2,979
Views
5
CrossRef citations to date
0
Altmetric
Review

Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain

, & ORCID Icon
Article: 2168992 | Received 17 Oct 2022, Accepted 10 Jan 2023, Published online: 01 Feb 2023

References

  • Ford AC, Sperber AD, Corsetti M, Camilleri M. Irritable bowel syndrome. Lancet. 2020;396(10263):1675–14. doi:10.1016/S0140-6736(20)31548-8.
  • Algera JP, Törnblom H, Simrén M. Treatments targeting the luminal gut microbiota in patients with irritable bowel syndrome. Current Opinion in Pharmacology. 2022;66:102284. doi:10.1016/j.coph.2022.102284.
  • Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, Moayyedi P. Gut microbiota in patients with irritable bowel syndrome-a systematic review. Gastroenterology. 2019;157(1):97–108. doi:10.1053/j.gastro.2019.03.049.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials–a mycologist’s perspective. Mycologia. 2015;107(6):1057–1073. doi:10.3852/15-147.
  • Whelan K, Staudacher H. Low FODMAP diet in irritable bowel syndrome: a review of recent clinical trials and meta-analyses. Curr Opin Clin Nutr Metab Care. 2022;25(5):341–347. doi:10.1097/MCO.0000000000000854.
  • Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352–358.
  • Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest. 2022;132(5):e155786.
  • Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O, Heinsbroek SEM, de Weerd HH, Boekhout T, Fornai M, Masclee AA, et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology. 2017;153(4):1026–1039. doi:10.1053/j.gastro.2017.06.004.
  • Botschuijver S, van Diest SA, van Thiel IAM, Saia RS, Strik AS, Yu Z, Maria-Ferreira D, Welting O, Keszthelyi D, Jennings G, et al. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Sci Rep. 2019;9(1):12530. doi:10.1038/s41598-019-49096-y.
  • Botschuijver S, Welting O, Levin E, Maria-Ferreira D, Koch E, Montijn RC, Seppen J, Hakvoort TBM, Schuren FHJ, de Jonge WJ, et al. Reversal of visceral hypersensitivity in rat by Menthacarin®, a proprietary combination of essential oils from peppermint and caraway, coincides with mycobiome modulation. Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society. 2018;30(6):e13299. doi:10.1111/nmo.13299.
  • Das A, O’Herlihy E, Shanahan F, O’Toole PW, Jeffery IB. The fecal mycobiome in patients with irritable bowel syndrome. Sci Rep. 2021;11(1):124. doi:10.1038/s41598-020-79478-6.
  • Hong G, Li Y, Yang M, Li G, Qian W, Xiong H, Bai T, Song J, Zhang L, Hou X. Gut fungal dysbiosis and altered bacterial-fungal interaction in patients with diarrhea-predominant irritable bowel syndrome: an explorative study. Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society. 2020;32(11):e13891. doi:10.1111/nmo.13891.
  • Sciavilla P, Strati F, Di Paola M, Modesto M, Vitali F, Cavalieri D, Prati GM, Di Vito M, Aragona G, De Filippo C, et al. Gut microbiota profiles and characterization of cultivable fungal isolates in IBS patients. Appl Microbiol Biotechnol. 2021;105(8):3277–3288. doi:10.1007/s00253-021-11264-4.
  • van Thiel IAM, Stavrou AA, de Jong A, Theelen B, Davids M, Hakvoort TBM, Admiraal-van den Berg I, Weert ICM, de Kruijs M, Vu D, et al. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci Rep. 2022;12(1):5391. doi:10.1038/s41598-022-09436-x.
  • Quinton J-F, Sendid B, Reumaux D, Duthilleul P, Cortot A, Grandbastien B, Charrier G, Targan SR, Colombel J-F, Poulain D. Anti- Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42(6):788–791. doi:10.1136/gut.42.6.788.
  • Poulain D, Sendid B, Standaert-Vitse A, Fradin C, Jouault T, Jawhara S, Colombel JF. Yeasts: neglected pathogens. Digestive Diseases (Basel, Switzerland). 2009;27(Suppl 1):104–110. doi:10.1159/000268129.
