2,642
Views
11
CrossRef citations to date
0
Altmetric
Review

Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection

, , , , , , & show all
Article: 2167171 | Received 18 Aug 2022, Accepted 03 Jan 2023, Published online: 01 Feb 2023

References

  • Williams DW, Jordan RP, Wei XQ, Alves CT, Wise MP, Wilson MJ, Lewis MA. Interactions of Candida albicans with host epithelial surfaces. J Oral Microbiol. 2013;5. doi:10.3402/jom.v5i0.22434.
  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36(1):1–24. doi:10.3109/10408410903241444.
  • Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2(5):403–411. doi:10.1038/mi.2009.100.
  • Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B, Edgerton M. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog. 2016;12(3):e1005522. doi:10.1371/journal.ppat.1005522.
  • Lewis MAO, Williams DW. Diagnosis and management of oral candidosis. Br Dent J. 2017;223(9):675–681. doi:10.1038/sj.bdj.2017.886.
  • McCullough MJ, Clemons KV, Stevens DA. Molecular epidemiology of the global and temporal diversity of Candida albicans. Clin Infect Dis. 1999;29(5):1220–1225. doi:10.1086/313455.
  • Chen H, Zhou X, Ren B, Cheng L. The regulation of hyphae growth in Candida albicans. Virulence. 2020;11(1):337–348. doi:10.1080/21505594.2020.1748930.
  • Lalla RV, Latortue MC, Hong CH, Ariyawardana A, D’Amato-Palumbo S, Fischer DJ, Martof A, Nicolatou-Galitis O, Patton LL, Elting LS, Spijkervet FK. A systematic review of oral fungal infections in patients receiving cancer therapy. Support Care Cancer. 2010;18(8):985–992. doi:10.1007/s00520-010-0892-z.
  • Hajjeh RA, Sofair AN, Harrison LH, Lyon GM, Arthington-Skaggs BA, Mirza SA, Phelan M, Morgan J, Lee-Yang W, Ciblak MA, Benjamin LE. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol. 2004;42(4):1519–1527. doi:10.1128/jcm.42.4.1519-1527.2004.
  • Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2011;10(2):112–122. doi:10.1038/nrmicro2711.
  • Zhou PR, Hua H, Liu XS. Quantity of Candida colonies in saliva: a diagnostic evaluation for oral candidiasis. Chin J Dent Res. 2017;20(1):27–32. doi:10.3290/j.cjdr.a37739.
  • Kauffman CA. Fungal infections. Proc Am Thorac Soc. 2006;3(1):35–40. doi:10.1513/pats.200510-110JH.
  • Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577):1961–1971. doi:10.1016/s0140-6736(07)60917-9.
  • de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev. 2004;17(4):729–759. doi:10.1128/cmr.17.4.729-759.2004. table of contents
  • Hung CC, Yang YL, Lauderdale TL, McDonald LC, Hsiao C-F, Cheng -H-H, Ho YA, Lo H-J. Colonization of human immunodeficiency virus-infected outpatients in taiwan with candida species. J Clin Microbiol. 2005;43(4):1600–1603. doi:10.1128/jcm.43.4.1600-1603.2005.
  • Ouyang J, Isnard S, Lin J, Fombuena B, Marette A, Routy B, Chen Y, Routy J-P. Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Res Ther. 2020;17(1):10. doi:10.1186/s12981-020-00267-2.
  • Tong Y, Tang J. Candida albicans infection and intestinal immunity. Microbiol Res. 2017;198:27–35. doi:10.1016/j.micres.2017.02.002.
  • Hager CL, Ghannoum MA. The mycobiome in HIV. Curr Opin HIV AIDS. 2018;13(1):69–72. doi:10.1097/coh.0000000000000432.
  • Vujkovic-Cvijin I, Somsouk M. HIV and the gut microbiota: composition, consequences, and avenues for amelioration. Curr HIV/AIDS Rep. 2019;16(3):204–213. doi:10.1007/s11904-019-00441-w.
  • Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009;19(12):2231–2244. doi:10.1101/gr.097501.109.
  • Mishra PK, Baum M, Carbon J. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol Genet Genomics. 2007;278(4):455–465. doi:10.1007/s00438-007-0263-8.
  • Wang JM, Bennett RJ, Anderson MZ, Nielsen K. The genome of the human pathogen Candida albicans is shaped by mutation and cryptic sexual recombination. mBio. 2018;9(5):5. doi:10.1128/mBio.01205-18.
  • Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–662. doi:10.1038/nature08064.
  • Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25(3):413–425. doi:10.1101/gr.174623.114.
  • National Institutes of Health. Candida albicans SC5314. 2016. https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/237561/. Accessed 16 Dec 2022.
  • d’Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev. 2021;45:3. doi:10.1093/femsre/fuaa060.
