mol Biol. 2019;2010:41–53.
  • Fahlgren A, Avican K, Westermark L, Nordfelth R, Fallman M, Bäumler AJ. Colonization of cecum is important for development of persistent infection by Yersinia pseudotuberculosis. Infect Immun. 2014;82(8):3471–3482. doi:10.1128/IAI.01793-14.
  • Ducarmon QR, Zwittink RD, Hornung BVH, Van Schaik W, Young VB, Kuijper EJ. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev. 2019;83.
  • Isberg RR, Falkow S. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature. 1985;317(6034):262–264. doi:10.1038/317262a0.
  • Eitel J, Dersch P. The YadA Protein of Yersinia pseudotuberculosis Mediates High-Efficiency Uptake into Human Cells under Environmental Conditions in Which Invasin Is Repressed. Infect Immun. 2002;70(9):4880–4891. doi:10.1128/IAI.70.9.4880-4891.2002.
  • Isberg RR, Voorhis DL, Falkow S. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell. 1987;50(5):769–778. doi:10.1016/0092-8674(87)90335-7.
  • Drechsler-Hake D, Alamir H, Hahn J, Gunter M, Wagner S, Schutz M, Bohn E, Schenke-Layland K, Pisano F, Dersch P, et al. Mononuclear phagocytes contribute to intestinal invasion and dissemination of Yersinia enterocolitica. Int J Med Microbiol. 2016;306(6):357–366. doi:10.1016/j.ijmm.2016.04.002.
  • Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong Y-N, Peng X, Xi JJ, Chen S, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513(7517):237–241. doi:10.1038/nature13449.
  • Straley SC, Cibull ML. Differential clearance and host-pathogen interactions of YopE- and YopK- YopL- Yersinia pestis in BALB/c mice. Infect Immun. 1989;57(4):1200–1210. doi:10.1128/iai.57.4.1200-1210.1989.
  • Mills SD, Boland A, Sory MP, van der Smissen P, Kerbourch C, Finlay BB, Cornelis GR. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP,presumably acting as an effector protein. Proc Natl Acad Sci U S A. 1997;94(23):12638–12643. doi:10.1073/pnas.94.23.12638.
  • Monack DM, Mecsas J, Ghori N, Falkow S. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci U S A. 1997;94(19):10385–10390. doi:10.1073/pnas.94.19.10385.
  • Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406. doi:10.3389/fcimb.2019.00406.
  • Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD. RIPK1 Distinctly Regulates Yersinia -Induced Inflammatory Cell Death, PANoptosis. Immunohorizons. 2020;4(12):789–796. doi:10.4049/immunohorizons.2000097.
  • Mares CA, Lugo FP, Albataineh M, Goins BA, Newton IG, Isberg RR, Bergman MA. Heightened Virulence of Yersinia Is Associated with Decreased Function of the YopJ Protein. Infect Immun. 2021;89(12):e0043021. doi:10.1128/IAI.00430-21.
  • Le Baut G, O’Brien C, Pavli P, Roy M, Seksik P, Treton X, Nancey S, Barnich N, Bezault M, Auzolle C, et al. Prevalence of Yersinia Species in the Ileum of Crohn’s Disease Patients and Controls. Front Cell Infect Microbiol. 2018;8:336. doi:10.3389/fcimb.2018.00336.
  • Honda K, Iwanaga N, Izumi Y, Tsuji Y, Kawahara C, Michitsuji T, Higashi S, Kawakami A, Migita K. Reactive Arthritis Caused by Yersinia enterocolitica Enteritis. Intern Med. 2017;56(10):1239–1242. doi:10.2169/internalmedicine.56.7888.
  • Avican K, Fahlgren A, Huss M, Heroven AK, Beckstette M, Dersch P, Fällman M. Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog. 2015;11(1):e1004600. doi:10.1371/journal.ppat.1004600.
