1,458
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Secreted Aeromonas GlcNAc binding protein GbpA stimulates epithelial cell proliferation in the zebrafish intestine

, , , & ORCID Icon
Article: 2183686 | Received 30 Aug 2022, Accepted 16 Feb 2023, Published online: 01 Mar 2023

References

  • Bosch TCG, McFall-Ngai M. Animal development in the microbial world: re-thinking the conceptual framework. Curr Top Dev Biol. 2021;141:399–15.
  • Walsh KT, Guillemin K. The impacts of microbiota on animal development and physiology. In: Rook GAW, Lowry CA, editors. Evolution, biodiversity, and a reassessment of the hygiene hypothesis. 2022. p. 177–196. doi:10.1007/978-3-030-91051-8_6.
  • Massaquoi MS, Kong G, Chillin D, Hamilton MK, Melancon E, Eisen JS, Guillemin K. Global host responses to the microbiota at single cell resolution in gnotobiotic zebrafish. BioRXiv. 2022. doi:10.1101/2022.03.28.486083.
  • Wang G, Sweren E, Liu H, Wier E, Alphonse MP, Chen R, Islam N, Li A, Xue Y, Chen J, et al. Bacteria induce skin regeneration via IL-1β signaling. Cell Host Microbe. 2021;29(5):777–791.e6. doi:10.1016/j.chom.2021.03.003.
  • Abo H, Chassaing B, Harusato A, Quiros M, Brazil JC, Ngo VL, Viennois E, Merlin D, Gewirtz AT, Nusrat A, et al. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nat Commun. 2020;11(1):513. doi:10.1038/s41467-019-14258-z.
  • Abrams GD, Bauer H, Sprinz H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab Invest. 1963;12:355–364.
  • Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci U S A. 2011;108(supplement_1):4570–4577. doi:10.1073/pnas.1000072107.
  • Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. PNAS. 2004;101(13):4596–4601. doi:10.1073/pnas.0400706101.
  • Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2016;127(2):423–433. doi:10.1016/j.cell.2006.08.043.
  • Broderick NA, Buchon N, Lemaitre B, McFall-Ngai MJ. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. mBio. 2014;5(3):1–13. doi:10.1128/mBio.01117-14.
  • Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, et al. Symbiotic Lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. Embo J. 2013;32(23):3017–3028. doi:10.1038/emboj.2013.224.
  • Jones TA, Guillemin K. Racing to stay put: how resident microbiota stimulate intestinal epithelial cell proliferation. Curr Pathobiol Rep. 2018;6(1):23–28. doi:10.1007/s40139-018-0163-0.
  • Hill JH, Franzosa EA, Huttenhower C, Guillemin K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. Elife. 2016;5:18. doi:10.7554/eLife.20145.
  • Melancon E, Gomez De La Torre Cann S, Sichel S, Kelly M, Wiles TJ, Rawls JF, Eisen JS, Guillemin K. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biology. 2015;155:1683–1695. doi:10.1016/bs.mcb.2016.11.005.
  • Wiles TJ, Wall ES, Schlomann BH, Hay EA, Parthasarathy R, Guillemin K. Modernized tools for streamlined genetic manipulation and comparative study of wild and diverse proteobacterial lineages. mBio. 2018;9(5). doi:10.1128/mBio.01877-18.
  • Rolig AS, Sweeney EG, Kaye LE, DeSantis MD, Perkins A, Banse AV, Hamilton MK, Guillemin K. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host–bacteria mutualism in larval zebrafish. Elife. 2018;7. doi:10.7554/eLife.37172.
  • Kirn TJ, Jude BA, Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005;438(7069):863–866. doi:10.1038/nature04249.
  • Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK, Chatterjee NS. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76(11):4968–4977. doi:10.1128/IAI.01615-07.
  • Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AFM, Svergun DI, Eijsink VGH, Chatterjee NS, van Aalten DMF, et al. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog. 2012;8(1):e1002373. doi:10.1371/journal.ppat.1002373.
  • Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN, Fox BG. Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases. Biotechnol Biofuels. 2014;7(1):109. doi:10.1186/1754-6834-7-109.
  • Loose JSM, Forsberg Z, Fraaije MW, Eijsink VGH, Vaaje-Kolstad G. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Lett. 2014;588(18):3435–3440. doi:10.1016/j.febslet.2014.07.036.
  • Vandhana TM, Reyre J-L, Sushmaa D, Berrin J-G, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. New Phytol. 2022;233(6):2380–2396. doi:10.1111/nph.17921.
  • The Zebrafish Book. A guide for the laboratory use of zebrafish (Danio rerio). 5th ed. Eugene: University of Oregon Press. https://zfin.org/cgi-bin/webdriver.
  • Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–382. doi:10.1016/j.chom.2007.10.010.
  • Graf J, Nelson MC, Colston SM, Dunning Hotopp JC. Closed genome sequence of Aeromonas veronii strain Hm21, an isolate from the medicinal leech Hirudo verbana. Microbiol Resour Announc. 2020;9(42):20–21. doi:10.1128/MRA.00922-20.
  • Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods. 2005;2(6):443–448. doi:10.1038/NMETH765.
  • Maltz M, Graf J. The Type II Secretion System is essential for erythrocyte lysis and gut colonization by the leech digestive tract symbiont Aeromonas veronii. Appl Environ Microbiol. 2011;77(2):597–603. doi:10.1128/AEM.01621-10.
  • Graf J. Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect Immun. 1999;67(1):1–7. doi:10.1128/IAI.67.1.1-7.1999.
  • Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, Kim CH. Methods Cell Biology. 2011;105:87–116. doi:10.1016/B978-0-12-381320-6.00004-7.
  • Jemielita M, Taormina MJ, Burns AR, Hampton JS, Rolig AS, Guillemin K, Parthasarathy R. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut. mBio. 2014;5(6). doi:10.1128/mBio.01751-14.
  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 2008;322(5904):1065–1069. doi:10.1126/science.1162493.
  • Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK, Parthasarathy R. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci U S A. 2018;115(16):E3779–3787. doi:10.1073/pnas.1720133115.
  • Runft DL, Mitchell KC, Abuaita BH, Allen JP, Bajer S, Ginsburg K, Neely MN, Withey JH. Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol. 2014;80(5):1710–1717. doi:10.1128/AEM.03580-13.
  • Taormina MJ, Jemielita M, Stephens WZ, Burns AR, Troll JV, Parthasarathy R, Guillemin K. Investigating bacterial-animal symbioses with light sheet microscopy. Biol Bull. 2012;223(1):7–20. doi:10.1086/BBLv223n1p7.
  • Wiles TJ, Jemielita M, Baker RP, Schlomann BH, Logan SL, Ganz J, Melancon E, Eisen JS, Guillemin K, Parthasarathy R, et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol. 2016;14(7):e1002517. doi:10.1371/journal.pbio.1002517.
  • Reedy AR, Luo L, Neish AS, Jones RM. Commensal microbiota-induced redox signaling activates proliferative signals in the intestinal stem cell microenvironment. Development. 2019;146:dev171520. doi:10.1242/dev.171520.
  • Powell DN, Swimm A, Sonowal R, Bretin A, Gewirtz AT, Jones RM, Kalman D. Indoles from the commensal microbiota act via the AHR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc Natl Acad Sci U S A. 2020;117(35):21519–21526. doi:10.1073/pnas.2003004117.
  • Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun. 2021;12(1). doi:10.1038/s41467-021-22212-1.
  • Sigal M, Rothenberg ME, Logan CY, Lee JY, Honaker RW, Cooper RL, Passarelli B, Camorlinga M, Bouley DM, Alvarez G, et al. Helicobacter pylori activates and expands Lgr5(+) stem cells through direct colonization of the gastric glands. Gastroenterology. 2015;148(7):1392–404.e21. doi:10.1053/j.gastro.2015.02.049.
  • Neal JT, Peterson TS, Kent ML, Guillemin K. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech. 2013;6:802–810. doi:10.1242/dmm.011163.
  • Jones TA, Hernandez DZ, Wong ZC, Wandler AM, Guillemin K, Monack DM. The bacterial virulence factor CagA induces microbial dysbiosis that contributes to excessive epithelial cell proliferation in the Drosophila gut. PLoS Pathog. 2017;13(10):1–20. doi:10.1371/journal.ppat.1006631.
  • Rolig AS, Mittge EK, Ganz J, Troll JV, Melancon E, Wiles TJ, Alligood K, Stephens WZ, Eisen JS, Guillemin K, et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. 2017;15(2):e2000689. doi:10.1371/journal.pbio.2000689.
  • Kitts G, Giglio KM, Zamorano-Sánchez D, Park JH, Townsley L, Cooley RB, Wucher BR, Klose KE, Nadell CD, Yildiz FH, et al. A conserved regulatory circuit controls large adhesins in Vibrio cholerae. mBio. 2019;10(6). doi:10.1128/mBio.02822-19.
  • Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJF, Yildiz F, Klose KE. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 2009;191(21):6555–6570. doi:10.1128/JB.00949-09.
  • Meibom KL, Li XB, Nielsen AT, Wu C-Y, Roseman S, Schoolnik GK. The Vibrio cholerae chitin utilization program. Proceedings of the National Academy of Sciences. 2004;101(8):2524–2529. doi:10.1073/pnas.0308707101.
  • Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, et al. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun. 2021;12(1). doi:10.1038/s41467-021-21473-0.
  • Tang JW, Fernandez J, Sohn JJ, Amemiya CT. Chitin is endogenously produced in vertebrates. Current Biology. 2015;25(7):897–900. doi:10.1016/j.cub.2015.01.058.
  • Nakashima K, Kimura S, Ogawa Y, Watanabe S, Soma S, Kaneko T, Yamada L, Sawada H, Tung C-H, Lu T-M, et al. Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun. 2018;24(1). doi:10.1038/s41467-018-05884-0.
  • Wiles TJ, Guillemin K. Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol. 2020;54:87–94. doi:10.1016/j.mib.2020.01.012.