  • Soll DR. The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J Oral Microbiol. 2014:6. doi:10.3402/jom.v6.22993.
  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther. 2012;10(1):85–93. doi:10.1586/eri.11.152.
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128. doi:10.4161/viru.22913.
  • Berman J, Sudbery PE. Candida Albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet. 2002;3(12):918–930. doi:10.1038/nrg948.
  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. EngineeredControl of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans duringInfection. Eukaryot Cell. 2003;2(5):1053–1060. doi:10.1128/ec.2.5.1053-1060.2003.
  • Netea MG, Joosten LA, van der Meer JW, Kullberg B-J, van de Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015;15(10):630–642. doi:10.1038/nri3897.
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327–335. doi:10.1016/s0966-842x(01)02094-7.
  • Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman D, Johnson A. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr Biol. 2014;24(20):2411–2416. doi:10.1016/j.cub.2014.08.057.
  • Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45(9):1088–1091. doi:10.1038/ng.2710.
  • Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 2008;6(5):e110. doi:10.1371/journal.pbio.0060110.
  • Bennett RJ, Johnson AD. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. Embo J. 2003;22(10):2505–2515. doi:10.1093/emboj/cdg235.
  • Kett DH, Azoulay E, Echeverria PM, Vincent J-L. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39(4):665–670. doi:10.1097/CCM.0b013e318206c1ca.
  • Kullberg BJ, Arendrup MC. Invasive Candidiasis. N Engl J Med. 2015;373(15):1445–1456. doi:10.1056/NEJMra1315399.
  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13. doi:10.1126/scitranslmed.3004404.
  • Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. 2016;14(3):163–176. doi:10.1038/nrmicro.2015.21.
  • Uwamahoro N, Verma-Gaur J, Shen HH, Qu Y, Lewis R, Lu J, Bambery K, Masters SL, Vince JE, Naderer T, et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio. 2014;5(2):e00003–14. doi:10.1128/mBio.00003-14.
  • Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol. 2002;5(4):366–371. doi:10.1016/s1369-5274(02)00338-7.
  • Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 2005;59(1):113–133. doi:10.1146/annurev.micro.59.030804.121034.
  • Suryana K, Suharsono H, Antara I. Factors associated with oral candidiasis in people living with HIV/AIDS: a case control study. HIV AIDS (Auckl). 2020;12:33–39. doi:10.2147/hiv.s236304.
  • Ambe NF, Longdoh NA, Tebid P, Bobga TP, Nkfusai CN, Ngwa SB, Nsai FS, Cumber SN. The prevalence, risk factors and antifungal sensitivity pattern of oral candidiasis in HIV/AIDS patients in Kumba District Hospital, South West Region, Cameroon. Pan Afr Med J. 2020;36:23. doi:10.11604/pamj.2020.36.23.18202.
  • Kawashita Y, Funahara M, Yoshimatsu M, Kawashita Y, Funahara M, Yoshimatsu M, Nakao N, Soutome S, Saito T, Umeda M. A retrospective study of factors associated with the development of oral candidiasis in patients receiving radiotherapy for head and neck cancer: is topical steroid therapy a risk factor for oral candidiasis? Medicine (Baltimore). 2018;97(44):e13073. doi:10.1097/md.0000000000013073.
  • López-Pintor RM, Hernández G, de Arriba L, de Andres A. Oral candidiasis in patients with renal transplants. Med Oral Patol Oral Cir Bucal. 2013;18(3):e381–7. doi:10.4317/medoral.18658.
  • Mojazi Amiri H, Frandah W, Colmer-Hamood J, Raj R, Nugent K. Risk factors of Candida colonization in the oropharynx of patients admitted to an intensive care unit. J Mycol Med. 2012;22(4):301–307. doi:10.1016/j.mycmed.2012.08.001.
  • Mtibaa L, Fakhfakh N, Kallel A, Belhadj S, Belhaj Salah N, Bada N, Kallel K. Vulvovaginal candidiasis: etiology, symptomatology and risk factors. J Mycol Med. 2017;27(2):153–158. doi:10.1016/j.mycmed.2017.01.003.
  • Zeng X, Zhang Y, Zhang T, Xue Y, Xu H, An R. Risk factors of vulvovaginal candidiasis among women of reproductive age in Xi’an: a cross-sectional study. Biomed Res Int. 2018;2018:9703754. doi:10.1155/2018/9703754.
  • Ogiso H, Adachi S, Mabuchi M, Horibe Y, Ohno T, Suzuki Y, Yamauchi O, Kojima T, Takada E, Iwama M, et al. Risk factors for the development of esophageal candidiasis among patients in community hospital. Sci Rep. 2021;11(1):20663. doi:10.1038/s41598-021-00132-w.
