1,980
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Pol32, an accessory subunit of DNA polymerase delta, plays an essential role in genome stability and pathogenesis of Candida albicans

, , , & ORCID Icon
Article: 2163840 | Received 10 Aug 2022, Accepted 21 Dec 2022, Published online: 05 Jan 2023

References

  • Burgers PMJ, Kunkel TA. Eukaryotic DNA replication fork. Annu Rev Biochem. 2017;86(1):417–35. doi:10.1146/annurev-biochem-061516-044709.
  • Guilliam TA, Yeeles JTP. An updated perspective on the polymerase division of labor during eukaryotic DNA replication. Crit Rev Biochem Mol Biol. 2020;55(5):469–481. doi:10.1080/10409238.2020.1811630.
  • Acharya N, Klassen R, Johnson RE, Prakash L, Prakash S. 2011. PCNA binding domains in all three subunits of yeast DNA polymerase delta modulate its function in DNA replication. Proceedings of the National Academy of Sciences of the United States of America; 108, 17927–17932. doi:10.1073/pnas.1109981108.
  • Acharya N, Khandagale P, Thakur S, Sahu JK, Utkalaja BG. Quaternary structural diversity in eukaryotic DNA polymerases: monomeric to multimeric form. Curr Genet. 2020;66(4):635–655. doi:10.1007/s00294-020-01071-1.
  • Khandagale P, Peroumal D, Manohar K, Acharya N. Human DNA polymerase delta is a pentameric holoenzyme with a dimeric p12 subunit. Life Sci Alliance. 2019;2(2):e201900323. doi:10.26508/lsa.201900323.
  • Zuo S, Gibbs E, Kelman Z, Wang TS, O’Donnell M, MacNeill SA, Hurwitz J. (1997). DNA polymerase delta isolated from Schizosaccharomyces pombe contains five subunits. Proceedings of the National Academy of Sciences of the United States of America; 94, 11244–11249. doi:10.1073/pnas.94.21.11244.
  • Johansson E, Garg P, Burgers PM. The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem. 2004;279(3):1907–1915. doi:10.1074/jbc.M310362200.
  • MacNeill SA, Moreno S, Reynolds N, Nurse P, Fantes PA. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27. EMBO J. 1996;15(17):4613–4628. doi:10.1002/j.1460-2075.1996.tb00839.x.
  • Makarova AV, Stodola JL, Burgers PM. A four-subunit DNA polymerase zeta complex containing Pol delta accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 2012;40(22):11618–11626. doi:10.1093/nar/gks948.
  • Johnson RE, Prakash L, Prakash S. 2012. Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proceedings of the National Academy of Sciences of the United States of America; 109, 12455–12460. doi:10.1073/pnas.1206052109.
  • Huang ME, Rio AG, Galibert MD, Galibert F. Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase δ, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics. 2002;160(4):1409–1422. doi:10.1093/genetics/160.4.1409.
  • Acharya N, Johnson RE, Pages V, Prakash L, Prakash S. 2009. Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proceedings of the National Academy of Sciences of the United States of America; 106, 9631–9636
  • Hirota K, Yoshikiyo K, Guilbaud G, Tsurimoto T, Murai J, Tsuda M, Phillips LG, Narita T, Nishihara K, Kobayashi K, et al. The POLD3 subunit of DNA polymerase delta can promote translesion synthesis independently of DNA polymerase zeta. Nucleic Acids Res. 2015;43(3):1671–1683. doi:10.1093/nar/gkv023.
  • Lancey C, Tehseen M, Raducanu VS, Rashid F, Merino N, Ragan TJ, Savva CG, Zaher MS, Shirbini A, Blanco FJ, et al. Structure of the processive human Pol delta holoenzyme. Nat Commun. 2020;11(1):1109. doi:10.1038/s41467-020-14898-6.
