2,471
Views
8
CrossRef citations to date
0
Altmetric
Review

Gut microbiota: a non-target victim of pesticide-induced toxicity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2187578 | Received 15 Sep 2022, Accepted 01 Mar 2023, Published online: 15 Mar 2023

References

  • Meng Z, Liu L, Yan S, Sun W, Jia M, Tian S, Huang S, Zhou Z, Zhu W. Gut microbiota: a key factor in the host health effects induced by pesticide exposure? J Agric Food Chem. 2020;68(39):10517–19. doi:10.1021/acs.jafc.0c04678.
  • Lasram MM, Annabi AB, El Elj N, Selmi S, Kamoun A, El-Fazaa S, Gharbi N. Metabolic disorders of acute exposure to malathion in adult Wistar rats. J Hazard Mater. 2009;163(2–3):1052–1055. doi:10.1016/j.jhazmat.2008.07.059.
  • Lasram MM, Bouzid K, Douib IB, Annabi A, El Elj N, El Fazaa S, Abdelmoula J, Gharbi N. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat. Drug Chem Toxicol. 2015;38(2):227–234. doi:10.3109/01480545.2014.933348.
  • Ogutcu A, Suludere Z, Kalender Y. Dichlorvos-induced hepatotoxicity in rats and the protective effects of vitamins C and E. Environ Toxicol Pharmacol. 2008;26(3):355–361. doi:10.1016/j.etap.2008.07.005.
  • Zhang W, Lu Y, Huang L, Cheng C, Di S, Chen L, Zhou Z, Diao J. 2018. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles. Ecotoxicol Environ Saf. 156:247–254. doi:10.1016/j.ecoenv.2018.03.009.
  • Baldi I, Gruber A, Rondeau V, Lebailly P, Brochard P, Fabrigoule C. Neurobehavioral effects of long-term exposure to pesticides: results from the 4-year follow-up of the PHYTONER study. Occup Environ Med. 2011;68(2):108–115. doi:10.1136/oem.2009.047811.
  • Sharon M, Bhawana M, Anita S, Gothecha VK. A short review on how pesticides affect human health. Int J Ayurvedic Herb Med. 2012;2:935–946.
  • Jin C, Luo T, Zhu Z, Pan Z, Yang J, Wang W, Fu Z, Jin Y. 2017. Imazalil exposure induces gut microbiota dysbiosis and hepatic metabolism disorder in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 202:85–93. doi:10.1016/j.cbpc.2017.08.007.
  • Jin Y, Zeng Z, Wu Y, Zhang S, Fu Z. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis. Toxicol Sci. 2015;147(1):116–126. doi:10.1093/toxsci/kfv115.
  • Liang Y, Liu D, Zhan J, Luo M, Han J, Wang P, Zhou Z. 2020. New insight into the mechanism of POP-induced obesity: evidence from DDE-altered microbiota. Chemosphere. 244:125123. doi:10.1016/j.chemosphere.2019.125123.
  • Zhang R, Pan Z, Wang X, Shen M, Zhou J, Fu Z, Jin Y. Short-term propamocarb exposure induces hepatic metabolism disorder associated with gut microbiota dysbiosis in adult male zebrafish. Acta Biochim Biophys Sin (Shanghai). 2019;51(1):88–96. doi:10.1093/abbs/gmy153.
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi:10.1038/4441022a.
  • Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577–589. doi:10.1038/nrgastro.2012.156.
  • Jin C, Xia J, Wu S, Tu W, Pan Z, Fu Z, Wang Y, Jin Y. Insights into a possible influence on gut microbiota and intestinal barrier function during chronic exposure of mice to imazalil. Toxicol Sci. 2018;162(1):113–123. doi:10.1093/toxsci/kfx227.
  • Liang Y, Zhan J, Liu D, Luo M, Han J, Liu X, Liu C, Cheng Z, Zhou Z, Wang P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome. 2019;7(1):19. doi:10.1186/s40168-019-0635-4.
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi:10.1126/science.1104816.
  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi:10.1042/BCJ20160510.
  • Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi:10.1038/nature11234.
  • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. doi:10.1016/j.cell.2012.01.035.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Pothuraju R, Chaudhary S, Rachagani S, Kaur S, Roy HK, Bouvet M, Batra SK. Mucins, gut microbiota, and postbiotics role in colorectal cancer. Gut Microbes. 2021;13(1):1974795. doi:10.1080/19490976.2021.1974795.
  • Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19(2):59–69. doi:10.1016/j.smim.2006.10.002.
  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–1267. doi:10.1126/science.1223813.
  • Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–1196. doi:10.1161/CIRCRESAHA.117.309715.
  • Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, Francis H, Cardinale V, Onori P, Safarikia S, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020;72(2):470–485. doi:10.1002/hep.31056.
  • Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W, Gupta N, Skye SM, Cody DB, Levison BS, et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24(9):1407–1417. doi:10.1038/s41591-018-0128-1.
  • Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. doi:10.1016/j.cmet.2016.05.005.
  • Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–237. doi:10.1038/s41575-019-0258-z.
  • Heyman M, Corthier G, Lucas F, Meslin JC, Desjeux JF. Evolution of the caecal epithelial barrier during Clostridium difficile infection in the mouse. Gut. 1989;30(8):1087–1093. doi:10.1136/gut.30.8.1087.
  • Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, Finlay BB. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun. 2008;76(10):4726–4736. doi:10.1128/IAI.00319-08.
  • Ferreira RB, Gill N, Willing BP, Antunes LC, Russell SL, Croxen MA, Finlay BB. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One. 2011;6(5):e20338. doi:10.1371/journal.pone.0020338.
  • Shanahan F. Nutrient tasting and signaling mechanisms in the gut V. Mechanisms of immunologic sensation of intestinal contents. Am J Physiol Gastrointest Liver Physiol. 2000;278(2):G191–6. doi:10.1152/ajpgi.2000.278.2.G191.
  • Alam M, Midtvedt T, Uribe A. Differential cell kinetics in the ileum and colon of germfree rats. Scand J Gastroenterol. 1994;29(5):445–451. doi:10.3109/00365529409096836.
  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323. doi:10.1038/nri2515.
  • Podolsky DK. The current future understanding of inflammatory bowel disease. Best Pract Res Clin Gastroenterol. 2002;16(6):933–943. doi:10.1053/bega.2002.0354.
  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–15723. doi:10.1073/pnas.0407076101.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. doi:10.1038/nature05414.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345. doi:10.1016/j.cell.2016.05.041.
  • Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–243. doi:10.1097/00004836-200603000-00015.
  • Chiu K, Warner G, Nowak RA, Flaws JA, Mei W. The impact of environmental chemicals on the gut microbiome. Toxicol Sci. 2020;176(2):253–284. doi:10.1093/toxsci/kfaa065.
  • Li QQ, Loganath A, Chong YS, Tan J, Obbard JP. Persistent organic pollutants and adverse health effects in humans. J Toxicol Environ Health A. 2006;69(21):1987–2005. doi:10.1080/15287390600751447.
  • Wang S, Huang J, Yang Y, Hui Y, Ge Y, Larssen T, Yu G, Deng S, Wang B, Harman C. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environ Sci Technol. 2013;47(18):10163–10170. doi:10.1021/es401525n.
  • Kandel Gambarte PC, Wolansky MJ. 2022. The gut microbiota as a biomarker for realistic exposures to pesticides: a critical consideration. Neurotoxicol Teratol. 91:107074. doi:10.1016/j.ntt.2022.107074.
  • Paik D, Yao L, Zhang Y, Bae S, D’agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE, et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature. 2022;603(7903):907–912. doi:10.1038/s41586-022-04480-z.
  • Rude KM, Pusceddu MM, Keogh CE, Sladek JA, Rabasa G, Miller EN, Sethi S, Keil KP, Pessah IN, Lein PJ, et al. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. Environ Pollut. 2019;253:708–721. doi:10.1016/j.envpol.2019.07.066.
  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–11075. doi:10.1073/pnas.0504978102.
  • Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ, Hennig B. 2018. Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut. 242:1022–1032. doi:10.1016/j.envpol.2018.07.039.
  • Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121(6):725–730. doi:10.1289/ehp.1306534.
  • Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, Siciliano S. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005;113(1):6–10. doi:10.1289/ehp.7259.
  • Mnif W, Hassine AI, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health. 2011;8(6):2265–2303. doi:10.3390/ijerph8062265.
  • Liu Y, Yao Y, Li H, Qiao F, Wu J, Du ZY, Zhang M. Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PLoS One. 2016;11(10):e0163895. doi:10.1371/journal.pone.0163895.
  • Zhao Y, Zhang Y, Wang G, Han R, Xie X. 2016. Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus). Chemosphere. 153:287–293. doi:10.1016/j.chemosphere.2016.03.055.
  • Maisano M, Cappello T, Oliva S, Natalotto A, Giannetto A, Parrino V, Battaglia P, Romeo T, Salvo A, Spanò N, et al. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea. Mar Environ Res. 2016;121:40–48. doi:10.1016/j.marenvres.2016.03.003.
  • Muller MHB, Polder A, Brynildsrud OB, Karimi M, Lie E, Manyilizu WB, Mdegela RH, Mokiti F, Murtadha M, Nonga HE, et al. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human breast milk and associated health risks to nursing infants in Northern Tanzania. Environ Res. 2017;154:425–434. doi:10.1016/j.envres.2017.01.031.
  • Lee HS, Lee JC, Lee IK, Moon HB, Chang YS, Jacobs DR Jr., Lee D-H. Associations among organochlorine pesticides, Methanobacteriales, and obesity in Korean women. PLoS One. 2011;6(11):e27773. doi:10.1371/journal.pone.0027773.
  • Salihovic S, Ganna A, Fall T, Broeckling CD, Prenni JE, van Bavel B, Lind PM, Ingelsson E, Lind L. 2016. The metabolic fingerprint of p,p′-DDE and HCB exposure in humans. Environ Int. 88:60–66. doi:10.1016/j.envint.2015.12.015.
  • Liu Q, Shao W, Zhang C, Xu C, Wang Q, Liu H, Sun H, Jiang Z, Gu A. 2017. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice. Environ Pollut. 226:268–276. doi:10.1016/j.envpol.2017.03.068.
  • Velmurugan G, Ramprasath T, Swaminathan K, Mithieux G, Rajendhran J, Dhivakar M, Parthasarathy A, Babu DDV, Thumburaj LJ, Freddy AJ, et al. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol. 2017;18(1):8. doi:10.1186/s13059-016-1134-6.
  • Giesy JP, Solomon KR, Cutler GC, Giddings JM, Mackay D, Moore DR, Purdy J, Williams WM. Ecological risk assessment of the uses of the organophosphorus insecticide chlorpyrifos, in the United States. Rev Environ Contam Toxicol. 2014;231:1–11 doi:10.1007/978-3-319-03865-0_1.
  • Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, Lin H, Bai J, He W, You M, et al. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One. 2013;8(7):e68852. doi:10.1371/journal.pone.0068852.
  • Xia X, Sun B, Gurr GM, Vasseur L, Xue M, You M. 2018. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol. 9:25. doi:10.3389/fmicb.2018.00025.
  • Reygner J, Joly Condette C, Bruneau A, Delanaud S, Rhazi L, Depeint F, Abdennebi-Najar L, Bach V, Mayeur C, Khorsi-Cauet H. Changes in composition and function of human intestinal microbiota exposed to chlorpyrifos in oil as assessed by the SHIME® model. Int J Environ Res Public Health. 2016;13(11):1088. doi:10.3390/ijerph13111088.
  • Joly C, Gay-Queheillard J, Leke A, Chardon K, Delanaud S, Bach V, Khorsi-Cauet H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res Int. 2013;20(5):2726–2734. doi:10.1007/s11356-012-1283-4.
  • Requile M, Gonzalez Alvarez DO, Delanaud S, Rhazi L, Bach V, Depeint F, Khorsi-Cauet H. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa. Environ Sci Pollut Res Int. 2018;25(23):22529–22540. doi:10.1007/s11356-018-2332-4.
