3,050
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

The waxy mutation in sorghum and other cereal grains reshapes the gut microbiome by reducing levels of multiple beneficial species

, , , , , , , , , , , & ORCID Icon show all
Article: 2178799 | Received 24 Sep 2022, Accepted 02 Feb 2023, Published online: 21 Feb 2023

References

  • Abbas KA, Khalil K, Meor Hussin S. Modified starches and their usages in selected food products: a review study. J Agric Sci. 2010;2:154.
  • Chiu C, Solarek D. Modification of starches. In: Whistler J, BeMiller R, editors. Starch: Chemistry and Biology. Burlington, MA: Academic Press; 2009. p. 629–21.
  • James MG, Denyer K, Myers AM. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol. 2003;6:215–222. doi:10.1016/S1369-5266(03)00042-6.
  • Schwartz D, Whistler RL. History and future of starch. In: Whistler J, BeMiller R, editors. Starch: Chemistry and Biology. Burlington, MA: Academic Press; 2009. p. 1–10.
  • Šárka E, Dvořáček V. New processing and applications of waxy starch (a review). J Food Eng. 2017;206:77–87. doi:10.1016/j.jfoodeng.2017.03.006.
  • Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983;35:225–233. doi:10.1016/0092-8674(83)90225-8.
  • Pedersen JF, Bean SR, Graybosch RA, Park SH, Tilley M. Characterization of waxy grain sorghum lines in relation to granule-bound starch synthase. Euphytica. 2005;144:151–156. doi:10.1007/s10681-005-5298-5.
  • Yerka MK, Toy JJ, Funnell-Harris DL, Sattler SE, Pedersen JF. Registration of N619 to N640 grain sorghum lines with waxy or wild-type endosperm. J Plant Regist. 2015;9:249–253. doi:10.3198/jpr2014.06.0043crgs.
  • Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5’ splice site of the first intron. Plant J. 1998;15:133–138. doi:10.1046/j.1365-313X.1998.00189.x.
  • Santra DK, Heyduck RF, Baltensperger DD, Graybosch RA, Nelson LA, Frickel G, Nielsen E. Registration of ‘Plateau’ Waxy (Amylose-Free) proso millet. J Plant Regist. 2015;9:41–43. doi:10.3198/jpr2013.11.0067crc.
  • Graybosch RA, Baenziger PS, Santra DK, Regassa T, Jin Y, Kolmer J, Wegulo S, Bai G, St. Amand P, Chen X, et al. Registration of ‘Mattern’ Waxy (Amylose-free) winter wheat. J Plant Regist. 2014;8:43–48. doi:10.3198/jpr2013.08.0045crc.
  • Sattler SE, Singh J, Haas EJ, Guo L, Sarath G, Pedersen JF. Two distinct waxy alleles impact the granule-bound starch synthase in sorghum. Mol Breed. 2009;24:349–359. doi:10.1007/s11032-009-9296-5.
  • Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM. Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol. 2020;28:95–108. doi:10.1016/j.tim.2019.09.004.
  • Magallanes-Cruz PA, Flores-Silva PC, Bello-Perez LA. Starch structure influences its digestibility: a review. J Food Sci. 2017;82:2016–2023. doi:10.1111/1750-3841.13809.
  • Morita T, Ito Y, Brown IL, Ando R, Kiriyama S. In vitro and in vivo digestibility of native maize starch granules varying in amylose contents. J AOAC Int. 2007;90:1628–1634. doi:10.1093/jaoac/90.6.1628.
  • Fitzgerald MA, Rahman S, Resurreccion AP, Concepcion J, Daygon VD, Dipti SS, Kabir KA, Klingner B, Morell MK, Bird AR. Identification of a major genetic determinant of glycaemic index in rice. Rice. 2011;4:66–74. doi:10.1007/s12284-011-9073-z.
  • Frei M, Siddhuraju P, Becker K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 2003;83:395–402. doi:10.1016/S0308-8146(03)00101-8.
  • DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol. 2020;61:66–71. doi:10.1016/j.copbio.2019.10.008.
