3,644
Views
3
CrossRef citations to date
0
Altmetric
Review

Microbiota-directed biotherapeutics: considerations for quality and functional assessment

ORCID Icon, & ORCID Icon
Article: 2186671 | Received 21 Oct 2022, Accepted 24 Feb 2023, Published online: 10 Mar 2023

References

  • Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39(1):105–26. doi:10.1038/s41587-020-0603-3.
  • Qin J, Li, Ruiqiang. Raes, Jeroen. Arumugam, Manimozhiyan. Burgdorf, Kristoffe Solvsten. Manichanh, Chaysavanh. Nielsen, Trine. Pons, Nicolas. Levenez, Florence. Yamada, Takuji, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–841. doi:10.1038/nbt.2942.
  • Chibani CM, Mahnert A, Borrel G, Almeida A, Werner A, Brugère J-F, Gribaldo S, Finn RD, Schmitz RA, Moissl-Eichinger C. A catalogue of 1,167 genomes from the human gut archaeome. Nat Microbiol. 2022;7(1):48–61. doi:10.1038/s41564-021-01020-9.
  • Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, McDonnell SA, Khokhlova EV, Draper LA, Forde A, et al. The human Gut Virome is highly diverse, stable, and individual specific. Cell Host Microbe. 2019;26(4):527–541 e5. doi:10.1016/j.chom.2019.09.009.
  • Limon JJ, Skalski JH, Underhill DM. Commensal Fungi in Health and Dis Cell Host Microbe. 2017;22(2):156–165. 10.1016/j.chom.2017.07.002.
  • Nash AK, Auchtung, Thomas A. Wong, Matthew C. Smith, Daniel P. Gesell, Jonathan R. Ross, Matthew C. Stewart, Christopher J. Metcalf, Ginger A. Muzny, Donna M. Gibbs, Richard A, et al. The gut mycobiome of the human Microbiome project healthy cohort. Microbiome. 2017;5(1):153. doi:10.1186/s40168-017-0373-4.
  • Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400. doi:10.1038/nm.4517.
  • Zhang X, Li, Leyuan. Butcher, James. Stintzi, Alain. Figeys, Daniel. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome. 2019;7(1):154. doi:10.1186/s40168-019-0767-6.
  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–270. doi:10.1038/nrg3182.
  • Dietert R. The human superorganism: how the microbiome is revolutionizing the pursuit of a healthy life. New York (NY): Penguin Publishing Group;2016. p.341.
  • Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11(9):639–647. doi:10.1038/nrmicro3089.
  • Jia W, Li H, Zhao L, Nicholson JK. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov. 2008;7(2):123–129. doi:10.1038/nrd2505.
  • Claesson MJ, Jeffery, Ian B. Conde, Susana. Power, Susan E. O’connor, Eibhlis M. Cusack, Siobhan. Harris, Hugh. Coakley, Mairead. Lakshminarayanan, Bhuvaneswari. O’sullivan, Orla. et al Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184. doi:10.1038/nature11319.
  • David LA, Maurice, Corinne F. Carmody, Rachel N. Gootenberg, David B. Button, Julie E. Wolfe, Benjamin E. Ling, Alisha V. Devlin, A Sloan. Varma, Yug. Fischbach, Michael A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820.
  • Maier L, Pruteanu, Mihaela. Kuhn, Michael. Zeller, Georg. Telzerow, Anja. Anderson, Exene Erin. Brochado, Ana Rita. Fernandez, Keith Conrad. Dose, Hitomi. Mori, Hirotada, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–628. doi:10.1038/nature25979.
  • Klunemann M, Andrejev, Sergej. Blasche, Sonja. Mateus, Andre. Phapale, Prasad. Devendran, Saravanan. Vappiani, Johanna. Simon, Bernd. Scott, Timothy A. Kafkia, Eleni, et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature. 2021;597(7877):533–538. doi:10.1038/s41586-021-03891-8.
  • Zimmermann M, Zimmermann-Kogadeeva, Maria. Wegmann, Rebekka. Goodman, Andrew L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570(7762):462–467. doi:10.1038/s41586-019-1291-3.
  • Zimmermann M, Patil KR, Typas A, Maier L. Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Mol Syst Biol. 2021;17(3):e10116. doi:10.15252/msb.202010116.
  • Zhu W, Winter, Maria G. Byndloss, Mariana X. Spiga, Luisella. Duerkop, Breck A. Hughes, Elizabeth R. Buttner, Lisa. de Lima Romao, Everton. Behrendt, Cassie L. Lopez, Christopher A., et al. Precision editing of the gut microbiota ameliorates colitis. Nature. 2018;553(7687):208–211. doi:10.1038/nature25172.
  • McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):987–994. doi:10.1093/cid/ciy149.
  • Johnson S, Lavergne V, Skinner AM, Gonzales-Luna AJ, Garey KW, Kelly CP, Wilcox MH. Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and society for healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin Infect Dis. 2021;73(5):e1029–1044. doi:10.1093/cid/ciab549.
  • Cammarota G, Ianiro, Gianluca. Tilg, Herbert. Rajilic-Stojanovic, Mirjana. Kump, Patrizia. Satokari, Reetta. Sokol, Harry. Arkkila, Perttu. Pintus, Cristina. Hart, Ailsa, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–580. doi:10.1136/gutjnl-2016-313017.
  • Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J-M, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. doi:10.1126/science.abf3363.
  • Baruch EN, Youngster, Ilan. Ben-Betzalel, Guy. Ortenberg, Rona. Lahat, Adi. Katz, Lior. Adler, Katerina. Dick-Necula, Daniela. Raskin, Stephen. Bloch, Naamah, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Sci. 2021;371(6529):602–609. doi:10.1126/science.abb5920.
  • Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, Aroniadis O, Barto A, Borody T, Giovanelli A, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065–1071. doi:10.1038/ajg.2014.133.
  • Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, Bakow B, Curran P, McKenney J, Tisch A, et al. Effect of Fecal Microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med. 2016;165(9):609–616. doi:10.7326/M16-0271.
  • Costello SP, Hughes, Patrick A. Waters, Oliver. Bryant, Robert V. Vincent, Andrew D. Blatchford, Paul. Katsikeros, Rosa. Makanyanga, Jesica. Campaniello, Melissa A. Mavrangelos, Chris, et al. Effect of Fecal Microbiota transplantation on 8-week remission in patients with Ulcerative Colitis: a randomized clinical trial. JAMA. 2019;321(2):156–164. doi:10.1001/jama.2018.20046.
  • Bajaj JS, Gavis, Edith A. Fagan, Andrew. Wade, James B. Thacker, Leroy R. Fuchs, Michael. Patel, Samarth. Davis, Brian. Meador, Jill. Puri, Puneet, et al. A randomized clinical trial of fecal microbiota transplant for Alcohol use disorder. Hepatology. 2021;73(5):1688–1700. doi:10.1002/hep.31496.
  • Mocanu V, Zhang Z, Deehan EC, Kao DH, Hotte N, Karmali S, Birch DW, Samarasinghe KK, Walter J, Madsen KL. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Nat Med. 2021;27(7):1272–1279. doi:10.1038/s41591-021-01399-2.
  • El-Salhy M, Hatlebakk, Jan Gunnar. Gilja, Odd Helge. Kristoffersen, Anja Brathen. Hausken, Trygve. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020;69(5):859–867. doi:10.1136/gutjnl-2019-319630.
  • Park SH, Lee JH, Shin J, Kim J-S, Cha B, Lee S, Kwon KS, Shin YW, Choi SH. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: a case report. Curr Med Res Opin. 2021;37(10):1739–1744. doi:10.1080/03007995.2021.1957807.
  • Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):189. doi:10.1038/s41398-019-0525-3.
  • Kang DW, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, Caporaso JG, Krajmalnik-Brown R. Long-term benefit of Microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9(1):5821. doi:10.1038/s41598-019-42183-0.
  • Li N, Chen H, Cheng Y, Xu F, Ruan G, Ying S, Tang W, Chen L, Chen M, Lv L, et al. Corrigendum: fecal Microbiota transplantation relieves gastrointestinal and Autism symptoms by improving the gut Microbiota in an open-label study. Front Cell Infect Microbiol. 2021;11:801376. doi:10.3389/fcimb.2021.801376.
  • Parker A, Romano, Stefano. Ansorge, Rebecca. Aboelnour, Asmaa. Le Gall, Gwenaelle. Savva, George M. Pontifex, Matthew G. Telatin, Andrea. Baker, David. Jones, Emily, et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome. 2022;10(1):68. doi:10.1186/s40168-022-01243-w.
  • Haifer C, Paramsothy S, Kaakoush NO, Saikal A, Ghaly S, Yang T, Luu LDW, Borody TJ, Leong RW. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol. 2022;7(2):141–151. doi:10.1016/S2468-1253(21)00400-3.
  • Jiang ZD, Jenq RR, Ajami NJ, Petrosino JF, Alexander AA, Ke S, Iqbal T, DuPont AW, Muldrew K, Shi Y, et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: a randomized clinical trial. PLoS One. 2018;13(11):e0205064. doi:10.1371/journal.pone.0205064.
