3,292
Views
10
CrossRef citations to date
0
Altmetric
Review

The multifaceted virulence of adherent-invasive Escherichia coli

, &
Article: 2172669 | Received 30 Sep 2022, Accepted 16 Jan 2023, Published online: 05 Feb 2023

References

  • O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–14. doi:10.1038/sj.embor.7400731.
  • Kaplan GG, Bernstein CN, Coward S, Bitton A, Murthy SK, Nguyen GC, Lee K, Cooke-Lauder J, Benchimol EI. The impact of inflammatory bowel disease in Canada 2018: epidemiology. J Canadian Ass Gastro. 2019;2:S6–16. doi:10.1093/jcag/gwy054.
  • Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54. e42;quiz e30. doi:10.1053/j.gastro.2011.10.001.
  • Feuerstein JD, Cheifetz AS. Crohn disease: epidemiology, diagnosis, and management. Mayo Clinic Proceedings. 2017;92:1088–1103. doi:10.1016/j.mayocp.2017.04.010.
  • Franke A, Dpb M, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–1125. doi:10.1038/ng.717.
  • Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–986. doi:10.1038/ng.3359.
  • Liu T-C, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol Mech Dis. 2016;11:127–148. doi:10.1146/annurev-pathol-012615-044152.
  • Halfvarson J, Bodin L, Tysk C, Lindberg E, Järnerot G. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology. 2003;124:1767–1773. doi:10.1016/S0016-5085(03)00385-8.
  • Feller M, Huwiler K, Stephan R, Altpeter E, Shang A, Furrer H, Pfyffer GE, Jemmi T, Baumgartner A, Egger M. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–613. doi:10.1016/S1473-3099(07)70211-6.
  • Behr MA, Kapur V. The evidence for Mycobacterium paratuberculosis in Crohn’s disease: current Opinion in Gastroenterology. Curr Opin Gastroenterol. 2008;24:17–21. doi:10.1097/MOG.0b013e3282f1dcc4.
  • Agrawal G, Aitken J, Hamblin H, Collins M, Borody TJ. Putting Crohn’s on the MAP: five common questions on the contribution of Mycobacterium avium subspecies paratuberculosis to the pathophysiology of Crohn’s disease. Dig Dis Sci. 2021;66:348–358. doi:10.1007/s10620-020-06653-0.
  • Bull TJ, McMinn EJ, Sidi-Boumedine K, Skull A, Durkin D, Neild P, Rhodes G, Pickup R, Detection H-TJ. Verification of Mycobacterium avium subsp. J Clin Microbiol. 2003;41:2915–2923.
  • Jones PH, Farver TB, Beaman B, Çetinkaya B, Morgan KL. Crohn’s disease in people exposed to clinical cases of bovine paratuberculosis. Epidemiol Infect. 2006;134:49–56. doi:10.1017/S0950268805004681.
  • Selby W, Pavli P, Crotty B, Florin T, Radford-Smith G, Gibson P, Mitchell B, Connell W, Read R, Merrett M, et al. Two-Year combination antibiotic therapy with Clarithromycin, Rifabutin, and Clofazimine for Crohn’s Disease. Gastroenterology. 2007;132:2313–2319. doi:10.1053/j.gastro.2007.03.031.
  • Liu Y, Van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel J-F. Immunocytochemical evidence of Listeria, Escherichia coil, and Streptococcus antigens in Crohn’s disease. Gastroenterology. 1995;108:1396–1404. doi:10.1016/0016-5085(95)90687-8.
  • Magin WS, Van Kruiningen HJ, Colombel J-F. Immunohistochemical search for viral and bacterial antigens in Crohn’s disease. J Crohn’s Colitis. 2013;7:161–166. doi:10.1016/j.crohns.2012.03.021.
  • Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, Gambiez L, Joly B, Cortot A, Colombel JF. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115:1405–1413. doi:10.1016/S0016-5085(98)70019-8.
  • Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser A-L, Barnich N, Bringer M-A, Swidsinski A, Beaugerie L, Colombel J-F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–421. doi:10.1053/j.gastro.2004.04.061.
  • Nadalian B, Yadegar A, Houri H, Olfatifar M, Shahrokh S, Asadzadeh Aghdaei H, Suzuki H, Zali MR. Prevalence of the pathobiont adherent-invasive Escherichia coli and inflammatory bowel disease: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2021;36:852–863. doi:10.1111/jgh.15260.
  • Desilets M, Deng X, Deng X, Rao C, Ensminger AW, Krause DO, Sherman PM, Gray-Owen SD. Genome-based definition of an inflammatory bowel disease-associated adherent-Invasive Escherichia coli Pathovar. Inflamm Bowel Dis. 2016;22:1–12. doi:10.1097/MIB.0000000000000574.
  • Nash JH, Villegas A, Kropinski AM, Aguilar-Valenzuela R, Konczy P, Mascarenhas M, Ziebell K, Torres AG, Karmali MA, Coombes BK. Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics. 2010;11:667. doi:10.1186/1471-2164-11-667.
  • O’Brien CL, Bringer M-A, Holt KE, Gordon DM, Dubois AL, Barnich N, Darfeuille-Michaud A, Pavli P. Comparative genomics of Crohn’s disease-associated adherent-invasive Escherichia coli. Gut. 2017;66:1382–1389. doi:10.1136/gutjnl-2015-311059.
  • Camprubí-Font C, Martinez-Medina M. Why the discovery of adherent-invasive Escherichia coli molecular markers is so challenging? WJBC. 2020;11:1–13. doi:10.4331/wjbc.v11.i1.1.
  • Martinez-Medina M, Aldeguer X, Lopez-Siles M, González-Huix F, López-Oliu C, Dahbi G, Blanco JE, Blanco J, Garcia-Gil LJ, Darfeuille-Michaud A. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm Bowel Dis. 2009;15:872–882. doi:10.1002/ibd.20860.
  • Costa RFA, Ferrari MLA, Bringer M-A, Darfeuille-Michaud A, Martins FS, Barnich N. Characterization of mucosa-associated Escherichia coli strains isolated from Crohn’s disease patients in Brazil. BMC Microbiol. 2020;20:178. doi:10.1186/s12866-020-01856-x.
  • Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut. 2007;56:669–675. doi:10.1136/gut.2006.099796.
  • Conte MP, Longhi C, Marazzato M, Conte AL, Aleandri M, Lepanto MS, Zagaglia C, Nicoletti M, Aloi M, Totino V, et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn’s disease patients: phenotypic and genetic pathogenic features. BMC Res Notes. 2014;7:748. doi:10.1186/1756-0500-7-748.
  • Elhenawy W, Tsai CN, Coombes BK. Host-Specific adaptive diversification of Crohn’s Disease-Associated adherent-Invasive Escherichia coli. Cell Host Microbe. 2019;25(301–312.e5):301–312.e5. doi:10.1016/j.chom.2018.12.010.
  • Carvalho FA, Barnich N, Sauvanet P, Darcha C, Gelot A, Darfeuille-Michaud A. Crohn’s disease-associated Escherichia coli LF82 aggravates colitis in injured mouse colon via signaling by flagellin. Inflamm Bowel Dis. 2008;14:1051–1060. doi:10.1002/ibd.20423.
  • Small CLN, Reid-Yu SA, McPhee JB, Coombes BK, Small C-LN, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun. 2013;4:1957. 10.1038/ncomms2957.
  • Chassaing B, Koren O, Carvalho FA, Ley RE, Gewirtz AT. AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition. Gut. 2014;63:1069–1080. doi:10.1136/gutjnl-2013-304909.
  • Schmitz JM, Tonkonogy SL, Dogan B, Leblond A, Whitehead KJ, Kim SC, Simpson KW, Sartor RB. Murine adherent and invasive E. coli induces chronic inflammation and immune responses in the small and large intestines of monoassociated IL-10-/- Mice independent of long polar fimbriae adhesin. Inflamm Bowel Dis. 2019;25(5): 875–885.
  • Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 2016;24:477–489. doi:10.1016/j.tim.2016.02.010.
  • Barnich N, Carvalho FA, Glasser A-L, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel J-F, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117:1566–1574. doi:10.1172/JCI30504.
  • Åv K, Alkaissi LY, Holm EB, Heil SDS, Chassaing B, Darfeuille-Michaud A, McKay DM, Söderholm JD. Enhanced E. coli LF82 translocation through the Follicle-associated Epithelium in Crohn’s disease is dependent on long polar fimbriae and CEACAM6 expression, and increases paracellular permeability. J Crohn’s Colitis. 2020;14:216–229. doi:10.1093/ecco-jcc/jjz144.
  • Dreux N, Denizot J, Martinez-Medina M, Mellmann A, Billig M, Kisiela D, Chattopadhyay S, Sokurenko E, Neut C, Gower-Rousseau C, et al. Point mutations in FimH adhesin of Crohn’s disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog. 2013;9:e1003141. doi:10.1371/journal.ppat.1003141.
  • Chevalier G, Laveissière A, Desachy G, Barnich N, Sivignon A, Maresca M, Nicoletti C, Di Pasquale E, Martinez-Medina M, Simpson KW, et al. Blockage of bacterial FimH prevents mucosal inflammation associated with Crohn’s disease. Microbiome. 2021;9:176. doi:10.1186/s40168-021-01135-5.
  • Sivignon A, Yan X, Alvarez Dorta D, Bonnet R, Bouckaert J, Fleury E, Bernard J, Gouin SG, Darfeuille-Michaud A, Barnich N. Development of Heptylmannoside-Based Glycoconjugate Antiadhesive compounds against adherent-Invasive Escherichia coli bacteria associated with Crohn’s Disease. mBio. 2015;6:e01298–15. doi:10.1128/mBio.01298-15.
  • Rolhion N, Carvalho FA, OmpC D-MA. and the sigma(E) regulatory pathway are involved in adhesion and invasion of the Crohn’s disease-associated Escherichia coli strain LF82. Mol Microbiol. 2007;63:1684–1700. doi:10.1111/j.1365-2958.2007.05638.x.
  • Fdm VS, Oldenburg B, Hart AR, Siersema PD, Lindgren S, Grip O, Teucher B, Kaaks R, Bergmann MM, Boeing H, et al. Serological markers predict inflammatory bowel disease years before the diagnosis. Gut. 2013;62:683–688. doi:10.1136/gutjnl-2012-302717.
  • Low D, Tran HT, Lee I-A, Dreux N, Kamba A, Reinecker H-C, Darfeuille-Michaud A, Barnich N, Mizoguchi E. Chitin-binding domains of Escherichia coli ChiA mediate interactions with intestinal epithelial cells in mice with colitis. Gastroenterology. 2013;145(602–612.e9). doi:10.1053/j.gastro.2013.05.017.
  • Kawada M, Chen -C-C, Arihiro A, Nagatani K, Watanabe T, Chitinase ME. 3-like-1 enhances bacterial adhesion to colonic epithelial cells through the interaction with bacterial chitin-binding protein. Lab Invest. 2008;88:883–895. doi:10.1038/labinvest.2008.47.
  • Kirn TJ, Jude BA, Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005;438:863–866. doi:10.1038/nature04249.
  • Sevrin G, Massier S, Chassaing B, Agus A, Delmas J, Denizot J, Billard E, Barnich N. Adaptation of adherent-invasive E. coli to gut environment: impact on flagellum expression and bacterial colonization ability. Gut Microbes. 2020;11:364–380. doi:10.1080/19490976.2017.1421886.
  • Barnich N, Boudeau J, Claret L, Darfeuille-Michaud A. Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn’s disease. Mol Microbiol. 2003;48:781–794. doi:10.1046/j.1365-2958.2003.03468.x.
  • Gibold L, Garenaux E, Dalmasso G, Gallucci C, Cia D, Mottet-Auselo B, Faïs T, Darfeuille-Michaud A, Nguyen HTT, Barnich N, et al. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn’s disease-associated Escherichia coli. Cell Microbiol. 2016;18:617–631. doi:10.1111/cmi.12539.
  • Cieza RJ, Hu J, Ross BN, Sbrana E, Torres AG, Payne SM. The IbeA invasin of adherent-invasive Escherichia coli mediates interaction with intestinal epithelia and macrophages. Infect Immun. 2015;83:1904–1918. doi:10.1128/IAI.03003-14.
  • Elhenawy W, Hordienko S, Gould S, Oberc AM, Tsai CN, Hubbard TP, Waldor MK, Coombes BK. High-throughput fitness screening and transcriptomics identify a role for a type IV secretion system in the pathogenesis of Crohn’s disease-associated Escherichia coli. Nat Commun. 2021;12:2032. doi:10.1038/s41467-021-22306-w.
  • Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, the NIDDK IBD Genetics Consortium, the Belgian-French IBD Consortium, the Wellcome Trust Case Control Consortium, Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, et al. Genome-wide association defines more than. 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–962. 10.1038/ng.175.
  • Sugihara K, Kitamoto S, Saraithong P, Nagao-Kitamoto H, Hoostal M, McCarthy C, Rosevelt A, Muraleedharan CK, Gillilland MG, Imai J, et al. Mucolytic bacteria license pathobionts to acquire host-derived nutrients during dietary nutrient restriction. Cell Rep. 2022;40:111093. doi:10.1016/j.celrep.2022.111093.
  • Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A, Tuomanen EI. Adherent Invasive Escherichia coli Strains from Patients with Crohn’s Disease Survive and Replicate within Macrophages without Inducing Host Cell Death. Infect Immun. 2001;69:5529–5537. doi:10.1128/IAI.69.9.5529-5537.2001.
  • Bringer M-A, Barnich N, Glasser A-L, Bardot O, Darfeuille M-A. HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn’s disease. Infect Immun. 2005;73:712–721. doi:10.1128/IAI.73.2.712-721.2005.
  • Prudent V, Demarre G, Vazeille E, Wery M, Quenech’Du N, Ravet A, Dauverd - Girault J, van Dijk E, M-A B, Descrimes M, et al. The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol. 2021;4:627. doi:10.1038/s42003-021-02161-7.
  • Demarre G, Prudent V, Schenk H, Rousseau E, Bringer M-A, Barnich N, Tran Van Nhieu G, Rimsky S, De MS, Espéli O. The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathog. 2019;15:e1008123. doi:10.1371/journal.ppat.1008123.
  • Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343:204–208. doi:10.1126/science.1244705.
  • Perez-Lopez A, Behnsen J, Nuccio S-P RM. Mucosal immunity to pathogenic intestinal bacteria. Nat Rev Immunol. 2016;16:135–148. doi:10.1038/nri.2015.17.
  • Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity. 2021;54:437–453. doi:10.1016/j.immuni.2021.01.018.
  • Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–211. doi:10.1038/ng1954.
  • Bretin A, Carrière J, Dalmasso G, Bergougnoux A, B’chir W, Maurin A-C, Müller S, Seibold F, Barnich N, Bruhat A, et al. Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:770–783. doi:10.1080/15548627.2016.1156823.
  • Asrat S, de Jesús DA, Hempstead AD, Ramabhadran V, Isberg RR. Bacterial Pathogen Manipulation of host membrane trafficking. Annu Rev Cell Dev Biol. 2014;30:79–109. doi:10.1146/annurev-cellbio-100913-013439.
  • Sheng Y, Song Y, Li Z, Wang Y, Lin H, Cheng H, Zhou R. RAB37 interacts directly with ATG5 and promotes autophagosome formation via regulating ATG5-12-16 complex assembly. Cell Death Differ [Internet] 2017 [cited 2022 Sep 21]; Available from]. http://www.nature.com/articles/s41418-017-0023-1
  • Nguyen HTT, Dalmasso G, Müller S, Carrière J, Seibold F, Darfeuille-Michaud A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 2014;146:508–519. doi:10.1053/j.gastro.2013.10.021.
