1,884
Views
0
CrossRef citations to date
0
Altmetric
Review

Methodological challenges in neonatal microbiome research

ORCID Icon & ORCID Icon
Article: 2183687 | Received 23 Aug 2022, Accepted 16 Feb 2023, Published online: 26 Feb 2023

References

  • Lynch SV, Pedersen O, Phimister EG. The human intestinal microbiome in health and disease. N Engl J Med. 2016.375(24):2369–13. doi:10.1056/NEJMra1600266.
  • Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020.113(12):2019–2040. doi:10.1007/s10482-020-01474-7.
  • Sommer F, Backhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013.11(4):227–238. doi:10.1038/nrmicro2974.
  • Ahearn-Ford S, Berrington JE, Stewart CJ. Development of the gut microbiome in early life. Exp Physiol. 2022.107(5):415–421. doi:10.1113/EP089919.
  • Battersby C, Santhalingam T, Costeloe K, Modi N. Incidence of neonatal necrotising enterocolitis in high-income countries: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018.103(2):F182–9. doi:10.1136/archdischild-2017-313880.
  • Stewart CJ, Ajami NJ, O’brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018.562(7728):583–588. doi:10.1038/s41586-018-0617-x.
  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature. 2012.486(7402):222–227. doi:10.1038/nature11053.
  • Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, et al. Population-level analysis of gut microbiome variation. Science. 2016.352(6285):560–564. doi:10.1126/science.aad3503.
  • Cuna A, George L, Sampath V. Genetic predisposition to necrotizing enterocolitis in premature infants: current knowledge, challenges, and future directions. Semin Fetal Neonatal Med. 2018.23(6):387–393. doi:10.1016/j.siny.2018.08.006.
  • Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, Gordon A. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes. 2021.13(1):1–30. doi:10.1080/19490976.2021.1897210.
  • Kapourchali FR, Cresci GAM. Early-life gut microbiome—the importance of maternal and infant factors in its establishment. Nutr Clin Pract. 2020.35(3):386–405. doi:10.1002/ncp.10490.
  • Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020.587(7834):448–454. doi:10.1038/s41586-020-2881-9.
  • Marian AJ. Molecular genetic studies of complex phenotypes. Transl Res. 2012.159(2):64–79. doi:10.1016/j.trsl.2011.08.001.
  • Casals-Pascual C, Gonzalez A, Vazquez-Baeza Y, Song SJ, Jiang L, Knight R. Microbial diversity in clinical microbiome studies: sample size and statistical power considerations. Gastroenterology. 2020.158(6):1524–1528. doi:10.1053/j.gastro.2019.11.305.
  • Ferdous T, Jiang L, Dinu I, Groizeleau J, Kozyrskyj AL, Greenwood CMT, Arrieta M-C. The rise to power of the microbiome: power and sample size calculation for microbiome studies. Mucosal Immunol. 2022.15(6):1060–1070. doi:10.1038/s41385-022-00548-1.
  • Vandeputte D, Tito RY, Vanleeuwen R, Falony G, Raes J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol Rev. 2017.41(Supplement_1):S154–67. doi:10.1093/femsre/fux027.
  • Embleton N, Berrington J, Cummings S, Dorling J, Ewer A, Frau A, Juszczak E, Kirby J, Lamb C, Lanyon C, et al. Lactoferrin impact on gut microbiota in preterm infants with late-onset sepsis or necrotising enterocolitis: the MAGPIE mechanisms of action study. Efficacy Mech Eval. 2021.8(14):1–88. doi:10.3310/eme08140.
  • Young G, Berrington JE, Cummings S, Dorling J, Ewer AK, Frau A, Lett L, Probert C, Juszczak E, Kirby J, et al. Mechanisms affecting the gut of preterm infants in enteral feeding trials: a nested cohort within a randomised controlled trial of lactoferrin. Arch Dis Child Fetal Neonatal Ed. pp.F1–8. 2022. doi:10.1136/archdischild-2022-324477
  • Jager KJ, Zoccali C, Macleod A, Dekker FW. Confounding: what it is and how to deal with it. Kidney Int. 2008.73(3):256–260. doi:10.1038/sj.ki.5002650.
  • Masi AC, Embleton ND, Lamb CA, Young G, Granger CL, Najera J, Smith DP, Hoffman KL, Petrosino JF, Bode L, et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut. 2021.70(12):2273–2282. doi:10.1136/gutjnl-2020-322771.
  • Kahlert J, Gribsholt SB, Gammelager H, Dekkers OM, Luta G. Control of confounding in the analysis phase - an overview for clinicians. Clin Epidemiol. 2017.9: 195–204. doi:10.2147/CLEP.S129886.