  • Zheng F, Georgescu RE, Li H, O’Donnell ME. 2020. Structure of eukaryotic DNA polymerase delta bound to the PCNA clamp while encircling DNA. Proceedings of the National Academy of Sciences of the United States of America; 117, 30344–30353. doi:10.1073/pnas.2017637117.
  • Wenzel RP. Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis. 1995;20(6):1531–1534. doi:10.1093/clinids/20.6.1531.
  • Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG, Patel SK, Acharya N. Vaccines against candidiasis: status, challenges and emerging opportunity. Front Cell Infect Microbiol. 2022;12:1002406. doi:10.3389/fcimb.2022.1002406.
  • Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q, Zisson E, Wang JM, Greenberg JM, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25(3):413–425. doi:10.1101/gr.174623.114.
  • Pavlov YI, Zhuk AS, Stepchenkova EI. DNA polymerases at the eukaryotic replication fork thirty years after: connection to cancer. Cancers (Basel). 2020;12(12):3489. doi:10.3390/cancers12123489.
  • Rustchenko E. Chromosome instability in Candida albicans. FEMS Yeast Res. 2007;7(1):2–11. doi:10.1111/j.1567-1364.2006.00150.x.
  • Kumari P, Sundaram R, Manohar K, Vasudevan D, Acharya N. Interdomain connecting loop and J loop structures determine cross-species compatibility of PCNA. J Biol Chem. 2021;297(1):100911. doi:10.1016/j.jbc.2021.100911.
  • Huang ME, Le Douarin B, Henry C, Galibert F. The Saccharomyces cerevisiae protein YJR043C (Pol32) interacts with the catalytic subunit of DNA polymerase alpha and is required for cell cycle progression in G2/M. Mol Gen Genet. 1999;260(6):541–550. doi:10.1007/s004380050927.
  • Manohar K, Peroumal D, Acharya N. TLS dependent and independent functions of DNA polymerase eta (Polη/Rad30) from pathogenic yeast Candida albicans. Mol Microbiol. 2018;110(5):707–727. doi:10.1111/mmi.14004.
  • Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, Petersen K, Berman J. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio. 2011;2. doi:10.1128/mBio.00129-11.
  • Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ. 2018. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proceedings of the National Academy of Sciences of the United States of America; 115, E8688–E8697. doi:10.1073/pnas.1806002115.
  • Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, et al. The evolution of drug resistance in clinical isolates of Candida albicans. eLife. 2015;4:e00662. doi:10.7554/eLife.00662.
  • Abbey DA, Funt J, Lurie-Weinberger MN, Thompson DA, Regev A, Myers CL, Berman J. YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Med. 2014;6(11):100. doi:10.1186/s13073-014-0100-8.
  • Nick Mcelhinny SA, Stith CM, Burgers PM, Kunkel TA. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem. 2007;282(4):2324–2332. doi:10.1074/jbc.M609591200.
  • Lujan SA, Clausen AR, Clark AB, MacAlpine HK, MacAlpine DM, Malc EP, Mieczkowski PA, Burkholder AB, Fargo DC, Gordenin DA, et al. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 2014;24(11):1751–1764. doi:10.1101/gr.178335.114.
  • Bachewich C, Thomas DY, Whiteway M. Depletion of a polo-like kinase in candida albicans activates cyclase-dependent hyphal-like growth. Mol Biol Cell. 2003;14(5):2163–2180. doi:10.1091/mbc.02-05-0076.
  • Shi QM, Wang YM, Zheng XD, Lee RT, Wang Y. Critical role of DNA checkpoints in mediating genotoxic-stress–induced filamentous growth in Candida albicans. Mol Biol Cell. 2007;18(3):815–826. doi:10.1091/mbc.e06-05-0442.
  • Loll-Krippleber R, d’Enfert C, Feri A, Diogo D, Perin A, Marcet-Houben M, Bougnoux ME, Legrand M. A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth. Mol Microbiol. 2014;91(3):452–471. doi:10.1111/mmi.12471.
