7,420
Views
12
CrossRef citations to date
0
Altmetric
Review

Comparing early life nutritional sources and human milk feeding practices: personalized and dynamic nutrition supports infant gut microbiome development and immune system maturation

, & ORCID Icon
Article: 2190305 | Received 19 Sep 2022, Accepted 06 Mar 2023, Published online: 13 Apr 2023

References

  • Hornef MW, Torow N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ – timed succession of non-redundant phases to establish mucosal host–microbial homeostasis after birth. Immunology. 2020;159(1):15–25. doi:10.1111/imm.13149.
  • Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano F-J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front Immunol. 2020;11:1153. doi:10.3389/fimmu.2020.01153.
  • Nussbaum C, Gloning A, Pruenster M, Frommhold D, Bierschenk S, Genzel-Boroviczeny O, von Andrian UH, Quackenbush E, Sperandio M. Neutrophil and endothelial adhesive function during human fetal ontogeny. J Leukoc Biol. 2013;93(2):175–184. doi:10.1189/jlb.0912468.
  • Sadeghi K, Berger A, Langgartner M, Prusa A, Hayde M, Herkner K, Pollak A, Spittler A, Förster-waldl E. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. J Infect Dis. 2007;195(2):296–302. doi:10.1086/509892.
  • Willems F, Vollstedt S, Suter M. Phenotype and function of neonatal DC. Eur J Immunol. 2009;39(1):26–35. doi:10.1002/eji.200838391.
  • Brambell FWR. The transmission of immunity from mother to young and the catabolism of immunoglobulins. The Lancet. 1966;2(7473):1087–1093. doi:10.1016/S0140-6736(66)92190-8.
  • Haynes BF, Martin ME, Kay HH, Kurtzberg J. Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med. 1988;168(3):1061–1080. doi:10.1084/jem.168.3.1061.
  • Mold JE, Venkatasubrahmanyam S, Burt TD, Michaëlsson J, Rivera JM, Galkina SA, Weinberg K, Stoddart CA, McCune JM. Fetal and adult hematopoietic stem cells give rise to distinct t cell lineages in humans. Science. 2010;330(6011):1695–1699. doi:10.1126/science.1196509.
  • Dawod B, Marshall JS, Azad MB. Breastfeeding and the developmental origins of mucosal immunity: how human milk shapes the innate and adaptive mucosal immune systems. Curr Opin Gastroenterol. 2021;37(6):547–556. doi:10.1097/MOG.0000000000000778.
  • Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The role of microbiota in infant health: from early life to adulthood. Front Immunol. 2021;12:708472. doi:10.3389/fimmu.2021.708472.
  • Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294–307. doi:10.1097/MPG.0000000000000597.
  • He X, Parenti M, Grip T, Domellöf M, Lönnerdal B, Hernell O, Timby N, Slupsky CM. Metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine MFGM supplemented formula: a randomized controlled trial. Sci Rep. 2019;9(1):339. doi:10.1038/s41598-019-48858-y.
  • Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res. 2010;67(4):357–362. doi:10.1203/PDR.0b013e3181d026da.
  • Cryan JF, O’riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2):179–194. doi:10.1016/S1474-4422(19)30356-4.
  • Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019;11(7):1613. doi:10.3390/nu11071613.
  • Stewart CJ, Ajami NJ, O’brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni HV, Metcalf GA, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–588. doi:10.1038/s41586-018-0617-x.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. doi:10.1016/j.chom.2015.04.004.
  • Davis EC, Dinsmoor AM, Wang M, Donovan SM. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. Dig Dis Sci. 2020;65(3):706–722. doi:10.1007/s10620-020-06092-x.
  • Forbes JD, Azad MB, Vehling L, Tun HM, Konya TB, Guttman DS, Field CJ, Lefebvre D, Sears MR, Becker AB, et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 2018;172(7):e181161. doi:10.1001/jamapediatrics.2018.1161.
  • Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS, Bender JM, Azad MB, Thompson AL, Weiss ST, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169. doi:10.1038/s41467-018-06473-x.
  • Panwar RB, Sequeira RP, Clarke TB. Microbiota-mediated protection against antibiotic-resistant pathogens. Genes Immun. 2021;22(5-6):255–267. doi:10.1038/s41435-021-00129-5.
  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–547. doi:10.1038/nature09646.
  • Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-Activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–1625. doi:10.3945/jn.109.104638.
  • Zhang S, Paul S, Kundu P. NF-κB regulation by gut microbiota decides homeostasis or disease outcome during ageing. Front Cell Dev Biol. 2022;10:874940. doi:10.3389/fcell.2022.874940.
  • Frost BL, Jilling T, Caplan MS. The importance of pro-inflammatory signaling in neonatal necrotizing enterocolitis. Semin Perinatol. 2008;32(2):100–106. doi:10.1053/j.semperi.2008.01.001.
  • Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE, McCrate S, Kim D, Hsieh C-S, Hogan SP, Elson CO, et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci Immunol. 2017;2(18): eaao1314. doi:10.1126/sciimmunol.aao1314.
  • Verhasselt V. Neonatal tolerance under breastfeeding influence. Curr Opin Immunol. 2010;22(5):623–630. doi:10.1016/j.coi.2010.08.008.
  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24. doi:10.1007/s00394-017-1445-8.
  • van Esch BC, Porbahaie M, Abbring S, Garssen J, Potaczek DP, Savelkoul HFJ, van Neerven RJJ. The impact of milk and its components on epigenetic programming of immune function in early life and beyond: implications for allergy and asthma. Front Immunol. 2020;11:2141. doi:10.3389/fimmu.2020.02141.
  • Stiemsma LT, Turvey SE. Asthma and the microbiome: defining the critical window in early life. Allergy Asthma Clin Immunol. 2017;13:3. doi:10.1186/s13223-016-0173-6.
  • Sarkar A, Yoo JY, Dutra SVO, Morgan KH, Groer M. The association between early-life gut microbiota and long-term health and diseases. J Clin Med. 2022;10(3):459. doi:10.3390/jcm10030459.
  • Palmquist AEL, Doehler K. Human milk sharing practices in the U.S. Matern Child Nutr. 2016;12(2):278–290. doi:10.1111/mcn.12221.
  • Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013;60(1):49–74. doi:10.1016/j.pcl.2012.10.002.
  • Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. The Lancet. 2016;387(10017):475–490. doi:10.1016/S0140-6736(15)01024-7.
  • Shenhav L, Azad MB, Gilbert JA. Using community ecology theory and computational microbiome methods to study human milk as a biological system. mSystems. 2022;7(1): e0113221. doi:10.1128/msystems.01132-21.
  • Christian P, Smith ER, Lee SE, Vargas AJ, Bremer AA, Raiten DJ. The need to study human milk as a biological system. Am J Clin Nutr. 113(5);1063–1072. doi:10.1093/ajcn/nqab075.
  • Kulski J, Hartmann P. Changes in human milk composition during the initiation of lactation. Aust J Exp Biol Med Sci. 1981;59(1):101–114. doi:10.1038/icb.1981.6.
  • Riskin A, Almog M, Peri R, Halasz K, Srugo I, Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr Res. 2012;71(2):220–225. doi:10.1038/pr.2011.34.
  • Ewaschuk JB, Unger S, Harvey S, O’connor DL, Field CJ. Effect of pasteurization on immune components of milk: implications for feeding preterm infants. Appl Physiol Nutr Metab. 2011;36(2):175–182. doi:10.1139/h11-008.
  • Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017;22:11. doi:10.1186/s11658-017-0042-4.