  • Sasani E, Rafat Z, Ashrafi K, Salimi Y, Zandi M, Soltani S, Hashemi F, Hashemi SJ. Vulvovaginal candidiasis in Iran: a systematic review and meta-analysis on the epidemiology, clinical manifestations, demographic characteristics, risk factors, etiologic agents and laboratory diagnosis. Microb Pathog. 2021;154:104802. doi:10.1016/j.micpath.2021.104802.
  • Garcia-San Miguel L, Cobo J, Martos I, Otheo E, Muriel A, Pintado V, Moreno S. Risk factors for candidemia in pediatric patients with congenital heart disease. Infect Control Hosp Epidemiol. 2006;27(6):576–580. doi:10.1086/505094.
  • Ortíz Ruiz G, Osorio J, Valderrama S, Álvarez D, Elías Díaz R, Calderón J, Ballesteros D, Franco A. Risk factors for candidemia in non-neutropenic critical patients in Colombia. Med Intensiva. 2016;40(3):139–144. doi:10.1016/j.medin.2015.08.001.
  • Bartoletti M, Rinaldi M, Pasquini Z, et al. Risk factors for candidaemia in hospitalized patients with liver cirrhosis: a multicentre case-control-control study. Clin Microbiol Infect. 2021;27(2):276–282. doi:10.1016/j.cmi.2020.04.030.
  • Keighley CL, Pope A, Marriott DJE, Chapman B, Bak N, Daveson K, Hajkowicz K, Halliday C, Kennedy K, Kidd S, et al. Risk factors for candidaemia: a prospective multi-centre case-control study. Mycoses. 2021;64(3):257–263. doi:10.1111/myc.13211.
  • Frezza S, Maggio L, De Carolis MP, Gallini F, Puopolo M, Polimeni V, Costa S, Vento G, Tortorolo G. Risk factors for pulmonary candidiasis in preterm infants with a birth weight of less than 1250 g. Eur J Pediatr. 2005;164(2):88–92. doi:10.1007/s00431-004-1571-1.
  • Zaoutis TE, Greves HM, Lautenbach E, Bilker WB, Coffin SE. Risk factors for disseminated candidiasis in children with candidemia. Pediatr Infect Dis J. 2004;23(7):635–641. doi:10.1097/01.inf.0000128781.77600.6f.
  • Thomas-Rüddel DO, Schlattmann P, Pletz M, Kurzai O, Bloos F. Risk factors for invasive Candida infection in critically Ill patients: a systematic review and meta-analysis. Chest. 2022;161(2):345–355. doi:10.1016/j.chest.2021.08.081.
  • Brown AJ, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, et al. Stress adaptation in a pathogenic fungus. J Exp Biol. 2014;217(Pt 1):144–155. doi:10.1242/jeb.088930.
  • Hall RA. Dressed to impress: impact of environmental adaptation on the Candida albicans cell wall. Mol Microbiol. 2015;97(1):7–17. doi:10.1111/mmi.13020.
  • Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 2013;29(1):51–58. doi:10.1016/j.tig.2012.09.005.
  • Childers DS, Raziunaite I, Mol Avelar G, Mackie J, Budge S, Stead D, Gow NAR, Lenardon MD, Ballou ER, MacCallum DM, et al. The rewiring of ubiquitination targets in a pathogenic yeast promotes metabolic flexibility, host colonization and virulence. PLoS Pathog. 2016;12(4):e1005566. doi:10.1371/journal.ppat.1005566.
  • Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJP. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen C andida albicans. Proteomics. 2012;12(21):3164–3179. doi:10.1002/pmic.201200228.
  • Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A. 2002;99(23):14907–14912. doi:10.1073/pnas.232566499.
  • Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NAR, Brown AJP. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 2012;14(9):1319–1335. doi:10.1111/j.1462-5822.2012.01813.x.
  • Brown AJ, Brown GD, Netea MG, Gow NAR. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014;22(11):614–622. doi:10.1016/j.tim.2014.07.001.
  • Nucci M, Anaissie E. Revisiting the source of candidemia: skin or gut? Clin Infect Dis. 2001;33(12):1959–1967. doi:10.1086/323759.
  • Alonso-Monge R, Gresnigt MS, Román E, Hube B, Pla J. Candida albicans colonization of the gastrointestinal tract: a double-edged sword. PLoS Pathog. 2021;17(7):e1009710. doi:10.1371/journal.ppat.1009710.
  • Vautier S, Drummond RA, Chen K, Murray GI, Kadosh D, Brown AJP, Gow NAR, MacCallum DM, Kolls JK, Brown GD, et al. C andida albicans colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cell Microbiol. 2015;17(4):445–450. doi:10.1111/cmi.12388.
  • Yan L, Yang C, Tang J. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol Res. 2013;168(7):389–395. doi:10.1016/j.micres.2013.02.008.
  • Vulvovaginal CA. Candida albicans infections: pathogenesis, immunity and vaccine prospects. Bjog. 2015;122(6):785–794. doi:10.1111/1471-0528.12994.