  • Reygner J, Lichtenberger L, Elmhiri G, Dou S, Bahi-Jaber N, Rhazi L, Depeint F, Bach V, Khorsi-Cauet H, Abdennebi-Najar L, et al. Inulin supplementation lowered the metabolic defects of prolonged exposure to chlorpyrifos from gestation to young adult stage in offspring rats. PLoS One. 2016;11(10):e0164614. doi:10.1371/journal.pone.0164614.
  • Wang X, Shen M, Zhou J, Jin Y. 2019. Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 216:19–28. doi:10.1016/j.cbpc.2018.11.010.
  • Fang B, Li JW, Zhang M, Ren FZ, Pang GF. 2018. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem Toxicol. 111:144–152. doi:10.1016/j.fct.2017.11.001.
  • Joly Condette C, Bach V, Mayeur C, Gay-Queheillard J, Khorsi-Cauet H. Chlorpyrifos exposure during perinatal period affects intestinal microbiota associated with delay of maturation of digestive tract in rats. J Pediatr Gastroenterol Nutr. 2015;61(1):30–40. doi:10.1097/MPG.0000000000000734.
  • Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010;21(1):87–94. doi:10.1097/EDE.0b013e3181c15ec6.
  • Shrestha S, Parks CG, Goldner WS, Kamel F, Umbach DM, Ward MH, Lerro CC, Koutros S, Hofmann JN, Beane Freeman LE, et al. Incident thyroid disease in female spouses of private pesticide applicators. Environ Int. 2018;118:282–292. doi:10.1016/j.envint.2018.05.041.
  • Aggarwal V, Deng X, Tuli A, Goh KS. Diazinon-chemistry and environmental fate: a California perspective. Rev Environ Contam Toxicol. 2013;223:107–140.
  • Gao B, Bian X, Chi L, Tu P, Ru H, Lu K. Editor’s highlight: organophosphate diazinon altered quorum sensing, cell motility, stress response, and carbohydrate metabolism of gut microbiome. Toxicol Sci. 2017;157(2):354–364. doi:10.1093/toxsci/kfx053.
  • Gao B, Bian X, Mahbub R, Lu K. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect. 2017;125(2):198–206. doi:10.1289/EHP202.
  • Tang J, Wang W, Jiang Y, Chu W. 2021. Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio). Environ Pollut. 269:116129. doi:10.1016/j.envpol.2020.116129.
  • Gao B, Chi L, Tu P, Bian X, Thomas J, Ru H, Lu K. 2018. The organophosphate malathion disturbs gut microbiome development and the quorum-sensing system. Toxicol Lett. 283:52–57. doi:10.1016/j.toxlet.2017.10.023.
  • Aitbali Y, Ba-M’hamed S, Elhidar N, Nafis A, Soraa N, Bennis M. 2018. Glyphosate based- herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol Teratol. 67:44–49. doi:10.1016/j.ntt.2018.04.002.
  • Kan H, Zhao F, Zhang XX, Ren H, Gao S. Correlations of gut microbial community shift with hepatic damage and growth inhibition of Carassius auratus induced by pentachlorophenol exposure. Environ Sci Technol. 2015;49(19):11894–11902. doi:10.1021/acs.est.5b02990.
  • Shehata AA, Schrodl W, Aldin AA, Hafez HM, Kruger M. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol. 2013;66(4):350–358. doi:10.1007/s00284-012-0277-2.
  • Bohn T, Cuhra M, Traavik T, Sanden M, Fagan J, Primicerio R. 2014. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans. Food Chem. 153:207–215. doi:10.1016/j.foodchem.2013.12.054.
  • Lozano VL, Defarge N, Rocque LM, Mesnage R, Hennequin D, Cassier R, de Vendômois JS, Panoff J-M, Séralini G-E, Amiel C. 2018. Sex-dependent impact of Roundup on the rat gut microbiome. Toxicol Rep. 5:96–107. doi:10.1016/j.toxrep.2017.12.005.
  • Nielsen LN, Roager HM, Casas ME, Frandsen HL, Gosewinkel U, Bester K, Licht TR, Hendriksen NB, Bahl MI. 2018. Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels. Environ Pollut. 233:364–376. doi:10.1016/j.envpol.2017.10.016.