  • Peroumal D, Manohar K, Patel SK, Kumari P, Sahu SR, Acharya N. Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation. Cell Microbiol. 2019;21(12):e13103. doi:10.1111/cmi.13103.
  • Tsuchimori N, Sharkey LL, Fonzi WA, French SW, Edwards JE Jr., Filler SG. Reduced virulence of HWP1 -deficient mutants of Candida albicans and their interactions with host cells. Infect Immun. 2000;68(4):1997–2002. doi:10.1128/IAI.68.4.1997-2002.2000.
  • Correia A, Lermann U, Teixeira L, Cerca F, Botelho S, da Costa RM, Sampaio P, Gartner F, Morschhauser J, Vilanova M, et al. Limited role of secreted aspartyl proteinases sap1 to sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect Immun. 2010;78(11):4839–4849. doi:10.1128/IAI.00248-10.
  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90(5):939–949. doi:10.1016/S0092-8674(00)80358-X.
  • Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, et al. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001;20(17):4742–4752. doi:10.1093/emboj/20.17.4742.
  • Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Hofs S, Gratacap RL, Robbins J, Runglall M, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68. doi:10.1038/nature17625.
  • Cowen LE, Anderson JB, Kohn LM. Evolution of drug resistance in Candida Albicans. Annu Rev Microbiol. 2002;56(1):139–165. doi:10.1146/annurev.micro.56.012302.160907.
  • Marie C, White TC. Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep. 2009;3(3):163–169. doi:10.1007/s12281-009-0021-y.
  • Dunkel N, Blass J, Rogers PD, Morschhauser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol. 2008;69(4):827–840. doi:10.1111/j.1365-2958.2008.06309.x.
  • Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog. 2011;7(9):e1002257. doi:10.1371/journal.ppat.1002257.
  • LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR, Cowen LE. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog. 2010;6(8):e1001069. doi:10.1371/journal.ppat.1001069.
  • Regan J, DeJarnette C, Luna-Tapia A, Parker JE, Reitler P, Barnett S, Tucker KM, Kelly SL, Palmer GE. Titration of C-5 sterol desaturase activity reveals its relationship to Candida albicans virulence and antifungal susceptibility is dependent upon host immune status. mBio. 2022;13(2):e0011522. doi:10.1128/mbio.00115-22.
  • Robbins N, Caplan T, Cowen LE. Molecular evolution of antifungal drug resistance. Annu Rev Microbiol. 2017;71(1):753–775. doi:10.1146/annurev-micro-030117-020345.
  • Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol. 2009;19(8):621–629. doi:10.1016/j.cub.2009.03.017.
  • Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, et al. 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proceedings of the National Academy of Sciences of the United States of America; 106, 2818–2823. doi:10.1073/pnas.0813394106.
  • Li Y, Chang W, Zhang M, Li X, Jiao Y, Lou H. Synergistic and drug-resistant reversing effects of diorcinol D combined with fluconazole against Candida albicans. FEMS Yeast Res. 2015;15(2). doi:10.1093/femsyr/fov001.
  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. The fungal cell wall: candida, cryptococcus, and aspergillus species. Front Microbiol. 2019;10:2993. doi:10.3389/fmicb.2019.02993.
  • Desai JV, Mitchell AP. Candida albicans biofilm development and its genetic control. Microbiol Spectr. 2015;3(3). doi:10.1128/microbiolspec.MB-0005-2014.
  • Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9(2):109–118. doi:10.1038/nrmicro2475.
  • Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect /Institut Pasteur. 2016;18(5):310–321. doi:10.1016/j.micinf.2016.01.002.
  • Jain R, Rice WJ, Malik R, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. Cryo-EM structure and dynamics of eukaryotic DNA polymerase delta holoenzyme. Nat Struct Mol Biol. 2019;26(10):955–962. doi:10.1038/s41594-019-0305-z.
  • Gerik KJ, Li X, Pautz A, Burgers PM. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem. 1998;273(31):19747–19755. doi:10.1074/jbc.273.31.19747.