  • Yang W, Yan L, Wu C, Zhao X, Tang J. Fungal invasion of epithelial cells. Microbiol Res. 2014;169(11):803–810. doi:10.1016/j.micres.2014.02.013.
  • Naglik JR, Moyes DL, Wächtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 2011;13(12–13):963–976. doi:10.1016/j.micinf.2011.06.009.
  • Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, Ton A, Jabra-Rizk MA. A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One. 2009;4(4):e5039. doi:10.1371/journal.pone.0005039.
  • Szafranski-Schneider E, Swidergall M, Cottier F, Tielker D, Román E, Pla J, Ernst JF. Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog. 2012;8(2):e1002501. doi:10.1371/journal.ppat.1002501.
  • Li R, Kumar R, Tati S, Puri S, Edgerton M. Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. Antimicrob Agents Chemother. 2013;57(4):1832–1839. doi:10.1128/aac.02295-12.
  • Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol. 2019;52:100–109. doi:10.1016/j.mib.2019.06.002.
  • Blagojevic M, Camilli G, Maxson M, Hube B, Moyes DL, Richardson JP, Naglik JR. Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell Microbiol. 2021;23(10):e13371. doi:10.1111/cmi.13371.
  • Mogavero S, Sauer FM, Brunke S, Allert S, Schulz D, Wisgott S, Jablonowski N, Elshafee O, Krüger T, Kniemeyer O, Brakhage AA. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell Microbiol. 2021;23(10):e13378. doi:10.1111/cmi.13378.
  • Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, Valladolid C. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity. 2021;54(11):2595–2610.e7. doi:10.1016/j.immuni.2021.08.009.
  • Hollmig ST, Ariizumi K, Cruz PD Jr. Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2. Glycobiology. 2009;19(6):568–575. doi:10.1093/glycob/cwp032.
  • Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. J Infect Chemother. 2008;14(2):86–92. doi:10.1007/s10156-008-0596-1.
  • Cambi A, Netea MG, Mora-Montes HM, Gow NA, Hato SV, Lowman DW, Kullberg BJ, Torensma R, Williams DL, Figdor CG. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem. 2008;283(29):20590–20599. doi:10.1074/jbc.M709334200.
  • Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529–536. doi:10.1038/nrmicro1441.
  • Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. Embo J. 2005;24(6):1277–1286. doi:10.1038/sj.emboj.7600594.
  • Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol. 2016;54(3):149–169. doi:10.1007/s12275-016-5514-0.
  • Gow NA, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, Walker L, Jansen T, Jacobs L, Tsoni V, Brown GD. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196(10):1565–1571. doi:10.1086/523110.
  • Wheeler RT, Kombe D, Agarwala SD, Fink GR. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 2008;4(12):e1000227. doi:10.1371/journal.ppat.1000227.
  • van ‘t Wout JW, Linde I, Leijh PC, Van Furth R. Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur J Clin Microbiol Infect Dis. 1988;7(6):736–741. doi:10.1007/bf01975039.
  • van der Meer JW, van de Veerdonk FL, Joosten LA, Kullberg BJ, Netea MG. Severe Candida spp. infections: new insights into natural immunity. Int J Antimicrob Agents. 2010;(36 Suppl 2):S58–62. doi:10.1016/j.ijantimicag.2010.11.013.
  • Hebecker B, Naglik JR, Hube B, Jacobsen ID. Pathogenicity mechanisms and host response during oral Candida albicans infections. Expert Rev Anti Infect Ther. 2014;12(7):867–879. doi:10.1586/14787210.2014.916210.
  • Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, Schaller M. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest. 2007;117(12):3664–3672. doi:10.1172/jci28115.
  • Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5(10):e1000639. doi:10.1371/journal.ppat.1000639.
  • Geiger J, Wessels D, Lockhart SR, Soll DR. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun. 2004;72(2):667–677. doi:10.1128/iai.72.2.667-677.2004.
  • Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhäuser J. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot Cell. 2013;12(1):50–58. doi:10.1128/ec.00266-12.
  • Gropp K, Schild L, Schindler S, Hube B, Zipfel PF, Skerka C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol Immunol. 2009;47(2–3):465–475. doi:10.1016/j.molimm.2009.08.019.
  • Marcil A, Harcus D, Thomas DY, Whiteway M. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment. Infect Immun. 2002;70(11):6319–6329. doi:10.1128/iai.70.11.6319-6329.2002.
  • Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL, Petro TM, Nickerson KW. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun. 2009;77(4):1596–1605. doi:10.1128/iai.01452-08.
  • Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio. 2011;2(3):e00055–11. doi:10.1128/mBio.00055-11.
  • Chikina AS, Nadalin F, Maurin M, San-Roman M, Thomas-Bonafos T, Li XV, Lameiras S, Baulande S, Henri S, Malissen B, et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell. 2020;183(2):411–428.e16. doi:10.1016/j.cell.2020.08.048.