  • Dhital S, Warren FJ, Butterworth PJ, Ellis PR, Gidley MJ. Mechanisms of starch digestion by α-amylase—structural basis for kinetic properties. Crit Rev Food Sci Nutr. 2017;57:875–892. doi:10.1080/10408398.2014.922043.
  • Marlatt KL, White UA, Beyl RA, Peterson CM, Martin CK, Marco ML, Keenan MJ, Martin RJ, Aryana KJ, Ravussin E. Role of resistant starch on diabetes risk factors in people with prediabetes: design, conduct, and baseline results of the STARCH trial. Contemp Clin Trials. 2018;65:99–108. doi:10.1016/j.cct.2017.12.005.
  • Sandberg JC, Björck IME, Nilsson AC. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11-14.5 hour perspective; a randomized controlled study in healthy subjects. Nutr J. 2017;16:1–11. doi:10.1186/s12937-017-0246-5.
  • Yuan HC, Meng Y, Bai H, Shen DQ, Wan BC, Chen LY. Meta-analysis indicates that resistant starch lowers serum total cholesterol and low-density cholesterol. Nutr Res. 2018;54:1–11. doi:10.1016/j.nutres.2018.02.008.
  • Esgalhado M, Kemp JA, Azevedo R, Paiva BR, Stockler-Pinto MB, Dolenga CJ, Borges NA, Nakao LS, Mafra D. Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial. Food Funct. 2018;9:6508–6516. doi:10.1039/C8FO01876F.
  • Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martínez I, Salazar N, Cody EA, Quintero-Villegas MI, Kittana H, de Los Reyes-Gavilán CG, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome. 2017;5:1–16. doi:10.1186/s40168-017-0230-5.
  • Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. In: Frederick A, editor. Advances in immunology. Burlington, MA: Academic Press; 2014. p. 91–119.
  • Venegas DP, De La Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi:10.3389/fimmu.2019.00277.
  • Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:1417–1435. doi:10.3390/nu5041417.
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–2340. doi:10.1194/jlr.R036012.
  • Naseer B, Naik HR, Hussain SZ, Shikari AB, Noor N. Variability in waxy (Wx) allele, in-vitro starch digestibility, glycemic response and textural behaviour of popular Northern Himalayan rice varieties. Sci Rep. 2021;11. doi:10.1038/s41598-021-91537-0.
  • Boers HM, Seijen Ten Hoorn J, Mela DJ. A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses. Br J Nutr. 2015;114:1035–1045. doi:10.1017/S0007114515001841.
  • Yerka MK, Toy JJ, Funnell-Harris DL, Sattler SE, Pedersen JF. Registration of A/BN641 and RN642 waxy grain sorghum genetic stocks. J Plant Regist. 2015;9:258–261. doi:10.3198/jpr2014.10.0075crgs.
  • GRIN. 2021. [accessed 2020 April 8].https://www.ars-grin.gov/Pages/Collections
  • Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41. doi:10.1111/1462-2920.13589.
  • Gibbon BC, Wang X, Larkins BA. Altered starch structure is associated with endosperm modification in Quality Protein Maize. Proc Natl Acad Sci USA. 2003;100:15329–15334. doi:10.1073/pnas.2136854100.
  • Korth N, Parsons L, Van Haute MJ, Yang Q, Hurst P, Schnable JC, Holding DR, Benson AK. The unique seed protein composition of quality protein popcorn promotes growth of beneficial bacteria from the human gut microbiome. Front Microbiol. 2022;13:2305. doi:10.3389/fmicb.2022.921456/full.
  • Arrieta MC, Walter J, Finlay BB. Human microbiota-associated mice: a model with challenges. Cell Host Microbe. 2016;19:575–578. doi:10.1016/j.chom.2016.04.014.
  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14. doi:10.1126/scitranslmed.3000322.
  • Smits SA, Marcobal A, Higginbottom S, Sonnenburg JL, Kashyap PC. Individualized responses of gut microbiota to dietary intervention modeled in humanized mice. mSystems. 2016;1:98–114. doi:10.1128/mSystems.00098-16.
  • Cherbuy C, Bellet D, Robert V, Mayeur C, Schwiertz A, Langella P. Modulation of the caecal gut microbiota of mice by dietary supplement containing resistant starch: impact is donor-dependent. Front Microbiol. 2019;10:1234. doi:10.3389/fmicb.2019.01234/full.
  • Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, Zhang Z, Bakal JA, Walter J. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27:389–404.e6. doi:10.1016/j.chom.2020.01.006.
  • Li H, Gidley MJ, Dhital S. High-amylose starches to bridge the “fiber gap”: development, structure, and nutritional functionality. Compr Rev Food Sci Food Saf. 2019;18:362–379. doi:10.1111/1541-4337.12416.
  • Juliano BO, Hicks PA. Rice functional properties and rice food products. Food Rev Int. 1996;12:71–103. doi:10.1080/87559129609541068.
  • Ketthaisong D, Suriharn B, Tangwongchai R, Lertrat K. Changes in physicochemical properties of waxy corn starches after harvest, and in mechanical properties of fresh cooked kernels during storage. Food Chem. 2014;151:561–567. doi:10.1016/j.foodchem.2013.11.104.
  • Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, Bonnaure-Mallet M, Jolivet-Gougeon A. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157–170. doi:10.2217/fmb-2016-0130.
  • Si X, Shang W, Zhou Z, Strappe P, Wang B, Bird A, Blanchard C. Gut microbiome-induced shift of acetate to butyrate positively manages dysbiosis in high fat diet. Mol Nutr Food Res. 2018;62:1700670. doi:10.1002/mnfr.201700670.
  • Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. doi:10.3389/fmicb.2016.00979.
  • Sheridan PO, Martin JC, Lawley TD, Browne HP, Harris HMB, Bernalier-Donadille A, Duncan SH, O’Toole PW, Scott KP, Flint HJ. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic firmicutes. Microb Genom. 2016;2:1–16. doi:10.1099/mgen.0.000043.
  • Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8. doi:10.1111/j.1574-6968.2009.01514.x.
  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–230. doi:10.1038/ismej.2010.118.
  • Maier TV, Lucio M, Lee LH, Verberkmoes NC, Brislawn CJ, Bernhardt J, Lamendella R, McDermott JE, Bergeron N, Heinzmann SS, et al. Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. MBio. 2017;8:1343–1360. doi:10.1128/mBio.01343-17.
  • Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180:221–232. doi:10.1016/j.cell.2019.12.025.
  • Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? DMM Dis Model Mech. 2015;8:1–16. doi:10.1242/dmm.017400.
  • Kieffer DA, Piccolo BD, Marco ML, Kim EB, Goodson ML, Keenan MJ, Dunn TN, Knudsen KEB, Martin RJ, Adams SH. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria. J Nutr. 2016;146:2476–2490. doi:10.3945/jn.116.238931.
  • Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, Ahmadi-Vand Z, Marsden KR, Gibson DL. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4:42. doi:10.1186/s40168-016-0189-7.
  • Zakrzewski M, Simms LA, Brown A, Appleyard M, Irwin J, Waddell N, Radford-Smith GL. IL23R -protective coding variant promotes beneficial bacteria and diversity in the ileal microbiome in healthy individuals without inflammatory bowel disease. J Crohns Colitis. 2019;13:451–461. doi:10.1093/ecco-jcc/jjy188.
  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell. 2014;159:789–799. doi:10.1016/j.cell.2014.09.053.
  • Ferreira-Halder CV, de Sde Faria AV, Andrade SS. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol. 2017;31:643–648. doi:10.1016/j.bpg.2017.09.011.
  • Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, et al. Functional characterization of novel faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of f. prausnitzii as a next-generation probiotic. Front Microbiol. 2017;0:1226. doi:10.3389/fmicb.2017.01226.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–16736. doi:10.1073/pnas.0804812105.
  • Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16:255–261. doi:10.1016/j.mib.2013.06.003.
  • Collins NE, Moran ET, Stilborn HL. Performance of broilers fed normal and waxy corn diets formulated with chick and rooster derived apparent metabolizable energy values for the grains. J Appl Poult Res. 2003;12:196–206. doi:10.1093/japr/12.2.196.