  • Wang H, Avican K, Fahlgren A, Erttmann SF, Nuss AM, Dersch P, Fallman M, Edgren T, Wolf-Watz H. Increased plasmid copy number is essential for YersiniaT3SS function and virulence. Science. 2016;353(6298):492–495. doi:10.1126/science.aaf7501.
  • Schneiders S, Hechard T, Edgren T, Avican K, Fallman M, Fahlgren A, et al. Spatiotemporal Variations in Growth Rate and Virulence Plasmid Copy Number during Yersinia pseudotuberculosis Infection. Infect Immun. 2021;89(4).
  • Fonseca D, Morais D, Hand W, Timothy H, Gerner S-J, Michael Y, Zaretsky G, Arielle B, Allyson L, Trinchieri G, et al. Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell. 2015;163(2):354–366. doi:10.1016/j.cell.2015.08.030.
  • Randolph GJ, Bala S, Rahier JF, Johnson MW, Wang PL, Nalbantoglu I, Dubuquoy L, Chau A, Pariente B, Kartheuser A, et al. Lymphoid Aggregates Remodel Lymphatic Collecting Vessels that Serve Mesenteric Lymph Nodes in Crohn Disease. Am J Pathol. 2016;186(12):3066–3073. doi:10.1016/j.ajpath.2016.07.026.
  • Weil AA, Becker RL, Harris JB. Vibrio cholerae at the Intersection of Immunity and the Microbiome. mSphere. 2019;4(6).
  • Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J. Vibrio spp. infections. Nature Rev Dis Primers. 2018;4(1):1–19. doi:10.1038/s41572-018-0005-8.
  • Baker-Austin C, Trinanes J, Gonzalez-Escalona N, Martinez-Urtaza J. Non-Cholera Vibrios: the Microbial Barometer of Climate Change. Trends Microbiol. 2017;25(1):76–84. doi:10.1016/j.tim.2016.09.008.
  • Ali M, Qadri F, Kim DR, Islam MT, Im J, Ahmmed F, Khan AI, Zaman K, Marks F, Kim JH, et al. Effectiveness of a killed whole-cell oral cholera vaccine in Bangladesh: further follow-up of a cluster-randomised trial. Lancet Infect Dis. 2021;21(10):1407–1414. doi:10.1016/S1473-3099(20)30781-7.
  • Deshayes S, Daurel C, Cattoir V, Parienti -J-J, Quilici M-L, De La Blanchardière A. Non-O1, non-O139 Vibrio cholerae bacteraemia: case report and literature review. SpringerPlus. 2015;4(1):4. doi:10.1186/2193-1801-4-4.
  • Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, Miyoshi S-I, Nair GB, Ghosh A. Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol. 2020;10:572096. doi:10.3389/fcimb.2020.572096.
  • Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol. 2019;47:66–73. doi:10.1016/j.mib.2018.12.001.
  • Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren JC. Cholera. Lancet. 2017;390(10101):1539–1549. doi:10.1016/S0140-6736(17)30559-7.
  • Sit B, Fakoya B, Waldor MK. Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Curr Opin Microbiol. 2022;65:1–7. doi:10.1016/j.mib.2021.09.007.
  • Blow NS, Salomon RN, Garrity K, Reveillaud I, Kopin A, Jackson FR, Watnick PI. Vibrio cholerae Infection of Drosophila melanogaster Mimics the Human Disease Cholera. PLoS Pathog. 2005;1(1):e8. doi:10.1371/journal.ppat.0010008.
  • Runft DL, Mitchell KC, Abuaita BH, Allen JP, Bajer S, Ginsburg K, Neely MN, Withey JH. Zebrafish as a Natural Host Model for Vibrio cholerae Colonization and Transmission. Appl Environ Microbiol. 2014;80(5):1710–1717. doi:10.1128/AEM.03580-13.
  • Vaitkevicius K, Lindmark B, Ou G, Song T, Toma C, Iwanaga M, Zhu J, Andersson A, Hammarström M-L, Tuck S, et al. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc Natl Acad Sci U S A. 2006;103(24):9280–9285. doi:10.1073/pnas.0601754103.