  • Ikarashi N, Baba K, Ushiki T, Kon R, Mimura A, Toda T, Ishii M, Ochiai W, Sugiyama K. The laxative effect of bisacodyl is attributable to decreased aquaporin-3 expression in the colon induced by increased PGE 2 secretion from macrophages. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G887–95. doi:10.1152/ajpgi.00286.2011.
  • Hickey DK, Patel MV, Fahey JV, Wira CR. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: stratification and integration of immune protection against the transmission of sexually transmitted infections. J Reprod Immunol. 2011;88(2):185–194. doi:10.1016/j.jri.2011.01.005.
  • Cheng SC, Joosten LA, Kullberg BJ, Netea MG. Interplay between Candida albicans and the mammalian innate host defense. Infect Immun. 2012;80(4):1304–1313. doi:10.1128/iai.06146-11.
  • Sallusto F, Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002;4(4 Suppl 3 (Suppl3)):S127–32. doi:10.1186/ar567.
  • Cambi A, Gijzen K, de Vries L J, Torensma R, Joosten B, Adema G, Netea M, Kullberg B-J, Romani L, Figdor C, et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol. 2003;33(2):532–538. doi:10.1002/immu.200310029.
  • Feller L, Khammissa RA, Chandran R, Altini M, Lemmer J. Oral candidosis in relation to oral immunity. J Oral Pathol Med. 2014;43(8):563–569. doi:10.1111/jop.12120.
  • Conti HR, Gaffen SL. Host responses to Candida albicans: th17 cells and mucosal candidiasis. Microbes Infect. 2010;12(7):518–527. doi:10.1016/j.micinf.2010.03.013.
  • van de Veerdonk FL, Joosten LA, Netea MG. The interplay between inflammasome activation and antifungal host defense. Immunol Rev. 2015;265(1):172–180. doi:10.1111/imr.12280.
  • Weindl G, Wagener J, Schaller M. Epithelial cells and innate antifungal defense. J Dent Res. 2010;89(7):666–675. doi:10.1177/0022034510368784.
  • Netea MG, Maródi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol. 2010;31(9):346–353. doi:10.1016/j.it.2010.06.007.
  • Luo S, Skerka C, Kurzai O, Zipfel PF. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans. Mol Immunol. 2013;56(3):161–169. doi:10.1016/j.molimm.2013.05.218.
  • Netea MG, Sutmuller R, Hermann C, Van der Graaf CAA, Van der Meer JWM, van Krieken JH, Hartung T, Adema G, Kullberg BJ. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol. 2004;172(6):3712–3718. doi:10.4049/jimmunol.172.6.3712.
  • De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld J-C, Bistoni F, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3(4):361–373. doi:10.1038/mi.2010.22.
  • Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129(3):311–321. doi:10.1111/j.1365-2567.2009.03240.x.
  • Cheng SC, van de Veerdonk F, Smeekens S, Joosten LAB, van der Meer JWM, Kullberg B-J, Netea MG. Candida albicans dampens host defense by downregulating IL-17 production. J Immunol. 2010;185(4):2450–2457. doi:10.4049/jimmunol.1000756.
  • Pérez JC. Candida albicans dwelling in the mammalian gut. Curr Opin Microbiol. 2019;52:41–46. doi:10.1016/j.mib.2019.04.007.
  • Allison DL, Scheres N, Willems HME, Bode CS, Krom BP, Shirtliff ME. The host immune system facilitates disseminated staphylococcus aureus disease due to phagocytic attraction to Candida albicans during coinfection: a case of bait and switch. Infect Immun. 2019;87(11):11. doi:10.1128/iai.00137-19.
  • Kean R, Rajendran R, Haggarty J, Townsend EM, Short B, Burgess KE, Lang S, Millington O, Mackay WG, Williams C, et al. Candida albicans mycofilms support staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Front Microbiol. 2017;8:258. doi:10.3389/fmicb.2017.00258.
  • Hoyer LL, Oh SH, Jones R, Cota E. A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins. Front Microbiol. 2014;5:564. doi:10.3389/fmicb.2014.00564.
  • Bamford CV, d’Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun. 2009;77(9):3696–3704. doi:10.1128/iai.00438-09.
  • Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021;591(7851):633–638. doi:10.1038/s41586-021-03241-8.
  • Brown AO, Graham CE, Cruz MR, Singh KV, Murray BE, Lorenz MC, Garsin DA. Antifungal activity of the enterococcus faecalis peptide entv requires protease cleavage and disulfide bond formation. mBio. 2019;10(4):4. doi:10.1128/mBio.01334-19.
  • Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci U S A. 2017;114(17):4507–4512. doi:10.1073/pnas.1620432114.