  • Dussault N, Cayer MP, Landry P, de Grandmont MJ, Cloutier M, Thibault L, Girard M. Comparison of the effect of holder pasteurization and high-pressure processing on human milk bacterial load and bioactive factors preservation. J Pediatr Gastroenterol Nutr. 2021;72(5):756–762. doi:10.1097/MPG.0000000000003065.
  • Ahrabi AF, Handa D, Codipilly CN, Shah S, Williams JE, McGuire MA, Potak D, Aharon GG, Schanler RJ. Effects of extended freezer storage on the integrity of human milk. J Pediatr. 2016;177:140–143. doi:10.1016/j.jpeds.2016.06.024.
  • Czosnykowska-Łukacka M, Lis-Kuberka J, Królak-Olejnik B, Orczyk-Pawiłowicz M. Changes in human milk immunoglobulin profile during prolonged lactation. Front Pediatr. 2020;8:428. doi:10.3389/fped.2020.00428.
  • Clyne PS, Kulczycki A. Human breast milk contains bovine lgG. Relationship to infant colic? Pediatrics. 1991;87(4):439–444. doi:10.1542/peds.87.4.439.
  • Ramírez-Santana C, Pérez-Cano FJ, Audí C, Castell M, Moretones MG, López-Sabater MC, Castellote C, Franch A. Effects of cooling and freezing storage on the stability of bioactive factors in human colostrum. J Dairy Sci. 2012;95(5):2319–2325. doi:10.3168/jds.2011-5066.
  • Peroni DG, Piacentini GL, Bodini A, Pigozzi R, Boner AL. Transforming growth factor-β1 is elevated in unpasteurized cow’s milk. Pediatr Allergy Immunol. 2009;20(1):42–44. doi:10.1111/j.1399-3038.2008.00737.x.
  • Frost BL, Jilling T, Lapin B, Maheshwari A, Caplan MS. Maternal breast milk transforming growth factor-beta and feeding intolerance in preterm infants. Pediatr Res. 2014;76(4):386–393. doi:10.1038/pr.2014.96.
  • Dawod B, Marshall JS. Cytokines and soluble receptors in breast milk as enhancers of oral tolerance development. Front Immunol. 2019;10:16. doi:10.3389/fimmu.2019.00016.
  • Untalan PB, Keeney SE, Palkowetz KH, Rivera A, Goldman AS. Heat susceptibility of interleukin-10 and other cytokines in donor human milk. Breastfeed Med. 2009;4(3):137–144. doi:10.1089/bfm.2008.0145.
  • Giorgi MV, Codipilly CN, Potak D, Heiman HS, Schanler RJ. Pasteurization preserves IL-8 in human milk. Front Pediatr. 2018;6:281. doi:10.3389/fped.2018.00281.
  • Hoeflich A, Meyer Z. Functional analysis of the IGF-system in milk. Best Pract Res Clin Endocrinol Metab. 2017;31(4):409–418. doi:10.1016/j.beem.2017.10.002.
  • Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R. Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers’ breast milk. Am J Clin Nutr. 2004;80(3):722–728. doi:10.1093/ajcn/80.3.722.
  • Ewaschuk JB, Unger S, O’connor DL, Stone D, Harvey S, Clandinin MT, Field CJ. Effect of pasteurization on selected immune components of donated human breast milk. J Perinatol. 2011;31(9):593–598. doi:10.1038/jp.2010.209.
  • Cummins AG, Thompson FM. Effect of breast milk and weaning on epithelial growth of the small intestine in humans. Gut. 2002;51(5):748–754. doi:10.1136/gut.51.5.748.
  • Yagi H, Suzuki S, Noji T, Nagashima K, Kuroume T. Epidermal growth factor in cow’s milk and milk formulas. Acta Paediatr Scand. 1986;75(2):233–235. doi:10.1111/j.1651-2227.1986.tb10190.x.