  • Kaila B, Orr K, Bernstein CN. The anti-Saccharomyces cerevisiae antibody assay in a province-wide practice: accurate in identifying cases of Crohn’s disease and predicting inflammatory disease. Can J Gastroenterol. 2005;19(12):717–721. doi:10.1155/2005/147681.
  • Müller S, Styner M. Anti- Saccharomyces cerevisiae antibody titers are stable over time in Crohn’s patients and are not inducible in murine models of colitis. World Journal of Gastroenterology: WJG. 2005;11(44):6988–6994. doi:10.3748/wjg.v11.i44.6988.
  • Schoepfer AM, Schaffer T, Seibold-Schmid B, Muller S, Seibold F. Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. NeurogastroenterolMotil. 2008;20(10):1110–1118. doi:10.1111/j.1365-2982.2008.01166.x.
  • Bashashati M, Moossavi S, Cremon C, Barbaro MR, Moraveji S, Talmon G, Rezaei N, Hughes PA, Bian ZX, Choi CH, et al. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil: Off J Eu Gastrointestinal Motil Soc. 2018;30(1):e13192.
  • Arnott ID, Landers CJ, Nimmo EJ, Drummond HE, Smith BK, Targan SR, Satsangi J. Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. The American Journal of Gastroenterology. 2004;99(12):2376–2384. doi:10.1111/j.1572-0241.2004.40417.x.
  • Walker LJ, Aldhous MC, Drummond HE, Smith BR, Nimmo ER, Arnott ID, Satsangi J. Anti- Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease are associated with disease severity but not NOD2/CARD15 mutations. Clinical and Experimental Immunology. 2004;135(3):490–496. doi:10.1111/j.1365-2249.2003.02392.x.
  • Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, Appeltans I, Cuende-Estevez M, Fabre N, Van Beek K, Perna E, et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature. 2021;590(7844):151–156. doi:10.1038/s41586-020-03118-2.
  • Klooker TK, Braak B, Koopman KE, Welting O, Wouters MM, van der Heide S, Schemann M, Bischoff SC, van den Wijngaard RM, Boeckxstaens GE. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut. 2010;59(9):1213–1221. doi:10.1136/gut.2010.213108.
  • Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, Alpizar YA, Valdez-Morales EE, Nasser Y, Van Veldhoven PP, Vanbrabant W, et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology. 2016;150(4):875–87 e9. doi:10.1053/j.gastro.2015.12.034.
  • Ness TJ, Gebhart GF. Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res. 1988;450:153–169.
  • Welting O, Van Den Wijngaard RM, De Jonge WJ, Holman R, Boeckxstaens GE. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. NeurogastroenterolMotil. 2005;17(6):838–845. doi:10.1111/j.1365-2982.2005.00677.x.
  • Simren M, Tornblom H, Palsson OS, van Tilburg MA, Van Oudenhove L, Tack J, Whitehead WE. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut. 2018;67(2):255–262.
  • Barbara G, Grover M, Bercik P, Corsetti M, Ghoshal UC, Ohman L, Rajilic-Stojanovic M. Rome foundation working team report on post-infection irritable bowel syndrome. Gastroenterology. 2019;156(1):46–58.e7. doi:10.1053/j.gastro.2018.07.011.
  • Sugita R, Hata E, Miki A, Andoh R, Umeda C, Takemura N, Sonoyama K. Gut colonization by Candida albicans Inhibits the induction of humoral immune tolerance to dietary antigen in BALB/c mice. Biosci Microbiota Food Health. 2012;31:77–84.
  • Yamaguchi N. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut. 2006;55(7):954–960. doi:10.1136/gut.2005.084954.
  • Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut. 2016;65(1):155–168. doi:10.1136/gutjnl-2015-309151.
  • Van Den Wijngaard RM, Klooker TK, De Jonge WJ, Boeckxstaens GE. Peripheral relays in stress-induced activation of visceral afferents in the gut. AutonNeurosci. 2010;153:99–105.
  • Dukes GE, Mayer EA, Kelleher DL, Hicks KJ, Boardley RL, Alpers DH. A randomised double blind, placebo controlled, crossover study to evaluate the efficacy and safety of the corticotrophin releasing factor 1 (CRF1) receptor antagonist GW876008 in IBS patients. NeurogastroenterolMotil. 2009;21(Suppl):84.