  • Panek M, Cipcic Paljetak H, Baresic A, Peric M, Matijasic M, Lojkic I, Vranešić Bender D, Krznarić Ž, Verbanac D. Methodology challenges in studying human gut microbiota – effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep. 2018.8(1):5143. doi:10.1038/s41598-018-23296-4.
  • Westaway JAF, Huerlimann R, Miller CM, Kandasamy Y, Norton R, Rudd D. Methods for exploring the faecal microbiome of premature infants: a review. Matern Health Neonatol Perinatol. 2021.7(1):11. doi:10.1186/s40748-021-00131-9.
  • Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020.21(1):30. doi:10.1186/s13059-020-1935-5.
  • Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 2021.591(7851):633–638. doi:10.1038/s41586-021-03241-8.
  • Williams GM, Leary SD, Ajami NJ, Chipper Keating S, Petrosin JF, Hamilton-Shield JP, Gillespie KM. Gut microbiome analysis by post: evaluation of the optimal method to collect stool samples from infants within a national cohort study. PLoS One. 2019.14(6):e0216557. doi:10.1371/journal.pone.0216557.
  • Choo JM, Leong LE, Rogers GB. Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep. 2015.5(1):16350. doi:10.1038/srep16350.
  • Anderson EL, Li W, Klitgord N, Highlander SK, Dayrit M, Seguritan V, Yooseph S, Biggs W, Venter JC, Nelson KE, et al. A robust ambient temperature collection and stabilization strategy: enabling worldwide functional studies of the human microbiome. Sci Rep. 2016.6(1):31731. doi:10.1038/srep31731.
  • Watson EJ, Giles J, Scherer BL, Blatchford P. Human faecal collection methods demonstrate a bias in microbiome composition by cell wall structure. Sci Rep. 2019.9(1):16831. doi:10.1038/s41598-019-53183-5.
  • Biclot A, Huys GRB, Bacigalupe R, D’hoe K, Vandeputte D, Falony G, Tito RY, Raes J. Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. Microbiome. 2022.10(1):80. doi:10.1186/s40168-022-01267-2.
  • Shaw AG, Sim K, Powell E, Cornwell E, Cramer T, McClure ZE, Li M-S, Kroll JS. Latitude in sample handling and storage for infant faecal microbiota studies: the elephant in the room? Microbiome. 2016.4(1):40. doi:10.1186/s40168-016-0186-x.
  • Stewart CJ, Marrs EC, Magorrian S, Nelson A, Lanyon C, Perry JD, Embleton ND, Cummings SP, Berrington JE. The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta Paediatr. 2012.101(11):1121–1127. doi:10.1111/j.1651-2227.2012.02801.x.
  • Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, Perrotta AR, Berdy B, Zhao S, Lieberman TD, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med. 2019.25(9):1442–1452. doi:10.1038/s41591-019-0559-3.
  • Gorzelak MA, Gill SK, Tasnim N, Ahmadi-Vand Z, Jay M, Gibson DL, Heimesaat MM. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS One. 2015.10(8):e0134802. doi:10.1371/journal.pone.0134802.
  • Szostak N, Szymanek A, Havranek J, Tomela K, Rakoczy M, Samelak-Czajka A, Schmidt M, Figlerowicz M, Majta J, Milanowska-Zabel K, et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci Rep. 2022.12(1):8470. doi:10.1038/s41598-022-12037-3.
  • Warmbrunn MV, Attaye I, Herrema H, Nieuwdorp M. Protocol standardization of microbiome studies—daunting but necessary. Gastroenterology. 2022.162(7):1822–1824. doi:10.1053/j.gastro.2022.03.017.
  • Gambardella J, Castellanos V, Santulli G. Standardizing translational microbiome studies and metagenomic analyses. Cardiovasc Res. 2021.117(3):640–642. doi:10.1093/cvr/cvaa175.
  • Amos GCA, Logan A, Anwar S, Fritzsche M, Mate R, Bleazard T, Rijpkema S. Developing standards for the microbiome field. Microbiome. 2020.8(1):98. doi:10.1186/s40168-020-00856-3.
  • Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM, Sodergren E, Shaikh N, Hoffmann JA, Linneman LA, Hamvas A, et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birth weight infants: a prospective case-control study. Lancet. 2016.387(10031):1928–1936. doi:10.1016/S0140-6736(16)00081-7.
  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021.19(1):55–71. doi:10.1038/s41579-020-0433-9.
  • Hill DR, Huang S, Nagy MS, Yadagiri VK, Fields C, Mukherjee D, Bons B, Dedhia PH, Chin AM, Tsai Y-H, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife. 2017.6:6. doi:10.7554/eLife.29132.
