2,335
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Enterohemorrhagic Escherichia coli responds to gut microbiota metabolites by altering metabolism and activating stress responses

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2190303 | Received 28 Oct 2022, Accepted 08 Mar 2023, Published online: 23 Mar 2023

References

  • Fatima R, Aziz M. Enterohemorrhagic Escherichia coli. StatPearls. 2022. PMID: 30137794.
  • Scheiring J, Andreoli SP, Zimmerhackl LB. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol. 2008;23:1749–24. doi:10.1007/s00467-008-0935-6.
  • Beery JT, Doyle MP, Schoeni JL. Colonization of chicken cecae by Escherichia coli associated with haemorrhagic colitis. Appl Environ Microbiol. 1985;49:310–315. doi:10.1128/aem.49.2.310-315.1985.
  • Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26:822–880. doi:10.1128/CMR.00022-13.
  • McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 1995;92:1664–1668. doi:10.1073/pnas.92.5.1664.
  • McDaniel TK, Kaper JB. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol. 1997;23:399–407.
  • Jarvis KG, Girón JA, Jerse AE, Mcdaniel TK, Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A. 1995;92:7996–8000. doi:10.1073/pnas.92.17.7996.
  • Jarvis KG, Kaper JB. Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infect Immun. 1996;64:4826–4829. doi:10.1128/iai.64.11.4826-4829.1996.
  • Abe A, Heczko U, Hegele RG, Finlay BB. Two enteropathogenic Escherichia coli type III secreted proteins, EspA and EspB, are virulence factors. J Exp Med. 1998;188:1907–1916. doi:10.1084/jem.188.10.1907.
  • Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis R, Matthews S, Marches O, Frankel G, et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A. 2006;103:14941–14946. doi:10.1073/pnas.0604891103.
  • Santos AS, Finlay BB. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol. 2015;17:318–332. doi:10.1111/cmi.12412.
  • Shortsleeve MJ, Wilson ME, Finklestein M, Gardner RC. Radiologic findings in hemorrhagic colitis due to Escherichia coli O157: h7. Gastrointest Radiol. 1989;14:341–344. doi:10.1007/BF01889233.
  • Lewis SB, Cook V, Tighe R, Schüller S, McCormick BA. Enterohemorrhagic Escherichia coli colonization of human colonic epithelium in vitro and ex vivo. Infect Immun. 2015;83:942–949. doi:10.1128/IAI.02928-14.
  • Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev. 2019;83:1–29. doi:10.1128/MMBR.00007-19.
  • Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB, Baumler AJ. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun. 2011;79:1536–1545. doi:10.1128/IAI.01104-10.
  • Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC, Núñez G. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science (80-). 2012;336:1325–1329. doi:10.1126/science.1222195.
  • Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.716299.
  • Woodward SE, Krekhno Z, Finlay BB. Here, there, and everywhere: how pathogenic Escherichia coli sense and respond to gastrointestinal biogeography. Cell Microbiol. 2019;21:1–15. doi:10.1111/cmi.13107.
  • Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7:1–15. doi:10.1186/s40168-019-0704-8.
  • Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol. 2022. doi:10.1038/s41579-022-00833-7.
  • Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun. 2008;76:1143–1152. doi:10.1128/IAI.01386-07.
  • Nakanishi N, Tashiro K, Kuhara S, Hayashi T, Sugimoto N, Tobe T. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology. 2009;155:521–530. doi:10.1099/mic.0.023499-0.
  • Curtis MM, Hu Z, Klimko C, Narayanan S, Deberardinis R, Sperandio V. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe. 2014;16:759–769. doi:10.1016/j.chom.2014.11.005.
  • Cameron EA, Sperandio V, Dunny GM, Hultgren SJ. Enterococcus faecalis enhances expression and activity of the enterohemorrhagic Escherichia coli type III secretion system. MBio. 2019;10. doi:10.1128/mBio.02547-19.
  • Kumar A, Sperandio V, Casadevall A. Indole signaling at the host-microbiota-pathogen interface. MBio. 2019;10. doi:10.1128/mBio.01031-19.
  • Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V. Fucose sensing regulates bacterial intestinal colonization. Nature. 2012;492:113–117. doi:10.1038/nature11623.
  • Tovaglieri A, Sontheimer-Phelps A, Geirnaert A, Prantil-Baun R, Camacho DM, Chou DB, Jalili-Firoozinezhad S, de Wouters T, Kasendra M, Super M, et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome. 2019;7:43. doi:10.1186/s40168-019-0650-5.
  • Cordonnier C, Le Bihan G, Emond-Rheault JG, Garrivier A, Harel J, Jubelin G. Vitamin B12 uptake by the gut commensal bacteria Bacteroides thetaiotaomicron limits the production of Shiga toxin by enterohemorrhagic Escherichia coli. Toxins (Basel). 2016;8. doi:10.3390/toxins8010014.
  • Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: “RePoopulating” the gut. Microbiome. 2013;1:1–12. doi:10.1186/2049-2618-1-3.
  • Yen S, McDonald JAK, Schroeter K, Oliphant K, Sokolenko S, Blondeel EJM, Allen-Vercoe E, Aucoin MG. Metabolomic analysis of human fecal microbiota: a comparison of feces-derived communities and defined mixed communities. J Proteome Res. 2015;14:1472–1482. doi:10.1021/pr5011247.
  • McDonald JAK, Schroeter K, Fuentes S, Heikamp-DeJong I, Khursigara CM, de Vos WM, Allen-Vercoe E. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods. 2013;95:167–174. doi:10.1016/j.mimet.2013.08.008.
  • McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK, Tjaden B. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 2013;41:1–16. doi:10.1093/nar/gkt444.
  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. doi:10.1038/75556.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi:10.1101/gr.1239303.
  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–59. doi:10.1016/0378-1119(89)90358-2.
  • Edwards RA, Keller LH, Schifferli DM. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene. 1998;207:149–157. doi:10.1016/S0378-1119(97)00619-7.
  • Ferrières L, Hémery G, Nham T, Guérout AM, Mazel D, Beloin C, Ghigo JM. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol. 2010;192:6418–6427. doi:10.1128/JB.00621-10.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97:6640–6645. doi:10.1073/pnas.120163297.
  • Wiles TJ, Norton JP, Russell CW, Dalley BK, Fischer KF, Mulvey MA, Garsin DA. Combining quantitative genetic footprinting and trait enrichment analysis to identify fitness determinants of a bacterial pathogen. PLoS Genet. 2013;9. doi:10.1371/annotation/6bb09d48-7d06-4ccf-8ed1-3dfaa1e0d537.
  • De Vries SPW, Gupta S, Baig A, Wright E, Wedley A, Jensen AN, Lora LL, Humphrey S, Skovgard H, MacLeod K, et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci Rep. 2017;7:1–17. doi:10.1038/s41598-017-01133-4.
  • Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157: h7. Nature. 2001;409:529–533. doi:10.1038/35054089.
  • Zomer A, Burghout P, Bootsma HJ, Hermans PWM, van Hijum SAFT, Provart NJ. Essentials: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS One. 2012;7:1–9. doi:10.1371/journal.pone.0043012.
  • Cronan JE, Stewart V, Begley T. Biotin and Lipoic Acid: synthesis, Attachment, and Regulation. EcoSal Plus. 2013;1. doi:10.1128/ecosalplus.ESP-0001-2012.
  • Finkenwirth F, Kirsch F, Eitinger T. Solitary BioY proteins mediate biotin transport into recombinant Escherichia coli. J Bacteriol. 2013;195:4105–4111. doi:10.1128/JB.00350-13.
