1,654
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Using fecal immmunochemical cartridges for gut microbiome analysis within a colorectal cancer screening program

ORCID Icon, , ORCID Icon, , , , , , , ORCID Icon, , & ORCID Icon show all
Article: 2176119 | Received 21 Jul 2022, Accepted 31 Jan 2023, Published online: 16 Feb 2023

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–16. doi:10.3322/caac.21660.
  • Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–732. doi:10.1038/s41575-019-0189-8.
  • Vuik FE, Nieuwenburg SA, Bardou M, Lansdorp-Vogelaar I, Dinis-Ribeiro M, Bento MJ, Zadnik V, Pellisé M, Esteban L, Kaminski MF, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut. 2019;68(10):1820–1826. doi:10.1136/gutjnl-2018-317592.
  • Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6(1):479–507. doi:10.1146/annurev-pathol-011110-130235.
  • Nikolouzakis TK, Vassilopoulou L, Fragkiadaki P, Mariolis Sapsakos T, Papadakis GZ, Spandidos DA, Tsatsakis MA, Tsiaoussis J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol Rep. 2018;39(6):2455–2472. doi:10.3892/or.2018.6330.
  • Hewitson P, Glasziou P, Watson E, Towler B, Irwig L. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol. 2008;103(6):1541–1549. doi:10.1111/j.1572-0241.2008.01875.x.
  • Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. Bmj. 2014;348(apr09 1):g2467. doi:10.1136/bmj.g2467.
  • Miller EA, Pinsky PF, Schoen RE, Prorok PC, Church TR. Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: long-term follow-up of the randomised US PLCO cancer screening trial. Lancet Gastroenterol Hepatol. 2019;4(2):101–110. doi:10.1016/S2468-1253(18)30358-3.
  • Gsur A, Baierl A, Brezina S. Colorectal Cancer Study of Austria (CORSA): a population-based multicenter study. Biology (Basel). 2021;10:8.
  • Jahn B, Sroczynski G, Bundo M, Mühlberger N, Puntscher S, Todorovic J, Rochau U, Oberaigner W, Koffijberg H, Fischer T, et al. Effectiveness, benefit harm and cost effectiveness of colorectal cancer screening in Austria. BMC Gastroenterol. 2019;19(1):209. doi:10.1186/s12876-019-1121-y.
  • Chang LC, Shun CT, Hsu WF, Tu CH, Tsai PY, Lin BR, Liang J-T, Wu M-S, Chiu H-M. Fecal immunochemical test detects sessile serrated adenomas and polyps with a low level of sensitivity. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association. 2017;15(6):872–9.e1. doi:10.1016/j.cgh.2016.07.029.
  • Niedermaier T, Balavarca Y, Stage-Specific BH. Sensitivity of fecal immunochemical tests for detecting colorectal cancer: systematic review and meta-analysis. Am J Gastroenterol. 2020;115(1):56–69. doi:10.14309/ajg.0000000000000465.
  • Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–1942. doi:10.1136/gutjnl-2013-305257.
  • Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–1022. doi:10.1038/nm.2015.
  • Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 2019;25(4):667–678. doi:10.1038/s41591-019-0405-7.
  • Baxter NT, MTt R, Rogers MA, Schloss PD. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 2016;8(1):37. doi:10.1186/s13073-016-0290-3.
  • Sinha R, Chen J, Amir A, Vogtmann E, Shi J, Inman KS, Flores R, Sampson J, Knight R, Chia N, et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol Biomarkers Prev. 2016;25(2):407–416. doi:10.1158/1055-9965.EPI-15-0951.
  • Wu Z, Hullings AG, Ghanbari R, Etemadi A, Wan Y, Zhu B, Poustchi H, Fahraji BB, Sakhvidi MJZ, Shi J, et al. Comparison of fecal and oral collection methods for studies of the human microbiota in two Iranian cohorts. BMC Microbiol. 2021;21(1):324. doi:10.1186/s12866-021-02387-9.
  • Zouiouich S, Mariadassou M, Rué O, Vogtmann E, Huybrechts I, Severi G, Boutron-Ruault M-C, Senore C, Naccarati A, Mengozzi G, et al. Comparison of fecal sample collection methods for microbial analysis embedded within colorectal cancer screening programs. Cancer Epidemiol Biomarkers Prev. 2022 Feb;31(2):305–314. doi:10.1158/1055-9965.EPI-21-0188.
  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. doi:10.1093/nar/gks808.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011;17:10–12.
  • Weinstein MM, Prem A, Jin M, Tang S, Bhasin JM. FIGARO: an efficient and objective tool for optimizing microbiome rRNA gene trimming parameters. bioRxiv. 2019;610394. doi:10.1101/610394.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6(1):140. doi:10.1186/s40168-018-0521-5.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(D1):D590–D6. doi:10.1093/nar/gks1219.
  • Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Canadian Journal of Microbiology. 2016;62(8):692–703. doi:10.1139/cjm-2015-0821.
  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Frontiers in Microbiology. 2017;8:2224. doi:10.3389/fmicb.2017.02224.
  • Palarea-Albaladejo J, Martín-Fernández JA. zCompositions — r package for multivariate imputation of left-censored data under a compositional approach. Chemometrics and Intelligent Laboratory Sys. 2015;143:85–96. doi:10.1016/j.chemolab.2015.02.019.