  • Senger S, Ingano L, Freire R, Anselmo A, Zhu W, Sadreyev R, Walker WA, Fasano A. Human fetal-derived enterospheres provide insights on intestinal development and a novel model to study Necrotizing Enterocolitis (NEC). Cell Mol Gastroenterol. 2018.5(4):549–568. doi:10.1016/j.jcmgh.2018.01.014.
  • Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML, Bayless TM, Parmigiani G, Chakravarti S. Genome-wide gene expression differences in Crohnʼs disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis. 2007.13(7):807–821. doi:10.1002/ibd.20110.
  • Bowcutt R, Malter LB, Chen LA, Wolff MJ, Robertson I, Rifkin DB, Poles M, Cho I, Loke P. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods. 2015.421: 27–35. doi:10.1016/j.jim.2015.02.012.
  • Masi AC, Fofanova TY, Lamb CA, Auchtung JM, Britton RA, Estes MK, Ramani S, Cockell SJ, Coxhead J, Embleton ND, et al. Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to enterococcus faecalis: a pilot study. Gut. 2021.71(10):2141–2143. doi:10.1136/gutjnl-2021-326552.
  • Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016.352(6285):539–544. doi:10.1126/science.aad9378.
  • Zhang Q, Widmer G, Tzipori S. A pig model of the human gastrointestinal tract. Gut Microbes. 2013.4(3):193–200. doi:10.4161/gmic.23867.
  • Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020.180(2):221–232. doi:10.1016/j.cell.2019.12.025.
  • Ares GJ, McElroy SJ, Hunter CJ. The science and necessity of using animal models in the study of necrotizing enterocolitis. Semin Pediatr Surg. 2018.27(1):29–33. doi:10.1053/j.sempedsurg.2017.11.006.
  • Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma JM, Zhang H, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019.11(502):eaan5662. doi:10.1126/scitranslmed.aan5662.
  • Kumar A, Vlasova AN, Deblais L, Huang HC, Wijeratne A, Kandasamy S, Fischer DD, Langel SN, Paim FC, Alhamo MA, et al. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterol. 2018.18(1):93. doi:10.1186/s12876-018-0810-2.
  • Isani M, Bell BA, Delaplain PT, Bowling JD, Golden JM, Elizee M, et al. Lactobacillus murinus HF12 colonizes neonatal gut and protects rats from necrotizing enterocolitis. PLoS One. 2018;13:e0196710.
  • Bell RL, Withers GS, Kuypers FA, Stehr W, Bhargava A, Yildirim A. Stress and corticotropin releasing factor (CRF) promote necrotizing enterocolitis in a formula-fed neonatal rat model. PLoS One. 2021.16(6):e0246412. doi:10.1371/journal.pone.0246412.
  • Lu P, Sodhi CP, Jia H, Shaffiey S, Good M, Branca MF, Hackam DJ. Animal models of gastrointestinal and liver diseases. animal models of necrotizing enterocolitis: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol. 2014.306(11):G917–28. doi:10.1152/ajpgi.00422.2013.
  • Nguyen TL, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015.8(1):1–16. doi:10.1242/dmm.017400.
  • McCarthy R, Martin-Fairey C, Sojka DK, Herzog ED, Jungheim ES, Stout MJ, Fay JC, Mahendroo M, Reese J, Herington JL, et al. Mouse models of preterm birth: suggested assessment and reporting guidelines†. Biol Reprod. 2018.99:922–937. doi:10.1093/biolre/ioy109.
  • Grases-Pinto B, Torres-Castro P, Abril-Gil M, Castell M, Rodriguez-Lagunas MJ, Perez-Cano FJ, Franch À. A preterm rat model for immunonutritional studies. Nutrients. 2019.11(5):11. doi:10.3390/nu11050999.
  • Gootenberg DB, Turnbaugh PJ. Companion animals symposium: humanized animal models of the microbiome. J Anim Sci. 2011.89(5):1531–1537. doi:10.2527/jas.2010-3371.
  • Clavel T, Lagkouvardos I, Blaut M, Stecher B. The mouse gut microbiome revisited: from complex diversity to model ecosystems. Int J Med Microbiol. 2016.306(5):316–327. doi:10.1016/j.ijmm.2016.03.002.
  • Barthe L, Woodley J, Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol. 1999.13(2):154–168. doi:10.1111/j.1472-8206.1999.tb00334.x.
  • Lea T.Caco-2 Cell LineCaco-2 Cell Line.In: Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, and Mackie A, et al. editors.Cham (CH), 2015pp. 103–111. doi:10.1007/978-3-319-16104-4.
  • Mattar AF, Teitelbaum DH, Drongowski RA, Yongyi F, Harmon CM, Coran AG. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int. 2002.18(7):586–590. doi:10.1007/s00383-002-0855-7.