  • Sweetser S, Camilleri M, Linker Nord SJ, Burton DD, Castenada L, Croop R, Tong G, Dockens R, Zinsmeister AR. Do corticotropin releasing factor-1 receptors influence colonic transit and bowel function in women with irritable bowel syndrome? AmJPhysiol GastrointestLiver Physiol. 2009;296(6):G1299–G306. doi:10.1152/ajpgi.00011.2009.
  • Lv Y, Wen J, Fang Y, Zhang H, Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: promising agents to prevent visceral hypersensitivity in irritable bowel syndrome. Peptides. 2022;147:170705. doi:10.1016/j.peptides.2021.170705.
  • van den Wijngaard RM, Klooker TK, Welting O, Stanisor OI, Wouters MM, van der Coelen D, Bulmer DC, Peeters PJ, Aerssens J, de Hoogt R, et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil: Off J Eu Gastrointestinal Motil Soc. 2009;21:1107–e94.
  • Van Den Wijngaard RM, Stanisor OI, van Diest SA, Welting O, Wouters MM, De Jonge WJ, Boeckxstaens GE. Peripheral alpha-helical CRF (9-41) does not reverse stress-induced mast cell dependent visceral hypersensitivity in maternally separated rats. NeurogastroenterolMotil. 2012;24:e111.
  • Stanisor OI, van Diest SA, Yu Z, Welting O, Bekkali N, Shi J, de Jonge WJ, Boeckxstaens GE, van den Wijngaard RM, Chowen JA. Stress-induced visceral hypersensitivity in maternally separated rats can be reversed by peripherally restricted histamine-1-receptor antagonists. PloS one. 2013;8(6):e66884. doi:10.1371/journal.pone.0066884.
  • Koh AY. Murine models of Candida gastrointestinal colonization and dissemination. Eukaryotic Cell. 2013;12(11):1416–1422. doi:10.1128/EC.00196-13.
  • Yeung F, Chen YH, Lin JD, Leung JM, McCauley C, Devlin JC, Hansen C, Cronkite A, Stephens Z, Drake-Dunn C, et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host & Microbe. 2020;27(5):809–822.e6. doi:10.1016/j.chom.2020.02.015.
  • Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature. 2022;603(7902):672–678. doi:10.1038/s41586-022-04502-w.
  • Kimura Y, Chihara K, Honjoh C, Takeuchi K, Yamauchi S, Yoshiki H, Fujieda S, Sada K. Dectin-1-mediated signaling leads to characteristic gene expressions and cytokine secretion via spleen tyrosine kinase (Syk) in rat mast cells. The Journal of Biological Chemistry. 2014;289(45):31565–31575. doi:10.1074/jbc.M114.581322.
  • Nieto-Patlan A, Campillo-Navarro M, Rodriguez-Cortes O, Munoz-Cruz S, Wong-Baeza I, Estrada-Parra S, Estrada-Garcia I, Serafin-Lopez J, Chacon-Salinas R. Recognition of Candida albicans by Dectin-1 induces mast cell activation. Immunobiology. 2015;220(9):1093–1100. doi:10.1016/j.imbio.2015.05.005.
  • Pinke KH, Lima HG, Cunha FQ, Lara VS. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology. 2015;221(2):220–227. doi:10.1016/j.imbio.2015.09.004.
  • Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from Dectin-1. CurrOpinImmunol. 2009;21:30–37.
  • Chi Y, Li C, Wu LH, Wang HH. The relationship between dectin-1 and mast cells in patients with diarrhea-predominant irritable bowel syndrome. Scandinavian J Gastroenterol. 2020;55(7):762–768.
  • Bueno L. Protease activated receptor 2: a new target for IBS treatment. European Review for Medical and Pharmacological Sciences. 2008;12:95–102.
  • Jacob C, Yang PC, Darmoul D, Amadesi S, Saito T, Cottrell GS, Coelho AM, Singh P, Grady EF, Perdue M, et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. JBiolChem. 2005;280:31936–31948.
  • Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G, Gerard N, Basbaum AI, Andrade-Gordon P, et al. Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nature Medicine. 2001;7(7):821–826. doi:10.1038/89945.
  • Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H, et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. JNeurosci. 2004;24(18):4300–4312. doi:10.1523/JNEUROSCI.5679-03.2004.