  • Vazquez-Munoz R, Thompson A, Russell JT, Sobue T, Zhou Y, Dongari-Bagtzoglou A. Insights from the lactobacillus johnsonii genome suggest the production of metabolites with antibiofilm activity against the pathobiont Candida albicans. Front Microbiol. 2022;13:853762. doi:10.3389/fmicb.2022.853762.
  • Zeng Y, Fadaak A, Alomeir N, Wu TT, Rustchenko E, Qing S, Bao J, Gilbert C, Xiao J. Lactobacillus plantarum disrupts S. mutans-C. albicans cross-kingdom biofilms. Front Cell Infect Microbiol. 2022;12:872012. doi:10.3389/fcimb.2022.872012.
  • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–385. doi:10.1016/j.immuni.2013.08.003.
  • Kim Y, Mylonakis E. Killing of Candida albicans filaments by salmonella enterica serovar typhimurium is mediated by sopB effectors, parts of a type III secretion system. Eukaryot Cell. 2011;10(6):782–790. doi:10.1128/ec.00014-11.
  • Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, Simms-Waldrip TR, Xie Y, Hooper LV, Koh AY, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–814. doi:10.1038/nm.3871.
  • Joyner PM, Liu J, Zhang Z, Merritt J, Qi F, Cichewicz RH. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem. 2010;8(24):5486–5489. doi:10.1039/c0ob00579g.
  • Vílchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Sztajer H, Wagner-Döbler I. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chembiochem. 2010;11(11):1552–1562. doi:10.1002/cbic.201000086.
  • Jarosz LM, Deng DM, van der Mei HC, Crielaard W, Krom BP. Streptococcus mutans Competence-Stimulating Peptide Inhibits Candida albicans Hypha Formation. Eukaryot Cell. 2009;8(11):1658–1664. doi:10.1128/ec.00070-09.
  • Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by pseudomonas aeruginosa phenazines. mBio. 2013;4(1):e00526–12. doi:10.1128/mBio.00526-12.
  • Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol. 2004;54(5):1212–1223. doi:10.1111/j.1365-2958.2004.04349.x.
  • Seelbinder B, Chen J, Brunke S, Vazquez-Uribe R, Santhaman R, Meyer A-C, de Oliveira Lino FS, Chan K-F, Loos D, Imamovic L, et al. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. 2020;8(1):133. doi:10.1186/s40168-020-00899-6.
  • Wheeler ML, Limon JJ, Bar AS, Leal C, Gargus M, Tang J, Brown J, Funari V, Wang H, Crother T, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19(6):865–873. doi:10.1016/j.chom.2016.05.003.
  • van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, Vicentini FA, Keenan CM, Ramay HR, Samara J, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11(1):2577. doi:10.1038/s41467-020-16431-1.
  • Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3(1):2191. doi:10.1038/srep02191.
  • Sun Y, Zuo T, Cheung CP, Gu W, Wan Y, Zhang F, Chen N, Zhan H, Yeoh YK, Niu J, et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. Gastroenterology. 2021;160(1):272–286.e11. doi:10.1053/j.gastro.2020.09.014.
  • Peroumal D, Sahu SR, Kumari P, Utkalaja BG, Acharya N. Commensal fungus Candida albicans maintains a long-term mutualistic relationship with the host to modulate gut microbiota and metabolism. Microbiol Spectr. 2022;10(5):e0246222. doi:10.1128/spectrum.02462-22.
  • Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe. 2008;4(1):28–39. doi:10.1016/j.chom.2008.05.014.
  • García C, Tebbji F, Daigneault M, Liu -N-N, Köhler JR, Allen-Vercoe E, Sellam A. The human gut microbial metabolome modulates fungal growth via the TOR signaling pathway. mSphere. 2017;2(6):6. doi:10.1128/mSphere.00555-17.
  • Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9(1):8872. doi:10.1038/s41598-019-45467-7.
  • Nguyen LN, Lopes LC, Cordero RJ, Nosanchuk JD. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J Antimicrob Chemother. 2011;66(11):2573–2580. doi:10.1093/jac/dkr358.
  • Valentine M, Benadé E, Mouton M, Khan W, Botha A. Binary interactions between the yeast Candida albicans and two gut-associated Bacteroides species. Microb Pathog. 2019;135:103619. doi:10.1016/j.micpath.2019.103619.
  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517(7533):165–169. doi:10.1038/nature13995.
  • Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol. 2013;16(2):221–227. doi:10.1016/j.mib.2013.03.009.
  • Li H, Yang J, Zhang X, Xu X, Song F, Li H. Biocontrol of Candida albicans by antagonistic microorganisms and bioactive compounds. Antibiotics (Basel). 2022;11:9. doi:10.3390/antibiotics11091238.
  • Janabi AA. Ali D, Mohammed NA, Rahem F. Vitro Antagonistic Activity of Candida Albicans against Filamentous Fungi. Med Mycol Open Access. 2015;1:2. doi:10.21767/2471-8521.100002.