  • Satue-Gracia MT, Frankel EN, Rangavajhyala N, German JB. Lactoferrin in infant formulas: effect on oxidation. J Agric Food Chem. 2000;48(10):4984–4990. doi:10.1021/jf0002490.
  • Kapourchali FR, Cresci GAM. Early-life gut microbiome—the importance of maternal and infant factors in its establishment. Nutr Clin Pract. 2020;35(3):386–405. doi:10.1002/ncp.10490.
  • Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014;34(8):599–605. doi:10.1038/jp.2014.47.
  • Hahn W, Kim J, Song S, Park S, Kang NM. The human milk oligosaccharides are not affected by pasteurization and freeze-drying. J Matern Fetal Neonatal Med. 2019;32:985–991. doi:10.1080/14767058.2017.1397122.
  • Almeida CC, Mendonça Pereira BF, Leandro KC, Costa MP, Spisso BF, Conte-Junior CA. Bioactive compounds in infant formula and their effects on infant nutrition and health: a systematic literature review. Int J Food Sci. 2021;2021:8850080. doi:10.1155/2021/8850080.
  • Bührer C, Ensenauer R, Jochum F, Kalhoff H, Koletzko B, Lawrenz B, Mihatsch W, Posovszky C, Rudloff S. Infant formulas with synthetic oligosaccharides and respective marketing practices. Mol Cell Pediatr. 2022;9(1):14. doi:10.1186/s40348-022-00147-x.
  • Plows JF, Berger PK, Jones RB, Alderete TL, Yonemitsu C, Najera JA, Khwajazada S, Bode L, Goran MI. Longitudinal changes in Human Milk Oligosaccharides (HMOs) over the course of 24 months of lactation. J Nutr. 2021;151(4):876–882. doi:10.1093/jn/nxaa427.
  • Floris LM, Stahl B, Abrahamse-Berkeveld M, Teller IC. Human milk fatty acid profile across lactational stages after term and preterm delivery: a pooled data analysis. Prostaglandins Leukot Essent Fatty Acids. 2020;156:102023. doi:10.1016/j.plefa.2019.102023.
  • Fidler N, Sauerwald TU, Demmelmair H, Koletzko B. Fat content and fatty acid composition of fresh, pasteurized, or sterilized human milk. Adv Exp Med Biol. 2001;501:485–495 doi:10.1007/978-1-4615-1371-1_60.
  • Chang YC, Chen CH, Lin MC. The macronutrients in human milk change after storage in various containers. Pediatr Neonatol. 2012;53(3):205–209. doi:10.1016/j.pedneo.2012.04.009.
  • Castillo F, Castillo-Ferrer FJ, Cordobilla B, Domingo JC. Inadequate content of Docosahexaenoic Acid (DHA) of donor human milk for feeding preterm infants: a comparison with mother’s own milk at different stages of lactation. Nutrients. 2021;13(4):1300. doi:10.3390/nu13041300.
  • García-Lara NR, Escuder-Vieco D, García-Algar O, de La Cruz J, Lora D, Pallás-Alonso C. Effect of freezing time on macronutrients and energy content of breastmilk. Breastfeed Med. 2012;7(4):295–301. doi:10.1089/bfm.2011.0079.
  • Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and their potential applications in early life nutrition and beyond. Int J Mol Sci. 2019;20(19):4673. doi:10.3390/ijms20194673.
  • Scano P, Murgia A, Demuru M, Consonni R, Caboni P. Metabolite profiles of formula milk compared to breast milk. Food Res Int. 2016;87:76–82. doi:10.1016/j.foodres.2016.06.024.
  • Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr. 2020;63(8):301–309. doi:10.3345/cep.2020.00059.
  • Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, et al. Immunomodulatory properties of human breast milk: microRNA contents and potential epigenetic effects. Biomed. 2022;10(6):1219. doi:10.3390/biomedicines10061219.
  • Matias-Garcia PR, Wilson R, Mussack V, Reischl E, Waldenberger M, