2,926
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2172955 | Received 11 Aug 2022, Accepted 18 Jan 2023, Published online: 07 Feb 2023

References

  • Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2018;391(10115):70–17. doi:10.1016/S0140-6736(17)31796-8.
  • De Re V, Magris R, Cannizzaro R. New insights into the pathogenesis of celiac disease. Front Med (Lausanne). 2017;4:137. doi:10.3389/fmed.2017.00137.
  • Di Sabatino A, Biagi F, Lenzi M, Frulloni L, Lenti MV, Giuffrida P, Corazza GR. Clinical usefulness of serum antibodies as biomarkers of gastrointestinal and liver diseases. Dig Liver Dis. 2017;49(9):947–956. doi:10.1016/j.dld.2017.06.010.
  • Elli L, Zini E, Tomba C, Bardella MT, Bosari S, Conte D, Runza L, Roncoroni L, Ferrero S. Histological evaluation of duodenal biopsies from coeliac patients: the need for different grading criteria during follow-up. BMC Gastroenterol. 2015;15(1):133. doi:10.1186/s12876-015-0361-8.
  • Kamboj AK, Oxentenko AS. Clinical and histologic mimickers of celiac disease. Clin Transl Gastroenterol. 2017;8(8):e114. doi:10.1038/ctg.2017.41.
  • Wieser H, Ruiz-Carnicer A, Segura V, Comino I, Sousa C, Huang F, Jia X, Li L, Bai J, Zhang B. Challenges of monitoring the gluten-free diet adherence in the management and follow-up of patients with celiac disease. Nutrients. 2021;14(1):13. doi:10.3390/nu14010013.
  • Clerget G, Abel Y, Rederstorff M. Small non-coding RNAs: a quick look in the rearview mirror. Methods Mol Biol. 2015;1296:3–9. doi:10.1007/978-1-4939-2547-6_1.
  • Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, et al. Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci. 2021;17(8):2112–2123. doi:10.7150/ijbs.59904.
  • Francavilla A, Tarallo S, Pardini B, Naccarati A. Fecal microRNAs as non-invasive biomarkers for the detection of colorectal cancer: a systematic review. Minerva Biotecnol. 2019;31(1):30–42. doi:10.23736/S1120-4826.18.02495-3.
  • Felli C, Baldassarre A, Masotti A. Intestinal and circulating MicroRNAs in coeliac disease. Int J Mol Sci. 2017;19(1):18. doi:10.3390/ijms19010018.
  • Felli C, Baldassarre A, Uva P, Alisi A, Cangelosi D, Ancinelli M, Caruso M, Paolini A, Montano A, Silano M, et al. Circulating microRNAs as novel non-invasive biomarkers of paediatric celiac disease and adherence to gluten-free diet. EBioMedicine. 2022;76:103851. doi:10.1016/j.ebiom.2022.103851.
  • Paolini A, Sarshar M, Felli C, Bruno SP, Rostami-Nejad M, Ferretti F, Masotti A, Baldassarre A, et al. Biomarkers to monitor adherence to gluten-free diet by celiac disease patients: gluten immunogenic peptides and urinary miRNAs. Foods. 2022;12(1):11. doi:10.3390/foods12010011.
  • Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases. Nutrients . 2017;9(11):1168. doi:10.3390/nu9111168.
  • Ferrero G, Carpi S, Polini B, Pardini B, Nieri P, Impeduglia A, Grioni S, Tarallo S, Naccarati A. Intake of natural compounds and circulating microRNA expression levels: their relationship investigated in healthy subjects with different dietary habits. Front Pharmacol. 2020;11:619200. doi:10.3389/fphar.2020.619200.
  • Francavilla A, Gagliardi A, Piaggeschi G, Tarallo S, Cordero F, Pensa RG, Impeduglia A, Caviglia GP, Ribaldone DG, Gallo G, et al. Faecal miRNA profiles associated with age, sex, BMI, and lifestyle habits in healthy individuals. Sci Rep. 2021;11(1):20645. doi:10.1038/s41598-021-00014-1.
  • Tarallo S, Ferrero G, De Filippis F, Francavilla A, Pasolli E, Panero V, Cordero F, Segata N, Grioni S, Pensa RG, et al. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut. 2022;71(7):1302–1314. doi:10.1136/gutjnl-2021-325168.
  • De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S, Rampelli S, Di Cagno R, Rantsiou K, Vannini L, et al. Diet influences the functions of the human intestinal microbiome. Sci Rep. 2020;10(1):4247. doi:10.1038/s41598-020-61192-y.
  • Wei L, Singh R, Ro S, Ghoshal UC. Gut microbiota dysbiosis in functional gastrointestinal disorders: underpinning the symptoms and pathophysiology. JGH Open. 2021;5(9):976–987. doi:10.1002/jgh3.12528.
  • Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock L, Gandhi R, Weiner H. The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe. 2016;19(1):32–43. doi:10.1016/j.chom.2015.12.005.
  • Dong J, Tai JW, Lu LF. miRNA-microbiota interaction in gut homeostasis and colorectal cancer. Trends Cancer. 2019;5(11):666–669. doi:10.1016/j.trecan.2019.08.003.
  • Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, Chang EB. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One. 2011;6(1):e16221. doi:10.1371/journal.pone.0016221.
  • Malmuthuge N, Guan LL. Noncoding RNAs: regulatory molecules of host-microbiome crosstalk. Trends Microbiol. 2021;29(8):713–724. doi:10.1016/j.tim.2020.12.003.
  • Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondière UR, Hémon B, Casagrande C, Vignat J, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6b):1113–1124. doi:10.1079/PHN2002394.
  • Salvini SPMGP, Maisonneuve P, Turrini A. Banca Dati di Composizione degli Alimenti per Studi Epidemiologici in Italia. 1998.
  • Mazzeo T, Roncoroni L, Lombardo V, Tomba C, Elli L, Sieri S, Grioni S, Bardella MT, Agostoni C, Doneda L, et al. Evaluation of a modified Italian European prospective investigation into cancer and nutrition food frequency questionnaire for individuals with celiac disease. J Acad Nutr Diet. 2016;116(11):1810–1816. doi:10.1016/j.jand.2016.04.013.
  • Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, et al. Altered fecal small RNA profiles in colorectal cancer reflect gut microbiome composition in stool samples. mSystems. 2019;4(5):e00289–19. doi:10.1128/mSystems.00289-19.
  • Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 2019;25(4):667–678. doi:10.1038/s41591-019-0405-7.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Lê Cao K-A. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35(17):3055–3062. doi:10.1093/bioinformatics/bty1054.
  • Meng Y, Li J, Ye Z, Yin Z, Sun Q, Liao Z, Li G, Deng J, Liu L, Yu Y, et al. MicroRNA-148a facilitates inflammatory dendritic cell differentiation and autoimmunity by targeting MAFB. JCI Insight. 2020;23;5(8):e133721 doi:10.1172/jci.insight.133721.
  • Huang F, Zhao JL, Wang L, Gao CC, Liang SQ, An DJ, Bai J, Chen Y, Han H, Qin H-Y, et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages. Front Immunol. 2017;8:1327. doi:10.3389/fimmu.2017.01327.
  • Zhu Y, Gu L, Li Y, Lin X, Shen H, Cui K, Chen L, Zhou F, Zhao Q, Zhang J, et al. miR-148a inhibits colitis and colitis-associated tumorigenesis in mice. Cell Death Differ. 2017;24(12):2199–2209. doi:10.1038/cdd.2017.151.
  • Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39(4):493–506. doi:10.1016/j.molcel.2010.07.023.
  • Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, Blackwell TS, Baron RM, et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest. 2012;122(6):1973–1990. doi:10.1172/JCI61495.
  • Elli L, Branchi F, Tomba C, Villalta D, Norsa L, Ferretti F, Roncoroni L, Bardella MT. Diagnosis of gluten related disorders: celiac disease, wheat allergy and non-celiac gluten sensitivity. World J Gastroenterol. 2015;21(23):7110–7119. doi:10.3748/wjg.v21.i23.7110.
  • Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal epithelial cell endoplasmic reticulum stress and inflammatory bowel disease pathogenesis: an update review. Front Immunol. 2017;8:1271. doi:10.3389/fimmu.2017.01271.
  • Liu Q, Korner H, Wu H, Wei W. Endoplasmic reticulum stress in autoimmune diseases. Immunobiology. 2020;225(2):151881. doi:10.1016/j.imbio.2019.11.016.
  • Ferrari E, Monzani R, Saverio V, Gagliardi M, Panczyszyn E, Raia V, Jia X, Li L, Bai J, Zhang B, et al. Probiotics supplements reduce ER stress and gut inflammation associated with gliadin intake in a mouse model of gluten sensitivity. Nutrients. 2021;14(1):13. 10.3390/nu14010013.
  • Vaira V, Roncoroni L, Barisani D, Gaudioso G, Bosari S, Bulfamante G, Doneda L, Conte D, Tomba C, Bardella M, et al. microRNA profiles in coeliac patients distinguish different clinical phenotypes and are modulated by gliadin peptides in primary duodenal fibroblasts. Clin Sci (Lond). 2014;126(6):417–423. doi:10.1042/CS20130248.
  • Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin regulated autoimmune disorders: understanding the role of mechanical force in autoimmunity. Front Cell Dev Biol. 2022;10:852878. doi:10.3389/fcell.2022.852878.
  • Pardini B, Sabo AA, Birolo G, Calin GA, Suchorska AWM. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel). 2019;12(1):11. doi:10.3390/cancers12010011.
  • Sacchetti L, Nardelli C. Gut microbiome investigation in celiac disease: from methods to its pathogenetic role. Clin Chem Lab Med. 2020;58(3):340–349. doi:10.1515/cclm-2019-0657.
  • Caio G, Lungaro L, Segata N, Guarino M, Zoli G, Volta U, Verduci E, Gruszfeld D, Xhonneux A, Escribano J, et al. Effect of gluten-free diet on gut microbiota composition in patients with celiac disease and non-celiac gluten/wheat sensitivity. Nutrients. 2020;13(1):12. doi:10.3390/nu13010012.
  • Pecora F, Persico F, Gismondi P, Fornaroli F, Iuliano S, De’angelis GL, Esposito S, et al. Gut microbiota in celiac disease: is there any role for probiotics? Front Immunol. 2020;11:957. doi:10.3389/fimmu.2020.00957.
  • Leonard MM, Valitutti F, Karathia H, Pujolassos M, Kenyon V, Fanelli B, Troisi J, Subramanian P, Camhi S, Colucci A, et al. Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A. 2021;118(29):e2020322118. doi:10.1073/pnas.2020322118.
  • Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS One. 2012;7(2):e30744. doi:10.1371/journal.pone.0030744.
  • Olivares M, Laparra M, Sanz Y. Influence of Bifidobacterium longum CECT 7347 and gliadin peptides on intestinal epithelial cell proteome. J Agric Food Chem. 2011;59(14):7666–7671. doi:10.1021/jf201212m.
  • Francavilla R, Ercolini D, Piccolo M, Vannini L, Siragusa S, De Filippis F, De Pasquale I, Di Cagno R, Di Toma M, Gozzi G, et al. Salivary microbiota and metabolome associated with celiac disease. Appl Environ Microbiol. 2014;80(11):3416–3425. doi:10.1128/AEM.00362-14.
  • Horstmann SW, Lynch KM, Arendt EK. Starch characteristics linked to gluten-free products. Foods. 2017;6(4):29 doi:10.3390/foods6040029.
  • Ferretti G, Bacchetti T, Masciangelo S, Saturni L. Celiac disease, inflammation and oxidative damage: a nutrigenetic approach. Nutrients. 2012;4(4):243–257. doi:10.3390/nu4040243.
  • Cross RK, Wilson KT. Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9(3):179–189. doi:10.1097/00054725-200305000-00006.
  • Wegmann U, Louis P, Goesmann A, Henrissat B, Duncan SH, Flint HJ. Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environ Microbiol. 2014;16(9):2879–2890. doi:10.1111/1462-2920.12217.
  • Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. Isme J. 2014;8(11):2218–2230. doi:10.1038/ismej.2014.63.
  • Jaagura M, Viiard E, Karu-Lavits K, Adamberg K. Low-carbohydrate high-fat weight reduction diet induces changes in human gut microbiota. Microbiologyopen. 2021;10(3):e1194. doi:10.1002/mbo3.1194.
  • Jose A, Apewokin S, Hussein WE, Ollberding NJ, Elwing JM, Haslam DB. A unique gut microbiota signature in pulmonary arterial hypertension: a pilot study. Pulm Circ. 2022;12(1):e12051. doi:10.1002/pul2.12051.
  • Rangu S, Lee JJ, Hu W, Bittinger K, Castelo-Soccio L. Understanding the gut microbiota in pediatric patients with alopecia areata and their siblings: a pilot study. JID Innov. 2021;1(4):100051. doi:10.1016/j.xjidi.2021.100051.
  • Mohan M, Chow CT, Ryan CN, Chan LS, Dufour J, Aye PP, Blanchard J, Moehs CP, Sestak K, et al. Dietary gluten-induced gut dysbiosis is accompanied by selective upregulation of microRNAs with intestinal tight junction and bacteria-binding motifs in rhesus macaque model of celiac disease. Nutrients. 2016;8(11):684. doi:10.3390/nu8110684.