  • Stallmach A, Steube A, Grunert P, Hartmann M, Biehl LM, Vehreschild MJGT. Deutsches Ärzteblatt Int. 2020;117(3):31–38. 10.3238/arztebl.2020.0031.
  • Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, Cassidy L, Tholey A, Fickenscher H, Seegert D, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile Infection. Gastroenterology. 2017;152(4):799–811 e7. doi:10.1053/j.gastro.2016.11.010.
  • Brunse A, Deng L, Pan X, Hui Y, Castro-Mejía JL, Kot W, Nguyen DN, Secher JBM, Nielsen DS, Thymann T. Fecal filtrate transplantation protects against necrotizing enterocolitis. Isme J. 2022;16(3):686–694. doi:10.1038/s41396-021-01107-5.
  • McGovern BH, Ford CB, Henn MR, Pardi DS, Khanna S, Hohmann EL, O’brien EJ, Desjardins CA, Bernardo P, Wortman JR, et al. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile infection: lessons learned from a phase 2 trial. Clin Infect Dis. 2021;72(12):2132–2140. doi:10.1093/cid/ciaa387.
  • Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft CS, Cohen SH, Berenson CS, et al. SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. N Engl J Med. 2022;386(3):220–229. doi:10.1056/NEJMoa2106516.
  • Petrof EO, Gloor, Gregory B. Vanner, Stephen J. Weese, Scott J. Carter, David. Daigneault, Michelle C. Brown, Eric M. Schroeter, Kathleen. Allen-Vercoe, Emma. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePoopulating’ the gut. Microbiome. 2013;1(1):3. doi:10.1186/2049-2618-1-3.
  • Kao D, Wong K, Franz R, Cochrane K, Sherriff K, Chui L, Lloyd C, Roach B, Bai AD, Petrof EO, et al. The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial. Lancet Gastroenterol Hepatol. 2021;6(4):282–291. doi:10.1016/S2468-1253(21)00007-8.
  • Cheng AG, Ho P-Y, Aranda-Díaz A, Jain S, Yu FB, Meng X, Wang M, Iakiviak M, Nagashima K, Zhao A, et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell. 2022;185:3617–3636.e19. doi:10.1016/j.cell.2022.08.003.
  • Buffie CG, Bucci, Vanni. Stein, Richard R. McKenney, Peter T. Ling, Lilan. Gobourne, Asia. No, Daniel. Liu, Hui. Kinnebrew, Melissa. Viale, Agnes, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–208. doi:10.1038/nature13828.
  • Mabwi HA, Kim E, Song D-G, Yoon HS, Pan C-H, Komba EVG, Ko G, Cha KH. 2021. Synthetic gut microbiome: advances and challenges. Comput Struct Biotechnol J. 19:363–371. doi:10.1016/j.csbj.2020.12.029.
  • O’toole PW, Marchesi JR, Hill C. 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2:17057. doi:10.1038/nmicrobiol.2017.57.
  • Langella P, Guarner F, Martin R, Editorial: next-Generation probiotics: from commensal Bacteria to novel drugs and food supplements. Front Microbiol. 2019;10:1973.
  • Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(5):1469–1476. doi:10.1099/ijs.0.02873-0.
  • Cani PD, de Vos WM. 2017. Next-Generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 8:1765. doi:10.3389/fmicb.2017.01765.
  • Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–113. doi:10.1038/nm.4236.
  • Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia —a new functional genus with potential probiotic properties? Gut Microbes. 2021;13(1):1–21. doi:10.1080/19490976.2021.1875796.
  • Sen P, Sherwin E, Sandhu K, Bastiaanssen TFS, Moloney GM, Golubeva A, Fitzgerald P, Paula Ventura Da Silva A, Chruścicka-Smaga B, Olavarría-Ramírez L, et al. The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain Behav Immun. 2022;106:115–126. doi:10.1016/j.bbi.2022.08.007.
  • Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8(339):339ra71. doi:10.1126/scitranslmed.aaf2311.
  • Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, Zur M, Regev-Lehavi D, Ben-Zeev Brik R, Federici S, et al. Post-antibiotic gut Mucosal microbiome reconstitution is impaired by probiotics and improved by Autologous FMT. Cell. 2018;174(6):1406–1423 e16. doi:10.1016/j.cell.2018.08.047.
  • Charbonneau MR, Isabella VM, Li N, Kurtz CB. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun. 2020;11(1):1738. doi:10.1038/s41467-020-15508-1.
  • Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–864. doi:10.1038/nbt.4222.