  • Facinelli B, Marini E, Magi G, Zampini L, Santoro L, Catassi C, Monachesi C, Gabrielli O, Coppa GV. Breast milk oligosaccharides: effects of 2′-fucosyllactose and 6′-sialyllactose on the adhesion of escherichia coli and salmonella fyris to Caco-2 cells. J Matern Fetal Neonatal Med. 2019.32(17):2950–2952. doi:10.1080/14767058.2018.1450864.
  • Kondrashina A, Brodkorb A, Giblin L. Sodium butyrate converts Caco-2 monolayers into a leaky but healthy intestinal barrier resembling that of a newborn infant. Food Funct. 2021.12(11):5066–5076. doi:10.1039/D1FO00519G.
  • Ling X, Linglong P, Weixia D, Hong W, Wang TT. Protective effects of bifidobacterium on intestinal barrier function in lps-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One. 2016.11(8):e0161635. doi:10.1371/journal.pone.0161635.
  • Zhang Y, Huang S, Zhong W, Chen W, Yao B, Wang X. 3D organoids derived from the small intestine: an emerging tool for drug transport research. Acta Pharm Sin B. 2021.11(7):1697–1707. doi:10.1016/j.apsb.2020.12.002.
  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007.449(7165):1003–1007. doi:10.1038/nature06196.
  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009.459(7244):262–265. doi:10.1038/nature07935.
  • Kakni P, Truckenmuller R, Habibovic P, Giselbrecht S. Challenges to, and prospects for, reverse engineering the gastrointestinal tract using organoids. Trends Biotechnol. 2022.40(8):932–944. doi:10.1016/j.tibtech.2022.01.006.
  • Stewart CJ, Estes MK, Ramani S. Establishing human intestinal enteroid/organoid lines from preterm infant and adult tissue. Methods Mol Biol. 2020;2121:185–198.
  • VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA, Stappenbeck TS. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut. 2015.64(6):911–920. doi:10.1136/gutjnl-2013-306651.
  • Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011.470(7332):105–109. doi:10.1038/nature09691.
  • Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, Boot C, de Waal A, Beumer J, Dutta D, Heo I, et al. Intestinal organoid cocultures with microbes. Nat Protoc. 2021.16(10):4633–4649. doi:10.1038/s41596-021-00589-z.
  • Co JY, Margalef-Catala M, Li X, Mah AT, Kuo CJ, Monack DM, Amieva MR. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep. 2019.26(9):2509–20 e4. doi:10.1016/j.celrep.2019.01.108.
  • Zeitouni NE, Chotikatum S, von Kockritz-Blickwede M, Naim HY. The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. Mol Cell Pediatr. 2016.3(1):14. doi:10.1186/s40348-016-0041-y.
  • Garcia-Rodriguez I, Sridhar A, Pajkrt D, Wolthers KC. Put some guts into it: intestinal organoid models to study viral infection. Viruses. 2020.12(11):1288. doi:10.3390/v12111288.
  • von Martels Jzh, Sadaghian Sadabad M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, von Martels JZH, Harmsen HJM. The role of gut microbiota in health and disease: in vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe. 2017.44: 3–12. doi:10.1016/j.anaerobe.2017.01.001.
  • Fofanova TY, Stewart CJ, Auchtung JM, Wilson RL, Britton RA, Grande-Allen KJ, Estes MK, Petrosino JF. A novel human enteroid-anaerobe co-culture system to study microbial-host interaction under physiological hypoxia. bioRxiv. 2019. doi:10.1101/555755.
  • Ulluwishewa D, Anderson RC, Young W, McNabb WC, van Baarlen P, Moughan PJ, Wells JM, Roy NC. Live faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier. Cell Microbiol. 2015.17(2):226–240. doi:10.1111/cmi.12360.
  • Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE. Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol. 2018.5(4):659–668. doi:10.1016/j.jcmgh.2017.12.010.
  • Kovler ML, Sodhi CP, Hackam DJ. Precision-based modeling approaches for necrotizing enterocolitis. Dis Model Mech. 2020 136:10.1242/dmm.044388.
  • Ramani S, Crawford SE, Blutt SE, Estes MK. Human organoid cultures: transformative new tools for human virus studies. Curr Opin Virol. 2018.29: 79–86. doi:10.1016/j.coviro.2018.04.001.
  • Wang Y, Gunasekara DB, Reed MI, DiSalvo M, Bultman SJ, Sims CE, Magness ST, Allbritton NL. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials. 2017.128: 44–55. doi:10.1016/j.biomaterials.2017.03.005.
  • Blutt SE, Crawford SE, Ramani S, Zou WY, Estes MK. Engineered human gastrointestinal cultures to study the microbiome and infectious diseases. Cell Mol Gastroenterol. 2018.5(3):241–251. doi:10.1016/j.jcmgh.2017.12.001.