4,419
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Therapeutic potential of Clostridium butyricum anticancer effects in colorectal cancer

, , , & ORCID Icon
Article: 2186114 | Received 12 Sep 2022, Accepted 24 Feb 2023, Published online: 20 Mar 2023

References

  • Kocarnik JM, Shiovitz S, Phipps AI. 2015. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol Rep. 3:269–20. doi:10.1093/gastro/gov046.
  • Siegel RL, Miller KD, Fuchs HE, Jemal A. 2021. Cancer statistics 2021. CA Cancer J Clin. 71(1):7–33. doi:10.3322/caac.21654.
  • Reimers MS, Zeestraten EC, Kuppen PJ, Liefers GJ, van de Velde CJ. 2013. Biomarkers in precision therapy in colorectal cancer. Gastroenterol Rep. 1:166–183. doi:10.1093/gastro/got022.
  • Zou S, Fang L, Lee MH. 2018. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep. 6(1):1–12. doi:10.1093/gastro/gox031.
  • Sears CL, Garrett WS. 2014. Microbes, microbiota, and colon cancer. Cell Host & Microbe. 15(3):317–328. doi:10.1016/j.chom.2014.02.007.
  • Lee MH. 2021. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. In: Cancer communications. London, England; Vol. 41: pp. 937–967.
  • Fischbach MA. 2018. Microbiome: focus on causation and mechanism. Cell. 174(4):785–790. doi:10.1016/j.cell.2018.07.038.
  • Wong SH, Yu J. 2019. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology & Hepatology. 16(11):690–704. doi:10.1038/s41575-019-0209-8.
  • Yang J, Yu J. 2018. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein & Cell. 9(5):474–487. doi:10.1007/s13238-018-0543-6.
  • Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie Pj, Kolterman O, Eid J. 2021. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes. 13(1):1–28. doi:10.1080/19490976.2021.1907272.
  • Lee MH, Lozano G. 2006. Regulation of the p53-MDM2 pathway by 14-3-3 σ and other proteins. Semin Cancer Biol. 16(3):225–234. doi:10.1016/j.semcancer.2006.03.009.
  • Lee MH, Yang HY. 2001. Contributions in the domain of cancer research: review¶Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci. 58(12):1907–1922. doi:10.1007/PL00000826.
  • Peters GJ, Backus HH, Freemantle S, van Triest B, Codacci-Pisanelli G, van der Wilt CL, Smid K, Lunec J, Calvert Ah, Marsh S, McLeod Hl. 2002. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta. 1587(2–3):194–205. doi:10.1016/S0925-4439(02)00082-0.
  • Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. 2022. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19(1):23–36. doi:10.1038/s41571-021-00549-2.
  • Baluapuri A, Wolf E, Eilers M. 2020. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol. 21(5):255–267. doi:10.1038/s41580-020-0215-2.
  • Sher G, Masoodi T, Patil K, Akhtar S, Kuttikrishnan S, Ahmad A, and Uddin, S. 2022. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol, 86:107–121. doi:10.1016/j.semcancer.2022.07.009.
  • Yan Y, Zhou B, Qian C, Vasquez A, Kamra M, Chatterjee A, Lee, Y.J., Yuan, X., Ellis, L., Di Vizio, D. and Posadas, E.M. 2022. Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nat Commun. 13(1):669. doi:10.1038/s41467-022-28340-6.
  • Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, Li H, Bai H, Liu X, Zhang Y, Wang C. 2022. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 185(8):1356–72 e26. doi:10.1016/j.cell.2022.02.027.
  • Watson RG, Muhale F, Thorne LB, Yu J, O’neil BH, Hoskins JM, Meyers Mo, Deal Am, Ibrahim Jg, Hudson Ml, Walko CM. 2010. Amplification of thymidylate synthetase in metastatic colorectal cancer patients pretreated with 5-fluorouracil-based chemotherapy. Eur J Cancer. 46(18):3358–3364. doi:10.1016/j.ejca.2010.07.011.
  • Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. 2017. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nature Reviews Gastroenterology & Hepatology. 14(6):356–365. doi:10.1038/nrgastro.2017.20.
  • Bhutiani N, Wargo JA. 2022. Gut microbes as biomarkers of ICI response — sharpening the focus. Nat Rev Clin Oncol. 19(8):495–496. doi:10.1038/s41571-022-00634-0.
  • Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. 2018. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 15(6):382–396. doi:10.1038/s41571-018-0006-2.
  • Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel, P., Cui, Y., Mira, V., Llamas, M. and Hsu, J. 2022. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 28(4):704–712. doi:10.1038/s41591-022-01694-6.
  • Hayashi A, Nagao-Kitamoto H, Kitamoto S, Kim CH, Kamada N. 2021. The Butyrate-Producing Bacterium Clostridium butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. Journal of Immunology. Baltimore, Md : 1950 206; p 1576–1585.(7). 10.4049/jimmunol.2000353.
  • Bae M, Cassilly CD, Liu X, Park SM, Tusi BK, Chen X, Kwon J, Filipčík P, Bolze AS, Liu Z, Vlamakis, H. 2022. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature. 608(7921):168–173. doi:10.1038/s41586-022-04985-7.
  • Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504(7480):446–450. doi:10.1038/nature12721.
  • Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens Lm, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick Cc, Vonderheide Rh. 2018. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24(5):541–550. doi:10.1038/s41591-018-0014-x.
  • Chung YM, Khan PP, Wang H, Tsai WB, Qiao Y, Yu B, Larrick Jw, Hu MC. 2021. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. Journal for Immunotherapy of Cancer. 9(12):e002772. doi:10.1136/jitc-2021-002772.
  • Qin B, Zou S, Li K, Wang H, Wei W, Zhang B, et al. 2020. CSN6–TRIM21 axis instigates cancer stemness during tumorigenesis. Br J Cancer. 122(11):1673–1685. doi:10.1038/s41416-020-0779-9.
  • Gully CP, Velazquez-Torres G, Shin JH, Fuentes-Mattei E, Wang E, Carlock C, et al. Aurora B kinase phosphorylates and instigates degradation of p53. Proceedings of the National Academy of Sciences of the United States of America 2012; 109:E1513–22.
  • Li K, Wu JL, Qin B, Fan Z, Tang Q, Lu W, Zhang, H., Xing, F., Meng, M., Zou, S. and Wei, W. 2020. ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell Res. 30(2):163–178. doi:10.1038/s41422-019-0257-1.
  • Fang L, Lu W, Choi HH, Yeung SC, Tung JY, Hsiao CD, Fuentes-Mattei E, Menter D, Chen C, Wang L, Wang J. 2015. ERK2-dependent Phosphorylation of CSN6 is critical in colorectal cancer development. Cancer Cell. 28(2):183–197. doi:10.1016/j.ccell.2015.07.004.
  • Phan L, Chou PC, Velazquez-Torres G, Samudio I, Parreno K, Huang Y, Tseng C, Vu T, Gully C, Su CH, Wang E. 2015. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun. 6(1):7530. doi:10.1038/ncomms8530.
  • Choi HH, Zou S, Wu JL, Wang H, Phan L, Li K, Zhang P, Chen D, Liu Q, Qin B, Nguyen Ta. 2020. EGF relaYs signals to COP1 and facilitates FOXO4 degradation to promote Tumorigenesis. Advanced science. Weinheim, Baden-Wurttemberg, GermanyVol. 7 p. 2000681.