  • Ringlstetter SL. Identification of the biotin transporter in Escherichia coli, biotinylation of histones in Saccharomyces cerevisiae and analysis of biotin sensing in Saccharomyces cerevisiae. 2010. https://doi.org/10.5283/epub.15822.
  • Côté J, French S, Gehrke SS, Macnair CR, Mangat CS, Bharat A, Brown ED, Dunman P. The genome-wide interaction network of nutrient stress genes in Escherichia coli. 2016;7:1–12. doi:10.1128/mBio.01714-16.
  • Eletsky A, Michalska K, Houliston S, Zhang Q, Daily MD, Xu X, Cui H, Yee A, Lemak A, Wu B, et al. Structural and Functional Characterization of DUF1471 Domains of Salmonella Proteins SrfN, YdgH/SssB, and YahO YdgH/SssB, and YahO. PLoS One. 2014;9. doi:10.1371/journal.pone.0101787.
  • Rudd KE, Humphery-Smith I, Wasinger VC, Bairoch A. Low molecular weight proteins: a challenge for post-genomic research. Electrophoresis. 1998;19:536–544. doi:10.1002/elps.1150190413.
  • Lee J, Hiibel SR, Reardon KF, Wood TK. Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene. J Appl Microbiol. 2010;108:2088–2102. doi:10.1111/j.1365-2672.2009.04611.x.
  • Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol. 2004;64:515–524. doi:10.1007/s00253-003-1517-y.
  • Egler M, Grosse C, Grass G, Nies DH. Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J Bacteriol. 2005;187:2297–2307. doi:10.1128/JB.187.7.2297-2307.2005.
  • Mermod M, Magnani D, Solioz M, Stoyanov JV. The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals. 2012;25:33–43. doi:10.1007/s10534-011-9510-x.
  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 1999;27:3821–3835. doi:10.1093/nar/27.19.3821.
  • Zhang XS, García-Contreras R, Wood TK. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol. 2007;189:3051–3062. doi:10.1128/JB.01832-06.
  • McWilliams BD, Torres AG, Sperandio V, Hovde CJ. Enterohemorrhagic Escherichia coli adhesins. Microbiol Spectr. 2014;2:1–19. doi:10.1128/microbiolspec.EHEC-0003-2013.
  • Mundy R, Girard F, Fitzgerald AJ, Frankel G. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. FEMS Microbiol Lett. 2006;265:126–132. doi:10.1111/j.1574-6968.2006.00481.x.
  • Vv E, Pearson JS. In vivo studies on Citrobacter rodentium and host cell death pathways. Curr Opin Microbiol. 2021;64:60–67. doi:10.1016/j.mib.2021.09.005.
  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem. 2004;279:6613–6619. doi:10.1074/jbc.M311657200.
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–2340. doi:10.1194/jlr.R036012.
  • Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci. 2000;97:14674–14679. doi:10.1073/pnas.97.26.14674.
  • Schumacher J, Behrends V, Pan Z, Brown DR, Heydenreich F, Lewis MR, Bennett MH, Razzaghi B, Komorowski M, Barahona M, et al. Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo. MBio. 2013;4:881–913. doi:10.1128/mBio.00881-13.
  • Carlucci C, Jones CS, Oliphant K, Yen S, Daigneault M, Carriero C, Robinson A, Petrof EO, Weese JS, Allen-Vercoe E. Effects of defined gut microbial ecosystem components on virulence determinants of Clostridioides difficile. Sci Rep. 2019;9:1–11. doi:10.1038/s41598-018-37547-x.
  • Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502:96–99. doi:10.1038/nature12503.
  • Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, Peterson DA, Osterman AL, Peterson SN. B-Vitamin sharing promotes stability of gut microbial communities. Front Microbiol. 2019;10:1–15. doi:10.3389/fmicb.2019.01485.
  • Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifiti E, Aron-Wisnewsky J, Debédat J, Le Roy T, et al. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut. 2022;71:2463–2480. doi:10.1136/gutjnl-2021-325753.