  • Zhao W, Caro F, Robins W, Mekalanos JJ. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science. 2018;359(6372):210–213. doi:10.1126/science.aap8775.
  • Bourque DL, Bhuiyan TR, Genereux DP, Rashu R, Ellis CN, Chowdhury F, et al. Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. Infect Immun. 2018;86(2).
  • Silva AJ, Pham K, Benitez JA. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology. 2003;149(7):1883–1891. doi:10.1099/mic.0.26086-0.
  • Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16(8):457–470. doi:10.1038/s41579-018-0036-x.
  • Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, Nguyen JP, Persat A, Desmarais SM, VanNieuwenhze MS, et al. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell. 2017;168(1–2):172–85.e15. doi:10.1016/j.cell.2016.12.019.
  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med. 1988;168(4):1487–1492. doi:10.1084/jem.168.4.1487.
  • Midani FS, Weil AA, Chowdhury F, Begum YA, Khan AI, Debela MD, Durand HK, Reese AT, Nimmagadda SN, Silverman JD, et al. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection. J Infect Dis. 2018;218(4):645–653. doi:10.1093/infdis/jiy192.
  • Levade I, Saber MM, Midani FS, Chowdhury F, Khan AI, Begum YA, Ryan ET, David LA, Calderwood SB, Harris JB, et al. Predicting Vibrio cholerae Infection and Disease Severity Using Metagenomics in a Prospective Cohort Study. J Infect Dis. 2021;223(2):342–351. doi:10.1093/infdis/jiaa358.
  • Alavi S, Mitchell JD, Cho JY, Liu R, Macbeth JC, Hsiao A. Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. Cell. 2020;181(7):1533–46.e13. doi:10.1016/j.cell.2020.05.036.
  • Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL, Petri WA, Haque R, Ahmed T, Gordon JI. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014;515(7527):423–426. doi:10.1038/nature13738.
  • Barrasso K, Chac D, Debela MD, Geigel C, Steenhaut A, Rivera Seda A, et al. Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife. 2022;11.
  • Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes. 2021;13(1):1937015. doi:10.1080/19490976.2021.1937015.
  • Wu Z, Nybom P, Magnusson K-E. Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2000;2(1):11–17. doi:10.1046/j.1462-5822.2000.00025.x.
  • Miller KA, Chaand M, Gregoire S, Yoshida T, Beck LA, Ivanov AI, et al. Characterization of V . cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells. Cell Microbiol. 2016;18(12):1857–1870. doi:10.1111/cmi.12629.
  • Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A. 2005;102(9):3465–3470. doi:10.1073/pnas.0409918102.
  • Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel Zur Wiesch P, Zhou X, Davis BM, Waldor MK. Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc Natl Acad Sci U S A. 2016;113(22):6283–6288. doi:10.1073/pnas.1601718113.
  • Miller KA, Sofia MK, Weaver JWA, Seward CH, Dziejman M, DiRita VJ. Regulation by ToxR-Like Proteins Converges on vttR B Expression To Control Type 3 Secretion System-Dependent Caco2-BBE Cytotoxicity in Vibrio cholerae. J Bacteriol. 2016;198(11):1675–1682. doi:10.1128/JB.00130-16.
  • Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F, Fröhlich KS, et al. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat Commun. 2020;11.
  • Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. Antibiotic resistance in Vibrio cholerae: understanding the ecology of resistance genes and mechanisms. Vaccine. 2020;38(Suppl 1):A83–A92. doi:10.1016/j.vaccine.2019.06.031.
  • Bloom BR, Shevach E. Requirement for T cells in the production of migration inhibitory factor. J Exp Med. 1975;142(5):1306–1311. doi:10.1084/jem.142.5.1306.
  • Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, Mann M, Bumann D. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature. 2006;440(7082):303–307. doi:10.1038/nature04616.