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Micro. 2011;9:356–368. doi:10.1038/nrmicro2546.
  • Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, Flavell RA. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–734. doi:10.1126/science.1104911.
  • Shanahan MT, Carroll IM, Grossniklaus E, White A, von Furstenberg RJ, Barner R, Fodor AA, Henning SJ, Sartor RB, Gulati AS. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut. 2014;63:903–910. doi:10.1136/gutjnl-2012-304190.
  • Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, et al. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA. 2005;102:18129–18134. doi:10.1073/pnas.0505256102.
  • Wehkamp J, Harder J, Weichenthal M, Mueller O, Herrlinger KR, Fellermann K, Schroeder JM, Stange EF. Inducible and constitutive β-defensins are differentially expressed in Crohn’s Disease and Ulcerative Colitis: inflammatory bowel diseases. Inflammatory Bowel Diseases. 2003;9(4):215–223. doi:10.1097/00054725-200307000-00001.
  • McPhee JB, Small CL, Reid-Yu SA, Brannon JR, Le Moual H, Coombes BK, McPhee JB, Small CL, Reid-Yu SA, Brannon JR, Le Moual H, Coombes BK. Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn’s Disease-associated adherent-Invasive Escherichia coli. Infect Immun. 2014;82:3383–3393. 10.1128/IAI.01888-14.
  • Brodsky IE, Ernst RK, Miller SI, Falkow S. mig - 14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J Bacteriol. 2002;184:3203–3213. doi:10.1128/JB.184.12.3203-3213.2002.
  • Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008;135:781–786. doi:10.1053/j.gastro.2008.05.081.
  • Small CL, Xing L, McPhee JB, Law HT, Coombes BK, Small CL, Xing L, McPhee JB, Law HT, Coombes BK. Acute infectious gastroenteritis potentiates a Crohn’s disease pathobiont to fuel ongoing inflammation in the Post-Infectious period. PLoS Pathog. 2016;12:e1005907. 10.1371/journal.ppat.1005907.
  • Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93. doi:10.1038/nature18849.
  • Miller BM, Bäumler AJ. The habitat filters of microbiota-nourishing immunity. Annu Rev Immunol. 2021;39:1–18. doi:10.1146/annurev-immunol-101819-024945.
  • Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6:662–680. doi:10.1038/nrd2222.
  • Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, et al. Host-Derived nitrate boosts growth of E. coli in the Inflamed Gut. Science. 2013;339:708–711. doi:10.1126/science.1232467.
  • Oberc AM, Fiebig-Comyn AA, Tsai CN, Elhenawy W, Coombes BK. Antibiotics potentiate adherent-Invasive E. coli Infection and expansion. Inflamm Bowel Diseases. 2019;25(4):711–721. doi:10.1093/ibd/izy361.
  • Kitamoto S, Alteri CJ, Rodrigues M, Nagao-Kitamoto H, Sugihara K, Himpsl SD, Bazzi M, Miyoshi M, Nishioka T, Hayashi A, et al. Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nat Microbiol. 2020;5:116–125. doi:10.1038/s41564-019-0591-6.
  • Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, Bernalier-Donadille A, Denis S, Hofman P, Bonnet R, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. Sci Rep. 2016;6:19032.
  • Lau TC, Fiebig-Comyn AA, Shaler CR, McPhee JB, Coombes BK, Schertzer JD. Low dietary fiber promotes enteric expansion of a Crohn’s disease-associated pathobiont independent of obesity. American J Phy Endocrinology and Metabolism. 2021 ajpendo.00134.2021;321(3):E338–E350. doi:10.1152/ajpendo.00134.2021.
  • Delmas J, Gibold L, Faïs T, Batista S, Leremboure M, Sinel C, Vazeille E, Cattoir V, Buisson A, Barnich N, et al. Metabolic adaptation of adherent-invasive Escherichia coli to exposure to bile salts. Sci Rep. 2019;9:2175. doi:10.1038/s41598-019-38628-1.
  • Dogan B, Suzuki H, Herlekar D, Sartor RB, Campbell BJ, Roberts CL, Stewart K, Scherl EJ, Araz Y, Bitar PP, et al. Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis. 2014;20:1919–1932. doi:10.1097/MIB.0000000000000183.
  • Zhang S, Morgan X, Dogan B, Martin F-P, Strickler S, Oka A, Herzog J, Liu B, Dowd SE, Huttenhower C, et al. Mucosal metabolites fuel the growth and virulence of E. JCI Insight. 2022;7:e157013.
  • Fornelos N, Franzosa EA, Bishai J, Annand JW, Oka A, Lloyd-Price J, Arthur TD, Garner A, Avila-Pacheco J, Haiser HJ, et al. Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in inflammatory bowel disease. Nat Microbiol. 2020;5:486–497. doi:10.1038/s41564-019-0655-7.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, From Dietary BF. Fiber to host physiology: short-Chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. doi:10.1016/j.cell.2016.05.041.
  • Peng K, Xia S, Xiao S, Yu Q. Short-chain fatty acids affect the development of inflammatory bowel disease through intestinal barrier, immunology, and microbiota: a promising therapy? J Gastro Hepatol. 2022;37:1710–1718. doi:10.1111/jgh.15970.
  • Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. the Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48:612–626. doi:10.1016/j.molcel.2012.08.033.
  • Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455. doi:10.1038/nature12726.
  • Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450. doi:10.1038/nature12721.
  • Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–139. doi:10.1016/j.immuni.2013.12.007.
  • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS, Metabolites TM. Short-Chain fatty acids, regulate colonic treg cell homeostasis. Science. 2013;341:569–573. doi:10.1126/science.1241165.
  • Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi:10.1038/s41586-019-1237-9.
  • Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Rapid WY. Noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6:546–551. doi:10.1021/pr060470d.
  • Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbio. 2008;298:463–472. doi:10.1016/j.ijmm.2007.07.016.
  • Pace F, Rudolph SE, Chen Y, Bao B, Kaplan DL, Watnick PI, Theis KR. The Short-Chain fatty acids propionate and butyrate augment adherent-Invasive Escherichia coli virulence but repress inflammation in a human intestinal enteroid model of infection. Microbiol Spectr. 2021;9:e01369–21. doi:10.1128/Spectrum.01369-21.
  • Ormsby MJ, Johnson SA, Carpena N, Meikle LM, Goldstone RJ, McIntosh A, Wessel HM, Hulme HE, McConnachie CC, Connolly JPR, et al. Propionic acid promotes the virulent phenotype of Crohn’s disease-Associated adherent-Invasive Escherichia coli. Cell Rep. 2020;30(2297–2305.e5). doi:10.1016/j.celrep.2020.01.078.
  • Pobeguts OV, Ladygina VG, Evsyutina DV, Eremeev AV, Zubov AI, Matyushkina DS, Scherbakov PL, Rakitina DV, Fisunov GY. Propionate induces virulent properties of Crohn’s Disease-Associated Escherichia coli. Front Microbiol. 2020;11:1460. doi:10.3389/fmicb.2020.01460.
  • Zhang S, Dogan B, Guo C, Herlekar D, Stewart K, Scherl EJ, Simpson KW. Short chain fatty acids modulate the growth and virulence of Pathosymbiont Escherichia coli and host response. Antibiotics. 2020;9:462. doi:10.3390/antibiotics9080462.
  • Palmer LD, Skaar EP, Palmer LD, Skaar EP. Transition Metals and. Transition Metals and Virulence in Bacteria. Annu Rev Genet. 2016;50(1):67–91. doi:10.1146/annurev-genet-120215-035146.
  • Golonka R, Yeoh BS, The Iron V-KM. Tug-of-War between Bacterial Siderophores and Innate Immunity. J Innate Immun. 2019;11:249–262. doi:10.1159/000494627.