  • Rajasekharan SK, Lee JH, Zhao Y, Lee J. The mycotoxin zearalenone hinders Candida albicans biofilm formation and hyphal morphogenesis. Indian J Microbiol. 2018;58(1):19–27. doi:10.1007/s12088-017-0690-0.
  • Rajasekharan SK, Byun J, Lee J. Inhibitory effects of deoxynivalenol on pathogenesis of Candida albicans. J Appl Microbiol. 2018;125(5):1266–1275. doi:10.1111/jam.14032.
  • Türkel S, Ener B. Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z Naturforsch C J Biosci. 2009;64(5–6):405–410. doi:10.1515/znc-2009-5-618.
  • da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, Gow NA. Cell biology of Candida albicans-host interactions. Curr Opin Microbiol. 2016;34:111–118. doi:10.1016/j.mib.2016.08.006.
  • Lucas S, Nelson AM. Nelson AM. HIV and the spectrum of human disease. J Pathol. 2015;235(2):229–241. doi:10.1002/path.4449.
  • Bharathi M, Rani AU. Pathogenic fungal isolates in sputum of HIV positive patients. Journal of AIDS and HIV Research. 2011;3:107–113.
  • Masur H, Brooks JT, Benson CA, Holmes KK, Pau AK, Kaplan JE. Prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: updated guidelines from the centers for disease control and prevention, national institutes of health, and hiv medicine association of the infectious diseases society of America. Clin Infect Dis. 2014;58(9):1308–1311. doi:10.1093/cid/ciu094.
  • Weinberg A, Tugizov S, Pandiyan P, Jin G, Rakshit S, Vyakarnam A, Naglik JR. Innate immune mechanisms to oral pathogens in oral mucosa of HIV-infected individuals. Oral Dis. 2020;26(26 Suppl 1 (Suppl1)):69–79. doi:10.1111/odi.13470.
  • Nwosu FC, Avershina E, Wilson R, Rudi K. Gut microbiota in HIV infection: implication for disease progression and management. Gastroenterol Res Pract. 2014;2014:803185. doi:10.1155/2014/803185.
  • Veazey RS. Intestinal CD4 depletion in HIV/SIV infection. Curr Immunol Rev. 2019;15(1):76–91. doi:10.2174/1573395514666180605083448.
  • Connor S. HIV is active even in latency, say scientists. Bmj. 1993;306(6883):949. doi:10.1136/bmj.306.6883.949.
  • Wan YY, Flavell RA. How diverse–CD4 effector T cells and their functions. J Mol Cell Biol. 2009;1(1):20–36. doi:10.1093/jmcb/mjp001.
  • Renault C, Veyrenche N, Mennechet F, Bedin A-S, Routy J-P, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-cell as a preferential target for HIV reservoirs. Front Immunol. 2022;13:822576. doi:10.3389/fimmu.2022.822576.
  • Peck A, Mellins ED, Peck A, Mellins ED. Precarious balance: th17 cells in host defense. Infect Immun. 2010;78(1):32–38. doi:10.1128/iai.00929-09.
  • Sallusto F, Zielinski CE, Human LA. Th17 subsets. Eur J Immunol. 2012;42(9):2215–2220. doi:10.1002/eji.201242741.
  • Fidel PL Jr. Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis. Adv Dent Res. 2011;23(1):45–49. doi:10.1177/0022034511399284.
  • Mackewicz CE, Patterson BK, Lee SA, Levy JA. CD8(+) cell noncytotoxic anti-human immunodeficiency virus response inhibits expression of viral RNA but not reverse transcription or provirus integration. J Gen Virol. 2000;81(Pt 5):1261–1264. doi:10.1099/0022-1317-81-5-1261.
  • Beno DW, Mathews HL. Growth inhibition of Candida albicans by interleukin-2-activated splenocytes. Infect Immun. 1992;60(3):853–863. doi:10.1128/iai.60.3.853-863.1992.
  • Beno DW, Stöver AG, Mathews HL. Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J Immunol. 1995;154(10):5273–5281. doi:10.4049/jimmunol.154.10.5273.
  • Ouyang J, Zaongo SD, Zhang X, Qi M, Hu A, Wu H, Chen Y. Microbiota-mediated immunity abnormalities facilitate hepatitis B virus co-infection in people living with HIV: a review. Front Immunol. 2021;12:755890. doi:10.3389/fimmu.2021.755890.
  • Geng ST, Zhang ZY, Wang YX, Lu D, Yu J, Zhang J-B, Kuang Y-Q, Wang K-H. Regulation of gut microbiota on immune reconstitution in patients with acquired immunodeficiency syndrome. Front Microbiol. 2020;11:594820. doi:10.3389/fmicb.2020.594820.