  • Li YJ, Dai C, Jiang M. Mechanisms of probiotic VSL#3 in a rat model of visceral hypersensitivity involves the mast cell-PAR2-TRPV1 pathway. Digestive Diseases and Sciences. 2019;64(5):1182–1192. doi:10.1007/s10620-018-5416-6.
  • Hanning N, Edwinson AL, Ceuleers H, Peters SA, De Man JG, Hassett LC, De Winter BY, Grover M. Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Therapeutic Advances in Gastroenterology. 2021;14:1756284821993586. doi:10.1177/1756284821993586.
  • Ait-Belgnaoui A, Bradesi S, Fioramonti J, Theodorou V, Bueno L. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain. 2005;113(1):141–147. doi:10.1016/j.pain.2004.10.002.
  • Maruyama K, Takayama Y, Sugisawa E, Yamanoi Y, Yokawa T, Kondo T, Ishibashi KI, Sahoo BR, Takemura N, Mori Y, et al. The ATP transporter VNUT mediates induction of Dectin-1-triggered candida nociception. iScience. 2018;6:306–318. doi:10.1016/j.isci.2018.08.007.
  • Volman JJ, Mensink RP, Buurman WA, Onning G, Plat J. The absence of functional dectin-1 on enterocytes may serve to prevent intestinal damage. Eur J Gastroenterol Hepatol. 2010;22(1):88–94. doi:10.1097/MEG.0b013e32832a20dc.
  • Sprague JL, Kasper L, Hube B. From intestinal colonization to systemic infections: candida albicans translocation and dissemination. Gut Microbes. 2022;14(1):2154548. doi:10.1080/19490976.2022.2154548.
  • Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Hofs S, Gratacap RL, Robbins J, Runglall M, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68. doi:10.1038/nature17625.
  • Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections. Curr Opin Microbiol. 2019;52:100–109. doi:10.1016/j.mib.2019.06.002.
  • Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, Wainger B, Strominger A, Muralidharan S, Horswill AR, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501(7465):52–57. doi:10.1038/nature12479.
  • Song P, Peng G, Yue H, Ogawa T, Ikeda S, Okumura K, Ogawa H, Niyonsaba F. Candidalysin, a virulence factor of Candida albicans, stimulates mast cells by mediating cross-talk between signaling pathways activated by the dectin-1 receptor and MAPKs. J Clin Immunol. 2022;42(5):1009–1025. doi:10.1007/s10875-022-01267-9.
  • Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews Microbiology. 2017;15(2):96–108. doi:10.1038/nrmicro.2016.157.
  • Desai JV, Lionakis MS. Setting up home: fungal rules of commensalism in the mammalian gut. Cell Host & Microbe. 2019;25(3):347–349. doi:10.1016/j.chom.2019.02.012.
  • Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. Cell Host & Microbe. 2019;25(3):432–43.e6. doi:10.1016/j.chom.2019.02.008.
  • Braak B, Klooker TK, Wouters MM, Welting O, van der Loos CM, Stanisor OI, van Diest S, van den Wijngaard RM, Boeckxstaens GE. Mucosal immune cell numbers and visceral sensitivity in patients with irritable bowel syndrome: is there any relationship? The American Journal of Gastroenterology. 2012;107(5):715–726. doi:10.1038/ajg.2012.54.
  • Gu Y, Zhou G, Qin X, Huang S, Wang B, Cao H. The potential role of gut mycobiome in irritable bowel syndrome. Frontiers in Microbiology. 2019;10:1894. doi:10.3389/fmicb.2019.01894.
  • Liu A, Gao W, Zhu Y, Hou X Chu H. Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel). 2022;14(9):596.
  • Allert S, Forster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio. 2018;9(3):e00915–18.
  • Mogavero S, Sauer FM, Brunke S, Allert S, Schulz D, Wisgott S, Jablonowski N, Elshafee O, Krüger T, Kniemeyer O, et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cellular Microbiology. 2021;23(10):e13378. doi:10.1111/cmi.13378.
  • Paterson MJ, Oh S, Underhill DM. Host-microbe interactions: commensal fungi in the gut. Current Opinion in Microbiology. 2017;40:131–137. doi:10.1016/j.mib.2017.11.012.