  • Ellermann M, Gharaibeh RZ, Fulbright L, Dogan B, Moore LN, Broberg CA, Lopez LR, Rothemich AM, Herzog JW, Rogala A, et al. Yersiniabactin-Producing adherent/invasive Escherichia coli promotes inflammation-Associated Fibrosis in Gnotobiotic Il10 −/− Mice. Infect Immun. 2019;87:e00587–19. /iai/87/11/IAI.00587-19.atom
  • Singh V, Yeoh BS, Xiao X, Kumar M, Bachman M, Borregaard N, Joe B, Vijay-Kumar M. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. Nat Commun. 2015;6:7113.
  • Shaler CR, Parco AA, Elhenawy W, Dourka J, Jury J, Verdu EF, Coombes BK. Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nat Commun. 2021;12:6664. doi:10.1038/s41467-021-26992-4.
  • Gracie DJ, Guthrie EA, Hamlin PJ, Ford AC. Bi-directionality of brain–Gut interactions in patients with inflammatory Bowel Disease. Gastroenterology. 2018;154(1635–1646.e3):1635–1646.e3. doi:10.1053/j.gastro.2018.01.027.
  • Gerner RR, Hossain S, Sargun A, Siada K, Norton GJ, Zheng T, Neumann W, Nuccio S-P, Nolan EM, Raffatellu M. Siderophore Immunization Restricted Colonization of Adherent-Invasive Escherichia coli and Ameliorated Experimental Colitis. mBio. 2022;13:e02184–22. doi:10.1128/mbio.02184-22.
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–633. doi:10.1038/nrmicro2415.
  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–575. doi:10.1038/nrmicro.2016.94.
  • Flemming H-C, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol [Internet] 2022 [cited 2022 Sep 21]; Available from]. https://www.nature.com/articles/s41579-022-00791-0
  • Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20:608–620. doi:10.1038/s41579-022-00767-0.
  • Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Spatial Organization LH. Composition of the Mucosal Flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380–3389. doi:10.1128/JCM.43.7.3380-3389.2005.
  • Chassaing B, Darfeuille-Michaud A. The σ E pathway is involved in biofilm formation by Crohn’s Disease-Associated Adherent-Invasive Escherichia coli. J Bacteriol. 2013;195:76–84. doi:10.1128/JB.01079-12.
  • Macé K, Vadakkepat AK, Redzej A, Lukoyanova N, Oomen C, Braun N, Ukleja M, Lu F, Costa TRD, Orlova EV, et al. Cryo-EM structure of a type IV secretion system. Nature. 2022;607:191–196. doi:10.1038/s41586-022-04859-y.
  • Costa TRD, Harb L, Khara P, Zeng L, Hu B, Christie PJ. Type IV secretion systems: advances in structure, function, and activation. Mol Microbiol. 2021;115:436–452. doi:10.1111/mmi.14670.
  • Christie PJ, Gomez Valero L, Buchrieser C. Biological diversity and evolution of type IV secretion systems. In: Backert S, Grohmann E, editors. Type IV secretion in Gram-Negative and Gram-positive bacteria. Switzerland: Springer International Publishing; 2017. p. 1–30. cited 2022 Mar 12. Available from: http://link.springer.com/10.1007/978-3-319-75241-9_1
  • Ghigo JM. Natural conjugative plasmids induce bacterial biofilm development. Nature. 2001;412:442–445. doi:10.1038/35086581.
  • Ellermann M, Huh EY, Liu B, Carroll IM, Tamayo R, Sartor RB, Bäumler AJ. Adherent-Invasive Escherichia coli production of cellulose influences iron-induced bacterial aggregation, Phagocytosis, and induction of colitis. Infect Immun. 2015;83:4068–4080. doi:10.1128/IAI.00904-15.
  • Renouf MJ, Cho YH, McPhee JB. Emergent behavior of IBD-associated Escherichia coli during disease. Inflamm Bowel Dis. 2019;25:33–44. doi:10.1093/ibd/izy312.
  • Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL, Chen H, Kriegel MA, Palm NW. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature. 2022;607:563–570. doi:10.1038/s41586-022-04949-x.