2,503
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Assembly of novel microbial genomes from gut metagenomes of rhesus macaque (Macaca mulatta)

, , , , , , , & show all
Article: 2188848 | Received 17 Aug 2022, Accepted 03 Mar 2023, Published online: 15 Mar 2023

References

  • Itell HL, Kaur A, Deere JD, Barry PA, Permar SR. Rhesus monkeys for a nonhuman primate model of cytomegalovirus infections. Curr Opin Virol. 2017;25:126–17. doi:10.1016/j.coviro.2017.08.005.
  • Colombo APV, Paster BJ, Grimaldi G, Lourenco TGB, Teva A, Campos-Neto A, McCluskey J, Kleanthous H, Van Dyke TE, Stashenko P. Clinical and microbiological parameters of naturally occurring periodontitis in the non-human primate Macaca mulatta. J Oral Microbiol. 2017;9(1):1403843. doi:10.1080/20002297.2017.1403843.
  • Morissette M, Di Paolo T. Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna). 2018;125(3):291–324. doi:10.1007/s00702-017-1722-y.
  • Wang K-Y, Christe KL, Yee J, Roberts JA, Ardeshir A. Rotavirus is associated with decompensated diarrhea among young rhesus macaques (Macaca mulatta). Am J Primatol. 2019;81(1):e22948. doi:10.1002/ajp.22948.
  • Westreich ST, Ardeshir A, Alkan Z, Kable ME, Korf I, Lemay DG. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome. 2019;7(1). doi:10.1186/s40168-019-0664-z.
  • Rhoades N, Barr T, Hendrickson S, Prongay K, Haertel A, Gill L, Garzel L, Whiteson K, Slifka M, Messaoudi I. Maturation of the infant rhesus macaque gut microbiome and its role in the development of diarrheal disease. Genome Biol. 2019;20(1):20. doi:10.1186/s13059-019-1789-x.
  • Yang SZ, Liu Y, Yang N, Lan Y, Lan WQ, Feng JY, Yue BS, He M, Zhang L, Zhang AY, et al. The gut microbiome and antibiotic resistome of chronic diarrhea rhesus macaques (Macaca mulatta) and its similarity to the human gut microbiome. Microbiome. 2022;10(1). doi:10.1186/s40168-021-01218-3.
  • Sestak K, Merritt CK, Borda J, Saylor E, Schwamberger SR, Cogswell F, Didier ES, Didier PJ, Plauche G, Bohm RP, et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect Immun. 2003;71(7):4079–4086. doi:10.1128/IAI.71.7.4079-4086.2003.
  • Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, Dunn M, Mkandawire TT, Zhu A, Shao Y, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37(2):186–192. doi:10.1038/s41587-018-0009-7.
  • Zou YQ, Xue WB, Luo GW, Deng ZQ, Qin PP, Guo RJ, Sun HP, Xia Y, Liang SS, Dai Y, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol. 2019;37(2):179–185. doi:10.1038/s41587-018-0008-8.
  • Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533(7604):543–546. doi:10.1038/nature17645.
  • Liu C, Zhou N, Du MX, Sun YT, Wang K, Wang YJ, Li DH, Yu HY, Song Y, Bai BB, et al. The mouse gut microbial biobank expands the coverage of cultured bacteria. Nat Commun. 2020;11(1):79. doi:10.1038/s41467-019-13836-5.
  • Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol. 2019;37(8):953–961. doi:10.1038/s41587-019-0202-3.
  • Glendinning L, Stewart RD, Pallen MJ, Watson KA, Watson M. Assembly of hundreds of novel bacterial genomes from the chicken caecum. Genome Biol. 2020;21(1):21. doi:10.1186/s13059-020-1947-1.
  • Lesker TR, Durairaj AC, Galvez EJC, Lagkouvardos I, Baines JF, Clavel T, Sczyrba A, McHardy AC, Strowig T. An integrated metagenome catalog reveals new insights into the murine gut microbiome. Cell Rep. 2020;30(9):2909–2922. doi:10.1016/j.celrep.2020.02.036.
  • Papudeshi B, Haggerty JM, Doane M, Morris MM, Walsh K, Beattie DT, Pande D, Zaeri P, Silva GGZ, Thompson F, et al. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes. BMC Genomics. 2017;18(1). doi:10.1186/s12864-017-4294-1.
  • Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2(11):1533–1542. doi:10.1038/s41564-017-0012-7.
  • Manara S, Asnicar F, Beghini F, Bazzani D, Cumbo F, Zolfo M, Nigro E, Karcher N, Manghi P, Metzger MI, et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol. 2019;20(1):20. doi:10.1186/s13059-019-1923-9.
  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647. doi:10.1126/science.1155725.
  • Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10(1):10. doi:10.1038/s41467-019-10191-3.