  • Lacy BE, Patel NK, Iwata N, Katsuyama T, Komatsubara M, Nagao R, Inagaki K, Otsuka F. Rome criteria and a diagnostic approach to irritable bowel syndrome. Journal of Clinical Medicine. 2017;6(1):6. doi:10.3390/jcm6010006.
  • Hillestad EMR, van der Meeren A, Nagaraja BH, Bjørsvik BR, Haleem N, Benitez-Paez A, Sanz Y, Hausken T, Lied GA, Lundervold A, et al. Gut bless you: the microbiota-gut-brain axis in irritable bowel syndrome. World Journal of Gastroenterology: WJG. 2022;28(4):412–431. doi:10.3748/wjg.v28.i4.412.
  • Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, Andreu-Sánchez S, Chen L, Collij V, Hu S, et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature. 2022;604(7907):732–739. doi:10.1038/s41586-022-04567-7.
  • Enaud R, Vandenborght LE, Coron N, Bazin T, Prevel R, Schaeverbeke T, Berger P, Fayon M, Lamireau T. The mycobiome: a neglected component in the microbiota-gut-brain axis. Microorganisms. 2018;6(1):6. doi:10.3390/microorganisms6010006.
  • Odds FC, Davidson AD, Jacobsen MD, Tavanti A, Whyte JA, Kibbler CC, Ellis DH, Maiden MC, Shaw DJ, Gow NA. Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. Journal of Clinical Microbiology. 2006;44(10):3647–3658. doi:10.1128/JCM.00934-06.
  • Chikina AS, Nadalin F, Maurin M, San-Roman M, Thomas-Bonafos T, Li XV, Lameiras S, Baulande S, Henri S, Malissen B, et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell. 2020;183(2):411–428.e16. doi:10.1016/j.cell.2020.08.048.
  • Leonardi I, Li X, Semon A, Li D, Doron I, Putzel G, Bar A, Prieto D, Rescigno M, McGovern DPB, et al. CX3CR1(+) mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359(2):232–236. doi:10.1126/science.aao1503.
  • Videlock EJ, Mahurkar-Joshi S, Hoffman JM, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointestinal Liver Physiol. 2018;315(1):G140–g57. doi:10.1152/ajpgi.00288.2017.
  • Ren YJ, Zhang L, Bai T, Yu HL, Li Y, Qian W, Jin S, Xiong ZF, Wang H, Hou XH. Transfer of CD11c+ lamina propria mononuclear phagocytes from post-infectious irritable bowel syndrome causes mucosal barrier dysfunction and visceral hypersensitivity in recipient mice. International Journal of Molecular Medicine. 2017;39(6):1555–1563. doi:10.3892/ijmm.2017.2966.
  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–367. doi:10.1038/86373.
  • Berg LK, Goll R, Fagerli E, Ludviksen JK, Fure H, Moen OS, Sørbye SW, Mollnes TE, Florholmen J. Intestinal inflammatory profile shows increase in a diversity of biomarkers in irritable bowel syndrome. Scandinavian J Gastroenterol. 2020;55(5):537–542. doi:10.1080/00365521.2020.1754455.
  • Singh M, Singh V, Schurman JV, Colombo JM, Friesen CA. The relationship between mucosal inflammatory cells, specific symptoms, and psychological functioning in youth with irritable bowel syndrome. Sci Rep. 2020;10(1):11988. doi:10.1038/s41598-020-68961-9.
  • Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, Wu J, Li Y, Zhang S, Ho J, Davis BM, et al. Cutaneous TRPV1(+) neurons trigger protective innate type 17 anticipatory immunity. Cell. 2019;178(4):919–32.e14. doi:10.1016/j.cell.2019.06.022.
  • Belke K, Baron J, Schmutzler W, Zwadlo-Klarwasser G. Histidine decarboxylase expression in human monocytes, macrophages and macrophage subsets. International Archives of Allergy and Immunology. 1999;118(2–4):353–354. doi:10.1159/000024133.
  • Takamatsu S, Nakano K. Histamine synthesis by bone marrow-derived macrophages. BiosciBiotechnolBiochem. 1994;58:1918–1919.
  • Zwadlo-Klarwasser G, Braam U, Jungbluth C, Schmutzler W. Time-course of the histamine release from human peripheral blood monocytes and the influence of ketotifen and disodium cromoglycate (DSCG). Inflammation Research: Official Journal of the European Histamine Research Society [Et Al]. 1995;44(Suppl 1):S18–9. doi:10.1007/BF01674375.