  • De Guzman MK, Parween S, Butardo VM, Alhambra CM, Anacleto R, Seiler C, Bird AR, Chow CP, Sreenivasulu N. Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination. Sci Rep. 2017;7:1–14. doi:10.1038/s41598-017-06026-0.
  • Yang Q, Van Haute M, Korth N, Sattler SE, Toy J, Rose DJ, Schnable JC, Benson AK. Genetic analysis of seed traits in Sorghum bicolor that affect the human gut microbiome. Nat Commun. 2022;13:1–15. doi:10.1038/s41467-021-27699-2.
  • Yang J, Keshavarzian A, Rose DJ. Impact of dietary fiber fermentation from cereal grains on metabolite production by the fecal microbiota from normal weight and obese individuals. J Med Food. 2013;16:862–867. doi:10.1089/jmf.2012.0292.
  • Reichardt N, Vollmer M, Holtrop G, Farquharson FM, Wefers D, Bunzel M, Duncan SH, Drew JE, Williams LM, Milligan G, et al. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. ISME J. 2018;12:610–622. doi:10.1038/ismej.2017.196.
  • Tao S, Bai Y, Zhou X, Zhao J, Yang H, Zhang S, Wang J. In vitro fermentation characteristics for different ratios of soluble to insoluble dietary fiber by fresh fecal microbiota from growing pigs. ACS Omega. 2019;4:15158–15167. doi:10.1021/acsomega.9b01849.
  • Bai Y, Zhao J, Tao S, Zhou X, Pi Y, Gerrits WJ, Johnston LJ, Zhang S, Yang H, Liu L, et al. Effect of dietary fiber fermentation on short‐chain fatty acid production and microbial composition in vitro. J Sci Food Agric. 2020;100:4282–4291. doi:10.1002/jsfa.10470.
  • Xie XJ, Liang YTS, Seib PA, Tuinstra MR. Wet-milling of grain sorghum of varying seed size without steeping. Starch. 2006;58:353–359. doi:10.1002/star.200500486.
  • Yang J, Bindels LB, Segura Munoz RR, Martínez I, Walter J, Ramer-Tait AE, Rose DJ. Disparate metabolic responses in mice fed a high-fat diet supplemented with maize-derived non-digestible feruloylated oligo- and polysaccharides are linked to changes in the gut microbiota. PLoS One. 2016;11:e0146144. doi:10.1371/journal.pone.0146144.
  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi:10.1128/AEM.01043-13.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857. doi:10.1038/s41587-019-0209-9.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi:10.1038/nmeth.3869.
  • Pedregosa Fabianpedregosa F, Michel V, Grisel Oliviergrisel O, Blondel M, Prettenhofer P, Weiss R, Vanderplas J, Cournapeau D, Pedregosa F, Varoquaux G, et al. Scikit-learn: machine learning in python. 2011. [accessed 2019 Aug 1].http://scikit-learn.sourceforge.net
  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–688. doi:10.1038/s41587-020-0548-6.
  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101. doi:10.1093/nar/gky418.
  • Thomsen MCF, Hasman H, Westh H, Kaya H, Lund O. RUCS: rapid identification of PCR primers for unique core sequences. Bioinformatics. 2017;33:3917–3921. doi:10.1093/bioinformatics/btx526.
  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi:10.1186/1471-2105-13-134.
  • R Core Team. R: a language and environment for statistical computing. 2021; [Accessed 2019 Aug 1] https://www.r-project.org.
  • RStudio Team. RStudio: integrated development environment for R. [Accessed 2019 Aug 1] http://www.rstudio.com/
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, et al. vegan: community ecology package. 2020; [Accessed 2020 April 2] https://cran.r-project.org/package=vegan
  • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi:10.1371/journal.pone.0061217.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi:10.1186/gb-2011-12-6-r60.
  • Wickham H. ggplot2: elegant graphics for data analysis. 2016; [Accessed 2019 Aug 1] https://ggplot2.tidyverse.org
  • Kassambara A. ggpubr: “ggplot2” based publication ready plots. 2020; [Accessed 2020 Aug 6] https://cran.r-project.org/package=ggpubr
  • Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi:10.1093/bioinformatics/btw313.
  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. doi:10.1093/nar/gkab301/6246398.