  • Yildirim S, Yeoman CJ, Sipos M, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, White BA, Nelson KE, et al. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS One. 2010;5(11):e13963. doi:10.1371/journal.pone.0013963.
  • Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir A, McKenzie VJ, Humphrey G, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. Isme J. 2019;13(3):576–587. doi:10.1038/s41396-018-0175-0.
  • Ochman H, Worobey M, Kuo CH, Ndjango JBN, Peeters M, Hahn BH, Hugenholtz P, Achtman M. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8(11):e1000546. doi:10.1371/journal.pbio.1000546.
  • Garud NR, Good BH, Hallatschek O, Pollard KS, Gordo I. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 2019;17(1):e3000102. doi:10.1371/journal.pbio.3000102.
  • Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65(1):411–429. doi:10.1146/annurev-micro-090110-102830.
  • Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35(8):725–731. doi:10.1038/nbt.3893.
  • Laing ST, Merriam D, Shock BC, Mills S, Spinner A, Reader R, Hartigan-O’connor DJ. Idiopathic colitis in rhesus macaques is associated with dysbiosis, abundant enterochromaffin cells and altered T-cell cytokine expression. Vet Pathol. 2018;55(5):741–752. doi:10.1177/0300985818780449.
  • Howell S, White D, Ingram S, Jackson R, Larin J, Morales P, Garcia AP, Hicks C, Hopper K, Wagner J. A bio-behavioral study of chronic idiopathic colitis in the rhesus macaque (Macaca mulatta). Appl Anim Behav Sci. 2012;137(3–4):208–220. doi:10.1016/j.applanim.2012.01.003.
  • Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176(3):649–662. doi:10.1016/j.cell.2019.01.001.
  • Fox JG, Handt L, Xu S, Shen Z, Dewhirst FE, Paster BJ, Dangler CA, Lodge K, Motzel S, Klein H. Novel Helicobacter species isolated from rhesus monkeys with chronic idiopathic colitis. J Med Microbiol. 2001;50(5):421–429. doi:10.1099/0022-1317-50-5-421.
  • Chen T, Li Y, Liang J, Li Y, Huang Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi, China. Microbiologyopen. 2020;9(3):e981. doi:10.1002/mbo3.981.
  • Cui YF, Wang FJ, Yu L, Ye HH, Yang GB. Metagenomic comparison of the rectal microbiota between rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). Zool Res. 2019;40(2):89–93. doi:10.24272/j.issn.2095-8137.2018.061.
  • Adriansjach J, Baum ST, Lefkowitz EJ, Der Pol Wj V, Buford TW, Colman RJ, Masternak M. Age-related differences in the gut microbiome of rhesus macaques. J Gerontol A Biol Sci Med Sci. 2020;75(7):1293–1298. doi:10.1093/gerona/glaa048.
  • Zhao JS, Yao YF, Li DY, Xu HM, Wu JY, Wen AX, Xie M, Ni QY, Zhang MW, Peng GN, et al. Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment. Microb Ecol. 2018;76(2):565–577. doi:10.1007/s00248-018-1146-8.
  • Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun. 2018;9(1):870. doi:10.1038/s41467-018-03317-6.
  • Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38(9):1079–1086. doi:10.1038/s41587-020-0501-8.
  • Faber F, Baumler AJ. The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol Lett. 2014;162(2):48–53. doi:10.1016/j.imlet.2014.04.014.
  • Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms. 2020;8(4):573. doi:10.3390/microorganisms8040573.
  • Qing Y, Xie H, Su C, Wang Y, Yu Q, Pang Q, Cui F. Gut Microbiome, short-chain fatty acids, and mucosa injury in young adults with human immunodeficiency virus infection. Dig Dis Sci. 2019;64(7):1830–1843. doi:10.1007/s10620-018-5428-2.
  • Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2021;39(1):105–114. doi:10.1038/s41587-020-0603-3.
  • Li Y, Xia S, Jiang X, Feng C, Gong S, Ma J, Fang Z, Yin J, Yin Y. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol. 2021;11:625210. doi:10.3389/fcimb.2021.625210.
  • Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol. 2011;2:93. doi:10.3389/fmicb.2011.00093.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. doi:10.4161/gmic.19897.
  • Do Carmo Ms, Santos CID, Araujo MC, Giron JA, Fernandes ES, Monteiro-Neto V, Do Carmo MS. Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct. 2018;9(10):5074–5095. doi:10.1039/C8FO00376A.
  • Zhang Z, Lv J, Pan L, Zhang Y. Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol. 2018;102(19):8135–8143. doi:10.1007/s00253-018-9217-9.
  • Dong H, Liu B, Li A, Iqbal M, Mehmood K, Jamil T, Chang YF, Zhang H, Wu Q. Microbiome analysis reveals the attenuation effect of lactobacillus from yaks on diarrhea via modulation of gut microbiota. Front Cell Infect Microbiol. 2020;10:610781. doi:10.3389/fcimb.2020.610781.