  • Yang B, Feng L, Wang F, Wang L. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nat Commun. 2015;6. doi:10.1038/ncomms7592.
  • Cornforth DM, Foster KR. Competition sensing: the social side of bacterial stress responses. Nat Rev Microbiol. 2013;11:285–293. doi:10.1038/nrmicro2977.
  • Nunoshiba T, Hidalgo E, Cuevas CFA, Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol. 1992;174:6054–6060. doi:10.1128/jb.174.19.6054-6060.1992.
  • Gu M, Imlay JA. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol. 2011;79:1136–1150. doi:10.1111/j.1365-2958.2010.07520.x.
  • Danese PN, Silhavy TJ. CpxP, a stress-combative member of the Cpx regulon. J Bacteriol. 1998;180:831–839. doi:10.1128/JB.180.4.831-839.1998.
  • Raffa RG, Raivio TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol. 2002;45:1599–1611. doi:10.1046/j.1365-2958.2002.03112.x.
  • Thomassin J-L, Giannakopoulou N, Zhu L, Gross J, Salmon K, Leclerc J-M, Daigle F, Le Moual H, Gruenheid S, Bäumler AJ. The CpxRA two-component system is essential for Citrobacter rodentium virulence. Infect Immun. 2015;83:1919–1928. doi:10.1128/IAI.00194-15.
  • Gilliland A, Gavino C, Gruenheid S, Raivio T, Raffatellu M. Simulated colonic fluid replicates the in vivo growth capabilities of Citrobacter rodentium cpxRA mutants and uncovers additive effects of Cpx-regulated genes on fitness. Infect Immun. 2022;90. doi:10.1128/iai.00314-22.
  • Deng K, Wang S, Rui X, Zhang W, Tortorello M, Lou. Functional analysis of ycfR and ycfQ in Escherichia coli O157: h7 linked to outbreaks of illness associated with fresh produce. Appl Environ Microbiol. 2011;77:3952–3959. doi:10.1128/AEM.02420-10.
  • Venegas DP, Mk DLF, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs) mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.01486.
  • Wolfe AJ. The acetate switch. Microbiol Mol Biol Rev. 2005;69:12–50. doi:10.1128/MMBR.69.1.12-50.2005.
  • Enjalbert B, Millard P, Dinclaux M, Portais JC, Létisse F. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci Rep. 2017;7:1–11. doi:10.1038/srep42135.
  • Millard P, Enjalbert B, Uttenweiler-Joseph S, Portais JC, Létisse F. Control and regulation of acetate overflow in Escherichia coli. Elife. 2021;10:1–21. doi:10.7554/eLife.63661.
  • Brown DR. Nitrogen starvation induces persister cell formation in Escherichia coli. J Bacteriol, 2019;201(3):e00622–18.doi:10.1128/JB.00622-18.
  • Feng J, Atkinson MR, McCleary W, Stock JB, Wanner BL, Ninfa AJ. Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol. 1992;174:6061–6070. doi:10.1128/jb.174.19.6061-6070.1992.
  • Serapio-Palacios A, Woodward SE, Vogt SL, Deng W, Creus-Cuadros A, Huus KE, Cirstea M, Gerrie M, Barcik W, Yu H, et al. Type VI secretion systems of pathogenic and commensal bacteria mediate niche occupancy in the gut. Cell Rep. 2022;39:110731. doi:10.1016/j.celrep.2022.110731.
  • Flaugnatti N, Isaac S, Lemos Rocha LF, Stutzmann S, Rendueles O, Stoudmann C, Vesel N, Garcia-Garcera M, Buffet A, Sana TG, et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat Commun. 2021;12:1–13. doi:10.1038/s41467-021-26041-0.
  • Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili. Elife. 2021;10:1–31. doi:10.7554/eLife.63755.
  • Pacheco AR, Sperandio V. Shiga toxin in enterohemorrhagic E. coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol. 2012;2:81. doi:10.3389/fcimb.2012.00081.