  • Puurunen MK, Vockley J, Searle SL, Sacharow SJ, Phillips JA, Denney WS, Goodlett BD, Wagner DA, Blankstein L, Castillo MJ, et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat Metab. 2021;3(8):1125–1132. doi:10.1038/s42255-021-00430-7.
  • Leventhal DS, Sokolovska A, Li N, Plescia C, Kolodziej SA, Gallant CW, Christmas R, Gao J-R, James MJ, Abin-Fuentes A, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun. 2020;11(1):2739. doi:10.1038/s41467-020-16602-0.
  • Zhang X, Zhang, X., Walker, K., Mayne, J., Li, L., Ning, Z., Stintzi, A., Figeys, D. Evaluating live microbiota biobanking using an ex vivo microbiome assay and metaproteomics. Gut Microbes. 2022;14(1):2035658. doi:10.1080/19490976.2022.2035658.
  • Laxminarayan R. The overlooked pandemic of antimicrobial resistance. Lancet. 2022;399(10325):606–607. doi:10.1016/S0140-6736(22)00087-3.
  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0.
  • Cubillos-Ruiz A, Alcantar MA, Donghia NM, Cárdenas P, Avila-Pacheco J, Collins JJ. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat Biomed Eng. 2022;6(7):910–921. doi:10.1038/s41551-022-00871-9.
  • Koh E, Hwang IY, Lee HL, De Sotto R, Lee JWJ, Lee YS, March JC, Chang MW. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat Commun. 2022;13(1):3834. doi:10.1038/s41467-022-31334-z.
  • Hatfull GF, Dedrick RM, Schooley RT. 2022. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 73:197–211. doi:10.1146/annurev-med-080219-122208.
  • Khan Mirzaei M, Deng L. New technologies for developing phage-based tools to manipulate the human microbiome. Trends Microbiol. 2022;30(2):131–142. doi:10.1016/j.tim.2021.04.007.
  • Duan Y, Llorente, Cristina. Lang, Sonja. Brandl, Katharina. Chu, Huikuan. Jiang, Lu. White, Richard C. Clarke, Thomas H. Nguyen, Kevin. Torralba, Manolito, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019;575(7783):505–511. doi:10.1038/s41586-019-1742-x.
  • Federici S, Kredo-Russo S, Valdés-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, Silberberg Y, Atarashi K, Furuichi M, Oka A, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 2022;185(16):2879–2898 e24. doi:10.1016/j.cell.2022.07.003.
  • Wegh CAM. Postbiotics anD their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20(19):4673. doi:10.3390/ijms20194673.
  • Zolkiewicz J, Marzec A, Ruszczyński M, Feleszko W. Postbiotics—a step beyond pre- and Probiotics. Nutrients. 2020;12(8):2189. doi:10.3390/nu12082189.
  • Sarikaya H, Aslim B, Yuksekdag Z. Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains. Intern J Food Pro. 2017;20(2):362–371. doi:10.1080/10942912.2016.1160923.
  • Song AX, Mao Y-H, Siu K-C, Wu J-Y. 2018. Bifidogenic effects of Cordyceps sinensis fungal exopolysaccharide and konjac glucomannan after ultrasound and acid degradation. Int J Biol Macromol. 111:587–594. doi:10.1016/j.ijbiomac.2018.01.052.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–395. doi:10.1038/415389a.
  • Ma Y, Guo Z, Xia B, Zhang Y, Liu X, Yu Y, Tang N, Tong X, Wang M, Ye X, et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol. 2022;40(6):921–931. doi:10.1038/s41587-022-01226-0.
  • Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011;68(13):2161–2176. doi:10.1007/s00018-011-0710-x.
  • Zhang X, Deeke SA, Ning Z, Starr AE, Butcher J, Li J, Mayne J, Cheng K, Liao B, Li L, et al. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat Commun. 2018;9(1):2873. doi:10.1038/s41467-018-05357-4.
  • Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall L-I, McDonald D, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–422. doi:10.1038/s41579-018-0029-9.
  • Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014;146(6):1437–1448 e1. doi:10.1053/j.gastro.2014.01.049.
  • Valles-Colomer M, Darzi Y, Vieira-Silva S, Falony G, Raes J, Joossens M. Meta-omics in Inflammatory Bowel Disease Research: applications, Challenges, and Guidelines. J Crohns Colitis. 2016;10(6):735–746. doi:10.1093/ecco-jcc/jjw024.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9.
  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–998. doi:10.1038/nmeth.2604.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–821. doi:10.1038/nbt.2676.
  • Lloyd-Price J, Mahurkar, Anup. Rahnavard, Gholamali. Crabtree, Jonathan. Orvis, Joshua. Hall, A Brantley. Brady, Arthur. Creasy, Heather H. McCracken, Carrie. Giglio, Michelle G., et al .Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550(7674):61–66. doi:10.1038/nature23889.
  • Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, Ananthakrishnan AN, Andrews E, Barron G, Lake K, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol. 2018;3(3):337–346. doi:10.1038/s41564-017-0089-z.
  • Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–903. doi:10.1038/nmeth.3589.
  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257. doi:10.1186/s13059-019-1891-0.
  • Kultima JR, Coelho, Luis Pedro. Forslund, Kristoffer. Huerta-Cepas, Jaime. Li, Simone S. Driessen, Marja. Voigt, Anita Yvonne. Zeller, Georg. Sunagawa, Shinichi. Bork, Peer, et al. MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics. 2016;32(16):2520–2523. doi:10.1093/bioinformatics/btw183.
  • Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS, Knight R, Caporaso JG, Segata N, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962–968. doi:10.1038/s41592-018-0176-y.
  • Peters DL, Cheng, K, Ning, Z., Zhang, X., Li, L., Liao, B., Mayne, J., Figeys, D., Figeys, D. Metaproteomic and metabolomic approaches for characterizing the gut Microbiome. Proteomics. 2019;19(16):e1800363. doi:10.1002/pmic.201800363.
  • Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019;14(1):68–85. doi:10.1038/s41596-018-0082-x.
  • Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K, Rogers JC, Roberts TM, Gygi SP, Paulo JA. Tmtpro-18plex: the Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing. J Proteome Res. 2021;20(5):2964–2972. doi:10.1021/acs.jproteome.1c00168.
  • Creskey M, Li L, Ning Z, Fekete EE, Mayne J, Walker K, Ampaw A, Ben R, Zhang X, Figeys D. An economic and robust TMT labeling approach for high throughput proteomic and metaproteomic analysis. Proteomics. 2022;e2200116. doi:10.1002/pmic.202200116.
  • Zhang X, Figeys D. Perspective and guidelines for metaproteomics in microbiome studies. J Proteome Res. 2019;18(6):2370–2380. doi:10.1021/acs.jproteome.9b00054.
  • Kleiner M. Metaproteomics: Much more than measuring gene expression in microbial communities. mSystems. 2019;4(3). doi:10.1128/mSystems.00115-19.
  • Li L, Figeys D. Proteomics and metaproteomics add functional, Taxonomic and biomass dimensions to modeling the Ecosystem at the Mucosal-luminal interface. Mol Cell Proteomics. 2020;19(9):1409–1417. doi:10.1074/mcp.R120.002051.
  • Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LVH, Abou-Samra E, et al. Proteomic and Metaproteomic approaches to understand host–Microbe interactions. Anal Chem. 2018;90(1):86–109. doi:10.1021/acs.analchem.7b04340.
  • Cheng K, Cheng, K., Ning, Z., Zhang, X., Li, L., Liao, B., Mayne, J., Stintzi, A., Figeys, D. MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome. 2017;5(1):157. doi:10.1186/s40168-017-0375-2.
  • Schiebenhoefer H, Schallert K, Renard BY, Trappe K, Schmid E, Benndorf D, Riedel K, Muth T, Fuchs S. A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane. Nat Protoc. 2020;15(10):3212–3239. doi:10.1038/s41596-020-0368-7.
  • Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem. 2012;84(11):5035–5039. doi:10.1021/ac300698c.
  • Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, Xia J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17(8):1735–1761. doi:10.1038/s41596-022-00710-w.
  • Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, Wampach L, Schneider JG, Hogan A, de Beaufort C, et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol. 2016;2:16180. doi:10.1038/nmicrobiol.2016.180.
  • Lloyd-Price J, Arze, Cesar. Ananthakrishnan, Ashwin N. Schirmer, Melanie. Avila-Pacheco, Julian. Poon, Tiffany W. Andrews, Elizabeth. Ajami, Nadim J. Bonham, Kevin S. Brislawn, Colin J, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–662. doi:10.1038/s41586-019-1237-9.
  • Vandeputte D, Kathagen, Gunter. D’hoe, Kevin. Vieira-Silva, Sara. Valles-Colomer, Mireia. Sabino, Joao. Wang, Jun. Tito, Raul Y. De Commer, Lindsey. Darzi, Youssef, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature. 2017;551(7681):507–511. doi:10.1038/nature24460.
  • Kleiner M, Thorson E, Sharp CE, Dong X, Liu D, Li C, Strous M. Assessing species biomass contributions in microbial communities via metaproteomics. Nat Commun. 2017;8(1):1558. doi:10.1038/s41467-017-01544-x.