  • Bian X, Wang TT, Xu M, Evivie SE, Luo GW, Liang HZ, Yu SF, Huo GC. Effect of Lactobacillus strains on intestinal microflora and mucosa immunity in Escherichia coli O157: h7-induced diarrhea in mice. Curr Microbiol. 2016;73(1):65–70. doi:10.1007/s00284-016-1010-3.
  • Prive F, Kaderbhai NN, Girdwood S, Worgan HJ, Pinloche E, Scollan ND, Huws SA, Newbold CJ, Planet PJ. Identification and characterization of three novel lipases belonging to families II and V from Anaerovibrio lipolyticus 5ST. PLoS One. 2013;8(8):e69076. doi:10.1371/journal.pone.0069076.
  • Spiller RC, Jalanka J. Brachyspira and IBS with diarrhoea: a Helicobacter pylori moment? Gut. 2021;70(6):1008–1009. doi:10.1136/gutjnl-2020-323370.
  • Smith JL. Colonic spirochetosis in animals and humans. J Food Prot. 2005;68(7):1525–1534. doi:10.4315/0362-028X-68.7.1525.
  • Liu F, Ma R, Wang Y, Zhang L. The clinical importance of Campylobacter concisus and other human hosted Campylobacter species. Front Cell Infect Microbiol. 2018;8:243. doi:10.3389/fcimb.2018.00243.
  • Wieczorek K, Wolkowicz T, Osek J. Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Front Microbiol. 2018;9:1508. doi:10.3389/fmicb.2018.01508.
  • Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol. 2015;48:99–108. doi:10.1016/j.fm.2014.11.017.
  • Guerry P. Campylobacter flagella: not just for motility. Trends Microbiol. 2007;15(10):456–461. doi:10.1016/j.tim.2007.09.006.
  • Neal-McKinney JM, Christensen JE, Konkel ME. Amino-terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum. Mol Microbiol. 2010;76(4):918–931. doi:10.1111/j.1365-2958.2010.07144.x.
  • Fernandez KR, Hansen LM, Vandamme P, Beaman BL, Solnick JV. Captive rhesus monkeys (Macaca mulatta) are commonly infected with Helicobacter cinaedi. J Clin Microbiol. 2002;40(6):1908–1912. doi:10.1128/JCM.40.6.1908-1912.2002.
  • Gu H. Role of flagella in the pathogenesis of Helicobacter pylori. Curr Microbiol. 2017;74(7):863–869. doi:10.1007/s00284-017-1256-4.
  • Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. 2021;19(9):585–599. doi:10.1038/s41579-021-00559-y.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923.
  • Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–1676. doi:10.1093/bioinformatics/btv033.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352.
  • Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. doi:10.7717/peerj.7359.
  • Olm MR, Brown CT, Brooks B, Jf B. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. Isme J. 2017;11(12):2864–2868. doi:10.1038/ismej.2017.126.
  • Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114. doi:10.1038/s41467-018-07641-9.
  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–1055. doi:10.1101/gr.186072.114.
  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–1927. doi:10.1093/bioinformatics/btz848.
  • Stewart RD, Auffret MD, Snelling TJ, Roehe R, Watson M, Birol I. Magpy: a reproducible pipeline for the downstream analysis of metagenome-assembled genomes (MAGs). Bioinformatics. 2019;35(12):2150–2152. doi:10.1093/bioinformatics/bty905.
  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11(1):119. doi:10.1186/1471-2105-11-119.
  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222–30. doi:10.1093/nar/gkt1223.
  • Brown CT, Irber L. Sourmash: a library for MinHash sketching of DNA. J Open Source Softw. 2016;1(5):27. doi:10.21105/joss.00027.
  • Segata N, Bornigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4(1). doi:10.1038/ncomms3304.
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. doi:10.1038/nmeth.3176.
  • Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:e1029. doi:10.7717/peerj.1029.
  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi:10.1038/nmeth.4197.
  • Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6(1):158. doi:10.1186/s40168-018-0541-1.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi:10.1093/bioinformatics/btp324.
  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152. doi:10.1093/bioinformatics/bts565.
  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47(D1):D309–14. doi:10.1093/nar/gky1085.
  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34(8):2115–2122. doi:10.1093/molbev/msx148.
  • Eddy SR, Pearson WR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195. doi:10.1371/journal.pcbi.1002195.
  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46(W1):W95–101. doi:10.1093/nar/gky418.
  • Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu SH, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25. doi:10.1093/nar/gkz935.
  • Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H, Valencia A. KofamKOALA: kEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36(7):2251–2252. doi:10.1093/bioinformatics/btz859.
  • Chen LH, Yang J, Yu J, Ya ZJ, Sun LL, Shen Y, Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Database issue):D325–8. doi:10.1093/nar/gki008.