  • Kittle RP, McDermid KJ, Muehlstein L, Balazs GH. 2018. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus. Mar Pollut Bull. 127:170–174. doi:10.1016/j.marpolbul.2017.11.030.
  • Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci (Landmark Ed). 2011;16(1):1768–1786. doi:10.2741/3820.
  • Argou-Cardozo I, Zeidan-Chulia F. Clostridium bacteria and autism spectrum conditions: a systematic review and hypothetical contribution of environmental glyphosate levels. Med Sci (Basel). 2018;6(2):6. doi:10.3390/medsci6020029.
  • Zhang M, Yin D, Kong F. The changes of serum testosterone level and hepatic microsome enzyme activity of crucian carp (Carassius carassius) exposed to a sublethal dosage of pentachlorophenol. Ecotoxicol Environ Saf. 2008;71(2):384–389. doi:10.1016/j.ecoenv.2007.10.014.
  • Zhan J, Liang Y, Liu D, Ma X, Li P, Liu C, Liu X, Wang P, Zhou Z. Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. Microbiome. 2018;6(1):224. doi:10.1186/s40168-018-0602-5.
  • Pico Y, El-Sheikh MA, Alfarhan AH, Barcelo D. 2018. Target vs non-target analysis to determine pesticide residues in fruits from Saudi Arabia and influence in potential risk associated with exposure. Food Chem Toxicol. 111:53–63. doi:10.1016/j.fct.2017.10.060.
  • Veerappan M, Hwang I, Pandurangan M. Effect of cypermethrin, carbendazim and their combination on male albino rat serum. Int J Exp Pathol. 2012;93(5):361–369. doi:10.1111/j.1365-2613.2012.00828.x.
  • Yu G, Liu Y, Xie L, Wang X. Involvement of Sertoli cells in spermatogenic failure induced by carbendazim. Environ Toxicol Pharmacol. 2009;27(2):287–292. doi:10.1016/j.etap.2008.11.006.
  • Jiang J, Wu S, Wu C, An X, Cai L, Zhao X. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio). Fish Shellfish Immunol. 2014;41(2):493–500. doi:10.1016/j.fsi.2014.09.037.
  • Gao B, Chi L, Tu P, Gao N, Lu K. The carbamate aldicarb altered the gut microbiome, metabolome, and lipidome of C57BL/6J mice. Chem Res Toxicol. 2019;32(1):67–79. doi:10.1021/acs.chemrestox.8b00179.
  • Jin C, Zeng Z, Wang C, Luo T, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Insights into a possible mechanism underlying the connection of carbendazim-induced lipid metabolism disorder and gut microbiota dysbiosis in mice. Toxicol Sci. 2018;166(2):382–393. doi:10.1093/toxsci/kfy205.
  • Zega G, De Bernardi F, Groppelli S, Pennati R. Effects of the azole fungicide Imazalil on the development of the ascidian Ciona intestinalis (Chordata, Tunicata): morphological and molecular characterization of the induced phenotype. Aquat Toxicol. 2009;91(3):255–261. doi:10.1016/j.aquatox.2008.11.015.
  • Faniband MH, Littorin M, Ekman E, Jonsson BA, Lindh CH. Lc–MS-MS analysis of urinary biomarkers of imazalil following experimental exposures. J Anal Toxicol. 2015;39(9):691–697. doi:10.1093/jat/bkv100.
  • Masia A, Vasquez K, Campo J, Pico Y. 2015. Assessment of two extraction methods to determine pesticides in soils, sediments and sludges. Application to the Turia river basin. J Chromatogr A. 1378:19–31. doi:10.1016/j.chroma.2014.11.079.
  • Jin C, Zeng Z, Fu Z, Jin Y. 2016. Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere. 160:349–358. doi:10.1016/j.chemosphere.2016.06.105.
  • Jin Y, Zhu Z, Wang Y, Yang E, Feng X, Fu Z. 2016. The fungicide imazalil induces developmental abnormalities and alters locomotor activity during early developmental stages in zebrafish. Chemosphere. 153:455–461. doi:10.1016/j.chemosphere.2016.03.085.