  • Hintze JL, Nelson RD. Violin plots: a box plot-density trace synergism. Am Stat. 1998;52:181–184.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–163. doi:10.1016/j.jcm.2016.02.012.
  • Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236–244. doi:10.1080/01621459.1963.10500845.
  • Fernandes AD, Reid JNS, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2(1):15. doi:10.1186/2049-2618-2-15.
  • Gloor GB. Gloor lab musings [Internet] 2021. [cited 23 Dec 2021]. Available from: https://gloorlab.blogspot.com/2021/03/measuring-effect-size-in-aldex2.html.
  • Cohen J. Statistical power analysis for the behavioral sciences: academic press; 2013.
  • Hamilton NE, Ferry M. ggtern: ternary diagrams using ggplot2. J Statistical Software, Code Snippets. 2018;87:1–17.
  • R Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2021.
  • Wickham H ggplot2: elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
  • Alboukadel K. ggpubr: ‘ggplot2’ Based Publication Ready Plots. 2020.
  • Pedersen TL. ggraph: an implementation of grammar of graphics for graphs and networks. 2021.
  • Vogtmann E, Chen J, Kibriya MG, Chen Y, Islam T, Eunes M, Ahmed A, Naher J, Rahman A, Amir A, et al. Comparison of fecal collection methods for microbiota studies in Bangladesh. Appl Environ Microbiol. 2017;83(10):10. doi:10.1128/AEM.00361-17.
  • Wang Z, Zolnik CP, Qiu Y, Usyk M, Wang T, Strickler HD, Isasi CR, Kaplan RC, Kurland IJ, Qi Q, et al. Comparison of fecal collection methods for microbiome and metabolomics studies. Front Cell Infect Microbiol. 2018;8:301. doi:10.3389/fcimb.2018.00301.
  • Byrd DA, Chen J, Vogtmann E, Hullings A, Song SJ, Amir A, Kibriya MG, Ahsan H, Chen Y, Nelson H, et al. Reproducibility, stability, and accuracy of microbial profiles by fecal sample collection method in three distinct populations. PLoS One. 2019;14(11):e0224757. doi:10.1371/journal.pone.0224757.
  • Rounge TB, Meisal R, Nordby JI, Ambur OH, de Lange T, Hoff G. Evaluating gut microbiota profiles from archived fecal samples. BMC Gastroenterol. 2018;18(1):171. doi:10.1186/s12876-018-0896-6.
  • Carroll IM, Ringel-Kulka T, Siddle JP, Klaenhammer TR, Ringel Y, Neufeld J. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One. 2012;7(10):e46953. doi:10.1371/journal.pone.0046953.
  • Cardona S, Eck A, Cassellas M, Gallart M, Alastrue C, Dore J, Azpiroz F, Roca J, Guarner F, Manichanh C, et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 2012;12(1):158. doi:10.1186/1471-2180-12-158.
  • Gudra D, Shoaie S, Fridmanis D, Klovins J, Wefer H, Silamikelis I, Peculis R, Kalnina I, Elbere I, Radovica-Spalvina I, et al. A widely used sampling device in colorectal cancer screening programmes allows for large-scale microbiome studies. Gut. 2019;68(9):1723–1725. doi:10.1136/gutjnl-2018-316225.
  • Vogtmann E, Chen J, Amir A, Shi J, Abnet CC, Nelson H, Knight R, Chia N, Sinha R. Comparison of collection methods for fecal samples in microbiome studies. Am J Epidemiol. 2017;185(2):115–123. doi:10.1093/aje/kww177.
  • Masi AC, Koo S, Lamb CA, Hull MA, Sharp L, Nelson A, Hampton JS, Rees CJ, Stewart CJ. Using faecal immunochemical test (FIT) undertaken in a national screening programme for large-scale gut microbiota analysis. Gut. 2021;70(2):429–431. doi:10.1136/gutjnl-2020-321594.
  • Krigul KL, Aasmets O, Lüll K, Org T, Org E. Using fecal immunochemical tubes for the analysis of the gut microbiome has the potential to improve colorectal cancer screening. Sci Rep. 2021;11(1):19603. doi:10.1038/s41598-021-99046-w.
  • Grobbee EJ, Lam SY, Fuhler GM, Blakaj B, Konstantinov SR, Bruno MJ, Peppelenbosch MP, Kuipers EJ, Spaander MC. First steps towards combining faecal immunochemical testing with the gut microbiome in colorectal cancer screening. United Eur Gastroenterology J. 2020;8(3):293–302. doi:10.1177/2050640619890732.
  • Kaul A, Mandal S, Davidov O, Peddada SD. Analysis of microbiome data in the presence of excess zeros. Front Microbiol. 2017;8:2114. doi:10.3389/fmicb.2017.02114.
  • Poretsky R, Rodriguez RL, Luo C, Tsementzi D, Konstantinidis KT, Rodriguez-Valera F. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9(4):e93827. doi:10.1371/journal.pone.0093827.
  • Gantuya B, El Serag HB, Saruuljavkhlan B, Azzaya D, Matsumoto T, Uchida T, Oyuntsetseg K, Oyunbileg N, Davaadorj D, Yamaoka Y, et al. Advantage of 16S rRNA amplicon sequencing in Helicobacter pylori diagnosis. Helicobacter. 2021;26(3):e12790. doi:10.1111/hel.12790