  • Li L, Ning, Zhibin. Zhang, Xu. Mayne, Janice. Cheng, Kai. Stintzi, Alain. Figeys, Daniel. RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. Microbiome. 2020;8(1):33. doi:10.1186/s40168-020-00806-z.
  • Thomson CA, Morgan SC, Ohland C, McCoy KD. 2022. From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunol. 15:1085–1094. doi:10.1038/s41385-022-00562-3.
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26. doi:10.1007/s10565-005-0085-6.
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46(1–3):27–43. doi:10.1016/S0169-409X(00)00128-9.
  • Nagashima K, Zhao, Aishan. Atabakhsh, Katayoon. Weakley, Allison. Jain, Sunit. Meng, Xiandong. Cheng, Alice. Wang, Min. Higginbottom, Steven, and Dimas, Alex, et al. Mapping the T cell repertoire to a complex gut bacterial community. bioRxiv. 2022;2022.05.04.490632. doi:10.1101/2022.05.04.490632.
  • Schape SS, Krause JL, Masanetz RK, Riesbeck S, Starke R, Rolle-Kampczyk U, Eberlein C, Heipieper H-J, Herberth G, von Bergen M, et al. Environmentally relevant concentration of bisphenol s shows Slight Effects on SIHUMIx. Microorganisms. 2020;8(9):1436. doi:10.3390/microorganisms8091436.
  • Krause JL, Schaepe SS, Fritz-Wallace K, Engelmann B, Rolle-Kampczyk U, Kleinsteuber S, Schattenberg F, Liu Z, Mueller S, Jehmlich N, et al. Following the community development of SIHUMIx – a new intestinal in vitro model for bioreactor use. Gut Microbes. 2020;11(4):1116–1129. doi:10.1080/19490976.2019.1702431.
  • Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol. 1993;39(2):254–258. doi:10.1007/BF00228615.
  • Minekus M. The TNO Gastro-Intestinal Model (TIM). 2015. p. 37–46.
  • Venema K. The TNO in vitro Model of the Colon (TIM-2). 2015. p. 293–304.
  • Westerhout J, Steeg EVD, Grossouw D, Zeijdner EE, Krul CAM, Verwei M, Wortelboer HM. 2014. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 63:167–177. doi:10.1016/j.ejps.2014.07.003.
  • Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203. doi:10.1038/nmicrobiol.2016.203.
  • Li L, Zhang X, Ning Z, Mayne J, Moore JI, Butcher J, Chiang C-K, Mack D, Stintzi A, Figeys D. Evaluating in vitro culture medium of gut microbiome with Orthogonal experimental design and a Metaproteomics approach. J Proteome Res. 2018;17(1):154–163. doi:10.1021/acs.jproteome.7b00461.
  • Li L, Abou-Samra E, Ning Z, Zhang X, Mayne J, Wang J, Cheng K, Walker K, Stintzi A, Figeys D. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun. 2019;10(1):4146. doi:10.1038/s41467-019-12087-8.
  • Li L, Chang, Lu. Zhang, Xu. Ning, Zhibin. Mayne, Janice. Ye, Yang. Stintzi, Alain. Liu, Jia. Figeys, Daniel, et al. Berberine and its structural analogs have differing effects on functional profiles of individual gut microbiomes. Gut Microbes. 2020;11(5):1348–1361. doi:10.1080/19490976.2020.1755413.
  • Li L, Ryan J, Ning Z, Zhang X, Mayne J, Lavallée-Adam M, Stintzi A, Figeys D. 2020. A functional ecological network based on metaproteomics responses of individual gut microbiomes to resistant starches. Comput Struct Biotechnol J. 18:3833–3842. doi:10.1016/j.csbj.2020.10.042.
  • Sun Z, Wang W, Li L, Zhang X, Ning Z, Mayne J, Walker K, Stintzi A, Figeys D. Comprehensive assessment of functional effects of commonly used sugar substitute sweeteners on ex vivo Human Gut Microbiome. Microbiol Spectr. 2022;10(4):e0041222. doi:10.1128/spectrum.00412-22.
  • Javdan B, Lopez JG, Chankhamjon P, Lee YCJ, Hull R, Wu Q, Wang X, Chatterjee S, Donia MS. Personalized mapping of drug metabolism by the human gut Microbiome. Cell. 2020;181(7):1661–1679 e22. doi:10.1016/j.cell.2020.05.001.
  • Peterson MD, Mooseker MS. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci. 1992;102(Pt3):581–600. doi:10.1242/jcs.102.3.581.
  • Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm. 2013;83(3):427–435. doi:10.1016/j.ejpb.2012.10.003.