  • Reijns MAM, Kemp H, Ding J, de Proce SM, Jackson AP, Taylor MS. Lagging-strand replication shapes the mutational landscape of the genome. Nature. 2015;518(7540):502–506. doi:10.1038/nature14183.
  • Torres EM, Williams BR, Amon A. Aneuploidy: cells losing their balance. Genetics. 2008;179(2):737–746. doi:10.1534/genetics.108.090878.
  • Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature. 2010;468(7321):321–325. doi:10.1038/nature09529.
  • Khristich AN, Armenia JF, Matera RM, Kolchinski AA, Mirkin SM. 2020. Large-scale contractions of Friedreich’s ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proceedings of the National Academy of Sciences of the United States of America; 117, 1628–1637. doi:10.1073/pnas.1913416117.
  • Braun BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J. 2001;20(17):4753–4761. doi:10.1093/emboj/20.17.4753.
  • Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother. 2003;47(8):2404–2412. doi:10.1128/AAC.47.8.2404-2412.2003.
  • Belenky P, Camacho D, Collins JJ. Fungicidal drugs induce a common oxidative-damage cellular death pathway. Cell Rep. 2013;3(2):350–358. doi:10.1016/j.celrep.2012.12.021.
  • Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones. 2018;23(3):303–315. doi:10.1007/s12192-017-0843-4.
  • Robbins N, Leach MD, Cowen LE. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep. 2012;2(4):878–888. doi:10.1016/j.celrep.2012.08.035.
  • Saville SP, Lazzell AL, Chaturvedi AK, Monteagudo C, Lopez-Ribot JL. Efficacy of a genetically engineered Candida albicans tet-NRG1 strain as an experimental live attenuated vaccine against hematogenously disseminated candidiasis. Clin Vaccine Immunol. 2009;16(3):430–432. doi:10.1128/CVI.00480-08.
  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AJ, Gow NA. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 1997;65(9):3529–3538. doi:10.1128/iai.65.9.3529-3538.1997.
  • Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L. Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol. 2005;25(21):9734–9740. doi:10.1128/MCB.25.21.9734-9740.2005.
  • Manohar K, Acharya N. Characterization of proliferating cell nuclear antigen (PCNA) from pathogenic yeast Candida albicans and its functional analyses in S. cerevisiae. BMC Microbiol. 2015;15(1):257. doi:10.1186/s12866-015-0582-6.
  • Manohar K, Khandagale P, Patel SK, Sahu JK, Acharya N. The ubiquitin-binding domain of DNA polymerase eta directly binds to DNA clamp PCNA and regulates translesion DNA synthesis. J Biol Chem. 2022;298(2):101506. doi:10.1016/j.jbc.2021.101506.
  • Sasse C, Morschhauser J. Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods Mol Biol. 2012;845:3–17.
  • Oliveira Carvalho V, Okay TS, Melhem MS, Walderez Szeszs M, Del Negro GM. The new mutation L321F in Candida albicans ERG11 gene may be associated with fluconazole resistance. Rev Iberoam Micol. 2013;30(3):209–212. doi:10.1016/j.riam.2013.01.001.
  • Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A, Coste AT, Gupta M, Sanglard D, White TC, et al. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J Biol Chem. 2018;293(2):412–432. doi:10.1074/jbc.M117.807032.
  • Grigor’eva A, Bardasheva A, Tupitsyna A, Amirkhanov N, Tikunova N, Pyshnyi D, Kleshev M, Ryabchikova E. Changes in the ultrastructure of candida albicans treated with cationic peptides. Microorganisms. 2020;8. doi:10.3390/microorganisms8040582.
  • Suwunnakorn S, Wakabayashi H, Rustchenko E. Chromosome 5 of human pathogen Candida albicans carries multiple genes for negative control of caspofungin and anidulafungin susceptibility. Antimicrob Agents Chemother. 2016;60(12):7457–7467. doi:10.1128/AAC.01888-16.