  • Liu C, Qin Z, Zhou X, Xin M, Wang C, Liu D, Li S. Expression and functional analysis of the Propamocarb-related gene CsDIR16 in cucumbers. BMC Plant Biol. 2018;18(1):16. doi:10.1186/s12870-018-1236-2.
  • Wu S, Jin C, Wang Y, Fu Z, Jin Y. 2018. Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice. Environ Pollut. 237:775–783. doi:10.1016/j.envpol.2017.10.129.
  • Wu S, Luo T, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. 2018. Chronic exposure to fungicide propamocarb induces bile acid metabolic disorder and increases trimethylamine in C57BL/6J mice. Sci Total Environ. 642:341–348. doi:10.1016/j.scitotenv.2018.06.084.
  • Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60. doi:10.1016/j.cmet.2012.12.011.
  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley M, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–1595. doi:10.1016/j.cell.2015.11.055.
  • Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. doi:10.1016/j.cell.2016.02.011.
  • Paveley ND, Sylvester-Bradley R, Scott RK, Craigon J, Day W. Steps in predicting the relationship of yield on fungicide dose. Phytopathology®. 2001;91(7):708–716. doi:10.1094/PHYTO.2001.91.7.708.
  • Zarn JA, Bruschweiler BJ, Schlatter JR. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect. 2003;111(3):255–261. doi:10.1289/ehp.5785.
  • Loguercio C, Federico A, Tuccillo C, Terracciano F, D’auria MV, De Simone C, Blanco CDV. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol. 2005;39(6):540–543. doi:10.1097/01.mcg.0000165671.25272.0f.
  • Iwaya A, Iiai T, Okamoto H, Ajioka Y, Yamamoto T, Asahara T, Nomoto K, Hatakeyama K. Change in the bacterial flora of pouchitis. Hepatogastroenterology. 2006;53:55–59.
  • Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–3389. doi:10.1128/JCM.43.7.3380-3389.2005.
  • Xu C, Liu Q, Huan F, Qu J, Liu W, Gu A, Wang Y, Jiang Z. Changes in gut microbiota may be early signs of liver toxicity induced by epoxiconazole in rats. Chemotherapy. 2014;60(2):135–142. doi:10.1159/000371837.
  • Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS. 2016. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J Insect Physiol. 89:1–8. doi:10.1016/j.jinsphys.2016.03.004.
  • Shi TF, Wang YF, Liu F, Qi L, Yu LS. Influence of the neonicotinoid insecticide thiamethoxam on miRNA expression in the honey bee (Hymenoptera: Apidae). J Insect Sci. 2017;17(5). doi:10.1093/jisesa/iex074.
  • Taira K, Fujioka K, Aoyama Y. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry. PLoS One. 2013;8(11):e80332. doi:10.1371/journal.pone.0080332.
  • Du J, Gridneva Z, Gay MCL, Trengove RD, Hartmann PE, Geddes DT. 2017. Pesticides in human milk of Western Australian women and their influence on infant growth outcomes: a cross-sectional study. Chemosphere. 167:247–254. doi:10.1016/j.chemosphere.2016.10.005.
  • Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. 2018. Pyrethroid pesticide residues in the global environment: an overview. Chemosphere. 191:990–1007. doi:10.1016/j.chemosphere.2017.10.115.
  • Yuan X, Pan Z, Jin C, Ni Y, Fu Z, Jin Y. 2019. Gut microbiota: an underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere. 227:425–434. doi:10.1016/j.chemosphere.2019.04.088.
  • Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S, Sovran B, Denis RGP, Dairou J, Cardellini M, et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med. 2018;24(8):1113–1120. doi:10.1038/s41591-018-0060-4.
  • O’mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 277:32–48. doi:10.1016/j.bbr.2014.07.027.
  • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–249. doi:10.1038/nature11552.
  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-Protein–coupled receptor FFAR2. Diabetes. 2012;61(2):364–371. doi:10.2337/db11-1019.
  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–177. doi:10.1016/j.cmet.2009.08.001.
  • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’angelo C, Massi-Benedetti C, Fallarino F, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–385. doi:10.1016/j.immuni.2013.08.003.
  • Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo M, Phillips R, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41(2):296–310. doi:10.1016/j.immuni.2014.06.014.
  • Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605. doi:10.1038/nm.4102.
  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. doi:10.1038/nature09922.
  • Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–672. doi:10.1038/nrmicro3344.
  • Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab. 2014;20(5):719–730. doi:10.1016/j.cmet.2014.10.016.
  • Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci. 2016;1372(1):53–64. doi:10.1111/nyas.13145.
  • Yan S, Tian S, Meng Z, Yan J, Jia M, Li R, Zhou Z, Zhu W. 2020. Imbalance of gut microbiota and fecal metabolites in offspring female mice induced by nitenpyram exposure during pregnancy. Chemosphere. 260:127506. doi:10.1016/j.chemosphere.2020.127506.
  • Zhang H, Meng G, Mao F, Li W, He Y, Gin KY, Ong CN. 2019. Use of an integrated metabolomics platform for mechanistic investigations of three commonly used algaecides on cyanobacterium, Microcystis aeruginosa. J Hazard Mater. 367:120–127. doi:10.1016/j.jhazmat.2018.12.069.
  • Meng Z, Liu L, Jia M, Li R, Yan S, Tian S, Sun W, Zhou Z, Zhu W. Impacts of penconazole and its enantiomers exposure on gut microbiota and metabolic profiles in mice. J Agric Food Chem. 2019;67(30):8303–8311. doi:10.1021/acs.jafc.9b02856.
  • de Wiele T V, Gallawa CM, Kubachka KM, Creed JT, Basta N, Dayton EA, Whitacre S, Laing GD, Bradham K. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect. 2010;118(7):1004–1009. doi:10.1289/ehp.0901794.
  • Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–291. doi:10.1289/ehp.1307429.
  • Richardson JB, Dancy BCR, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, Ackermann G, Humphrey G, Palacios G, Knight R, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578. doi:10.1038/s41598-018-24931-w.
  • Chi L, Bian X, Gao B, Tu P, Ru H, Lu K. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicol Sci. 2017;160(2):193–204. doi:10.1093/toxsci/kfx174.
  • Wu F, Yang L, Islam MT, Jasmine F, Kibriya MG, Nahar J, Barmon B, Parvez F, Sarwar G, Ahmed A, et al. The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environ Int. 2019;123:104–113. doi:10.1016/j.envint.2018.11.049.
  • Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79–87. doi:10.1038/nrcardio.2016.183.
  • Lindskog Jonsson A, Caesar R, Akrami R, Reinhardt C, Fak Hallenius F, Boren J, Bäckhed F. Impact of gut microbiota and diet on the development of atherosclerosis in apoe −/− mice. Arterioscler Thromb Vasc Biol. 2018;38(10):2318–2326. doi:10.1161/ATVBAHA.118.311233.
  • Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol. 2015;28(10):2000–2009. doi:10.1021/acs.chemrestox.5b00237.
  • Chi L, Gao B, Bian X, Tu P, Ru H, Lu K. 2017. Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicol Appl Pharmacol. 331:142–153. doi:10.1016/j.taap.2017.06.008.
  • Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017;30(4):996–1005. doi:10.1021/acs.chemrestox.6b00401.
  • Liebert CA, Wireman J, Smith T, Summers AO. Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates. Appl Environ Microbiol. 1997;63(3):1066–1076. doi:10.1128/aem.63.3.1066-1076.1997.
  • Bridges KN, Zhang Y, Curran TE, Magnuson JT, Venables BJ, Durrer KE, Allen MS, Roberts AP. Alterations to the intestinal microbiome and metabolome of Pimephales promelas and Mus musculus following exposure to dietary methylmercury. Environ Sci Technol. 2018;52(15):8774–8784. doi:10.1021/acs.est.8b01150.
  • Lin X, Zhao J, Zhang W, He L, Wang L, Chang D, Cui L, Gao Y, Li B, Chen C, et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol Environ Saf. 2020;190:110130. doi:10.1016/j.ecoenv.2019.110130.