  • Darling NJ, Mobbs CL, González-Hau AL, Freer M, Przyborski S. 2020. Bioengineering novel in vitro co-culture models that represent the human intestinal mucosa with improved Caco-2 structure and barrier function. Front Bioeng Biotech. 8:992. doi:10.3389/fbioe.2020.00992.
  • Hu M, Li Y, Huang J, Wang X, Han J. Electrospun Scaffold for Biomimic culture of Caco-2 Cell monolayer as an in vitro intestinal model. ACS Appl Bio Mater. 2021;4(2):1340–1349. doi:10.1021/acsabm.0c01230.
  • Taebnia N, Zhang R, Kromann EB, Dolatshahi-Pirouz A, Andresen TL, Larsen NB. Dual-material 3d-printed intestinal model devices With integrated Villi-like Scaffolds. ACS Appl Mater Interfaces. 2021;13(49):58434–58446. doi:10.1021/acsami.1c22185.
  • Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C, et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat Commun. 2016;7:11535. doi:10.1038/ncomms11535.
  • Song WS, Shin SG, Jo S-H, Lee J-S, Jeon H-J, Kwon J-E, Park J-H, Cho S, Jeong JH, Kim B-G, et al. Development of an in vitro coculture device for the investigation of host–microbe interactions via integrative multiomics approaches. Biotechnol Bioeng. 2021;118(4):1612–1623. doi:10.1002/bit.27676.
  • Maurer M, Gresnigt, Mark S. Last, Antonia. Wollny, Tony. Berlinghof, Florian. Pospich, Rebecca. Cseresnyes, Zoltan. Medyukhina, Anna. Graf, Katja. Groeger, Marko, et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials. 2019;220:119396. doi:10.1016/j.biomaterials.2019.119396.
  • Barker N, Van Es, Johan H. Kuipers, Jeroen. Kujala, Pekka. Van Den Born, Maaike. Cozijnsen, Miranda. Haegebarth, Andrea. Korving, Jeroen. Begthel, Harry. Peters, Peter J. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–1007. doi:10.1038/nature06196.
  • Sato T, Vries, Robert G. Snippert, Hugo J. Van De Wetering, Marc. Barker, Nick. Stange, Daniel E. Van Es, Johan H. Abo, Arie. Kujala, Pekka. Peters, Peter J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–265. doi:10.1038/nature07935.
  • Mead BE, Hattori K, Levy L, Imada S, Goto N, Vukovic M, Sze D, Kummerlowe C, Matute JD, Duan J, et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat Biomed Eng. 2022;6(4):476–494. doi:10.1038/s41551-022-00863-9.
  • Mithal A, Capilla A, Heinze D, Berical A, Villacorta-Martin C, Vedaie M, Jacob A, Abo K, Szymaniak A, Peasley M, et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat Commun. 2020;11(1):215. doi:10.1038/s41467-019-13916-6.
  • Sasaki N, Miyamoto K, Maslowski KM, Ohno H, Kanai T, Sato T. Development of a scalable coculture system for gut Anaerobes and Human Colon Epithelium. Gastroenterology. 2020;159(1):388–390 e5. doi:10.1053/j.gastro.2020.03.021.
  • Tan HY, Trier S, Rahbek UL, Dufva M, Kutter JP, Andresen TL. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLoS One. 2018;13(5):e0197101. doi:10.1371/journal.pone.0197101.
  • Yamashita S, Konishi K, Yamazaki Y, Taki Y, Sakane T, Sezaki H, Furuyama Y. New and better protocols for a short-term Caco-2 cell culture system. J Pharm Sci. 2002;91(3):669–679. doi:10.1002/jps.10050.
  • Zhang J, Huang Y-J, Yoon JY, Kemmitt J, Wright C, Schneider K, Sphabmixay P, Hernandez-Gordillo V, Holcomb SJ, Bhushan B, et al. Primary human colonic mucosal barrier crosstalk with super oxygen-sensitive Faecalibacterium prausnitzii in continuous culture. Med (N Y). 2021;2(1):74–98 e9. doi:10.1016/j.medj.2020.07.001.
  • Puschhof J, Pleguezuelos-Manzano C, Martinez-Silgado A, Akkerman N, Saftien A, Boot C, de Waal A, Beumer J, Dutta D, Heo I, et al. Intestinal organoid cocultures with microbes. Nat Protoc. 2021;16(10):4633–4649. doi:10.1038/s41596-021-00589-z.
  • Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based models to study the role of host-microbiota interactions in IBD. J Crohns Colitis. 2021;15(7):1222–1235. doi:10.1093/ecco-jcc/jjaa257.