  • Zwadlo-Klarwasser G, Vogts M, Hamann W, Belke K, Baron J, Schmutzler W. Generation and subcellular distribution of histamine in human blood monocytes and monocyte subsets. Inflammation Research: Official Journal of the European Histamine Research Society [Et Al]. 1998;47(11):434–439. doi:10.1007/s000110050357.
  • Lapiere A, Richard ML. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut Microbes. 2022;14(1):2105610. doi:10.1080/19490976.2022.2105610.
  • Santus W, Devlin JR, Behnsen J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infection and Immunity. 2012;89(4):e00648–20.
  • Allescher HD, Burgell R, Malfertheiner P, Mearin F. Multi-target treatment for irritable bowel syndrome with STW 5: pharmacological modes of action. J Gastrointestin Liver Dis. 2020;29(2):227–233. doi:10.15403/jgld-814.
  • Ingrosso MR, Ianiro G, Nee J, Lembo AJ, Moayyedi P, Black CJ, Ford AC. Systematic review and meta-analysis: efficacy of peppermint oil in irritable bowel syndrome. Aliment Pharmacol Ther. 2022;56(6):932–941. doi:10.1111/apt.17179.
  • Major G, Pritchard S, Murray K, Alappadan JP, Hoad CL, Marciani L, Gowland P, Spiller R. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology. 2017;152(1):124–33.e2. doi:10.1053/j.gastro.2016.09.062.
  • Staudacher HM, Whelan K. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut. 2017;66(8):1517–1527. doi:10.1136/gutjnl-2017-313750.
  • Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology. 2021;160(4):1050–1066. doi:10.1053/j.gastro.2020.06.100.
  • Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PloS one. 2013;8(6):e66019. doi:10.1371/journal.pone.0066019.
  • McFarland LV, Karakan T, Karatas A. Strain-specific and outcome-specific efficacy of probiotics for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. EClinicalMedicine. 2021;41:101154. doi:10.1016/j.eclinm.2021.101154.
  • Allonsius CN, van den Broek MFL, De Boeck I, Kiekens S, Oerlemans EFM, Kiekens F, Foubert K, Vandenheuvel D, Cos P, Delputte P, et al. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microbial Biotechnology. 2017;10(6):1753–1763. doi:10.1111/1751-7915.12799.
  • Allonsius CN, Vandenheuvel D, Oerlemans EFM, Petrova MI, Donders GGG, Cos P, Delputte P, Lebeer S. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Sci Rep. 2019;9(1):2900. doi:10.1038/s41598-019-39625-0.
  • Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, Gröger M, Mosig AS, Gresnigt MS, Hube B. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Disease Models & Mechanisms. 2019;12(9):dmm039719.
  • Hasslöf P, Hedberg M, Twetman S, Stecksén-Blicks C. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli–an in vitro study. BMC Oral Health. 2010;10(1):18. doi:10.1186/1472-6831-10-18.
  • McFarland LV, Evans CT, Goldstein EJC. Strain-specificity and disease-specificity of probiotic efficacy: a systematic review and meta-analysis. Front Med (Lausanne). 2018;5:124. doi:10.3389/fmed.2018.00124.
  • Koutsoumanis K, Alvarez-Ordóñez A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, et al. Update of the list of QPS-recommended microbiological agents intentionally added to food or feed as notified to EFSA 16: suitability of taxonomic units notified to EFSA until March 2022. Efsa J. 2022;20(7):e07408. doi:10.2903/j.efsa.2022.7408.
  • Sen S, Mansell TJ. Yeasts as probiotics: mechanisms, outcomes, and future potential. Fungal Genetics and Biology: FG & B. 2020;137:103333. doi:10.1016/j.fgb.2020.103333.
  • Roselletti E, Sabbatini S, Ballet N, Perito S, Pericolini E, Blasi E, Mosci P, Cayzeele Decherf A, Monari C, Vecchiarelli A. Saccharomyces cerevisiae CNCM I-3856 as a new therapeutic agent against oropharyngeal candidiasis. Frontiers in Microbiology. 2019;10:1469. doi:10.3389/fmicb.2019.01469.