  • Zhou Y, Ou Z, Tang X, Zhou Y, Xu H, Wang X, Li K, He J, Du Y, Wang H, et al. Alterations in the gut microbiota of patients with acquired immune deficiency syndrome. J Cell Mol Med. 2018;22(4):2263–2271. doi:10.1111/jcmm.13508.
  • Awoyeni A, Olaniran O, Odetoyin B, Hassan-Olajokun R, Olopade B, Afolayan D, Adekunle O. Isolation and evaluation of Candida species and their association with CD4+ T cells counts in HIV patients with diarrhoea. Afr Health Sci. 2017;17(2):322–329. doi:10.4314/ahs.v17i2.5.
  • Esebelahie NO, Enweani IB, Omoregie R. Candida colonisation in asymptomatic HIV patients attending a tertiary hospital in Benin City, Nigeria. Libyan J Med. 2013;8(1):20322. doi:10.3402/ljm.v8i0.20322.
  • Microbiome: HU. A mucus colonizer manages host metabolism. Nat Rev Microbiol. 2013;11(7):430–431. doi:10.1038/nrmicro3051.
  • Ouyang J, Lin J, Isnard S, Fombuena B, Peng X, Marette A, Routy B, Messaoudene M, Chen Y, Routy J-P, et al. The bacterium akkermansia muciniphila: a sentinel for gut permeability and its relevance to HIV-related inflammation. Front Immunol. 2020;11:645. doi:10.3389/fimmu.2020.00645.
  • Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR, Brown EM, Graham DB, Xavier RJ, Moon JJ, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364(6446):1179–1184. doi:10.1126/science.aaw7479.
  • Huck O, Mulhall H, Rubin G, Kizelnik Z, Iyer R, Perpich JD, Haque N, Cani PD, Vos WM, Amar S, et al. Akkermansia muciniphila reduces porphyromonas gingivalis -induced inflammation and periodontal bone destruction. J Clin Periodontol. 2020;47(2):202–212. doi:10.1111/jcpe.13214.
  • Noguera-Julian M, Rocafort M, Guillén Y, Rivera J, Casadellà M, Nowak P, Hildebrand F, Zeller G, Parera M, Bellido R, et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine. 2016;5:135–146. doi:10.1016/j.ebiom.2016.01.032.
  • Rosas-Plaza S, Hernández-Terán A, Navarro-Díaz M, Escalante AE, Morales-Espinosa R, Cerritos R. Human gut microbiome across different lifestyles: from hunter-gatherers to urban populations. Front Microbiol. 2022;13:843170. doi:10.3389/fmicb.2022.843170.
  • Sadiq U, Shrestha U, Guzman N. Prevention of opportunistic infections in HIV/AIDS. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022 May 23.
  • Dillon SM, Kibbie J, Lee EJ, Guo K, Santiago ML, Austin GL, Gianella S, Landay AL, Donovan AM, Frank DN, et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. Aids. 2017;31(4):511–521. doi:10.1097/qad.0000000000001366.
  • Rocafort M, Noguera-Julian M, Rivera J, Pastor L, Guillén Y, Langhorst J, Parera M, Mandomando I, Carrillo J, Urrea V, et al. Evolution of the gut microbiome following acute HIV-1 infection. Microbiome. 2019;7(1):73. doi:10.1186/s40168-019-0687-5.
  • Estes J, Baker JV, Brenchley JM, Khoruts A, Barthold J, Bantle A, Reilly C, Beilman G, George M, Douek D, et al. Collagen deposition limits immune reconstitution in the gut. J Infect Dis. 2008;198(4):456–464. doi:10.1086/590112.
  • Mehandru S, Poles MA, Tenner-Racz K, Jean-Pierre P, Manuelli V, Lopez P, Shet A, Low A, Mohri H, Boden D Mehandru S, Poles MA, Tenner-Racz K, et al. Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection. PLoS Med. 2006;3(12):e484. doi:10.1371/journal.pmed.0030484.
  • Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–1371. doi:10.1038/nm1511.
  • Jiang W, Lederman MM, Hunt P, Sieg S, Haley K, Rodriguez B, Landay A, Martin J, Sinclair E, Asher A, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177–1185. doi:10.1086/597476.
  • Baroncelli S, Galluzzo CM, Pirillo MF, Mancini MG, Weimer LE, Andreotti M, Amici R, Vella S, Giuliano M, Palmisano L, et al. Microbial translocation is associated with residual viral replication in HAART-treated HIV+ subjects with <50copies/ml HIV-1 RNA. J Clin Virol. 2009;46(4):367–370. doi:10.1016/j.jcv.2009.09.011.
  • Marchetti G, Bellistrì GM, Borghi E, Tincati C, Ferramosca S, La Francesca M, Morace G, Gori A, Monforte AD. Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy. Aids. 2008;22(15):2035–2038. doi:10.1097/QAD.0b013e3283112d29.