  • Ginga NJ, Slyman R, Kim G-A, Parigoris E, Huang S, Yadagiri VK, Young VB, Spence JR, Takayama S. Perfusion system for modification of luminal contents of human intestinal organoids and realtime imaging analysis of microbial populations. Micromachi (Basel). 2022;13(1):131. doi:10.3390/mi13010131.
  • Ivanov II, Tuganbaev T, Skelly AN, Honda K. 2022. T Cell Responses to the Microbiota. Annu Rev Immunol. 40:559–587. doi:10.1146/annurev-immunol-101320-011829.
  • White J, Kappler J, Marrack P. Production and characterization of T cell hybridomas. Methods Mol Biol. 2000;134:185–193.
  • Mann SE, Zhou Z, Landry LG, Anderson AM, Alkanani AK, Fischer J, Peakman M, Mallone R, Campbell K, Michels AW, et al. Multiplex T cell stimulation assay utilizing a T cell activation reporter-based detection system. Front Immunol. 2020;11:633. doi:10.3389/fimmu.2020.00633.
  • Chen R, Fulton KM, Twine SM, Li J. Identification of Mhc Peptides using Mass Spectrometry for neoantigen discovery and cancer vaccine Development. Mass Spectrom Rev. 2021;40(2):110–125. doi:10.1002/mas.21616.
  • Mayer RL, Impens F. Immunopeptidomics for next-generation bacterial vaccine development. Trends Microbiol. 2021;29(11):1034–1045. doi:10.1016/j.tim.2021.04.010.
  • Stopfer LE, Mesfin JM, Joughin BA, Lauffenburger DA, White FM. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat Commun. 2020;11(1):2760. doi:10.1038/s41467-020-16588-9.
  • Wilkinson JE, Franzosa EA, Everett C, Li C, Bae S, Berzansky I, Bhosle A, Bjørnevik K, Brennan CA, Cao YG, et al. A framework for microbiome science in public health. Nat Med. 2021;27(5):766–774. doi:10.1038/s41591-021-01258-0.
  • Kassam Z, Dubois N, Ramakrishna B, Ling K, Qazi T, Smith M, Kelly CR, Fischer M, Allegretti JR, Budree S, et al. Donor screening for fecal microbiota transplantation. N Engl J Med. 2019;381(21):2070–2072. doi:10.1056/NEJMc1913670.
  • Zhang S, Chen Q, Kelly CR, Kassam Z, Qin H, Li N, Tian H, Yang B, Zhao D, Ye C, et al. Donor screening for fecal microbiota transplantation in China: Evaluation of 8483 candidates. Gastroenterology. 2022;162(3):966–968 e3. doi:10.1053/j.gastro.2021.11.004.
  • Chen J, Zaman A, Ramakrishna B, Olesen SW. 2021. Stool banking for Fecal microbiota transplantation: Methods and operations at a large stool bank. Front Cell Infect Microbiol. 11:622949. doi:10.3389/fcimb.2021.622949.
  • 2022; Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-fecal-microbiota-product
  • Carlson PE Jr. Regulatory considerations for fecal microbiota transplantation products. Cell Host Microbe. 2020;27(2):173–175. doi:10.1016/j.chom.2020.01.018.
  • Nearing JT, Comeau AM, Langille MGI. Identifying biases and their potential solutions in human microbiome studies. Microbiome. 2021;9(1):113. doi:10.1186/s40168-021-01059-0.
  • Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, Tramontano M, Driessen M, Hercog R, Jung F-E, et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35(11):1069–1076. doi:10.1038/nbt.3960.
  • Amos GCA, Sergaki C, Anwar, S. Fritzsche, M. Mate, R. Francis, Robert J. MacLellan-Gibson, K. Logan, A. Developing standards for the microbiome field. Microbiome. 2020;8(1):98. doi:10.1186/s40168-020-00856-3.
  • Sergaki C, Anwar, S. Fritzsche, M. Mate, R. Francis, Robert J. MacLellan-Gibson, K. Logan, A. Amos, Gregory CA. Developing whole cell standards for the microbiome field. Microbiome. 2022;10(1):123. doi:10.1186/s40168-022-01313-z.
  • Van Den Bossche T, Kunath BJ, Schallert K, Schäpe SS, Abraham PE, Armengaud J, Arntzen MØ, Bassignani A, Benndorf D, Fuchs S, et al. Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows. Nat Commun. 2021;12(1):7305. doi:10.1038/s41467-021-27542-8.
  • Tourlousse DM, K. Narita, T.Miura, M. Sakamoto, A. Ohashi, K. Shiina, M. Matsuda, D. Miura, M. Shimamura, Y. Ohyama. Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome. 2021;9(1):95. doi:10.1186/s40168-021-01048-3.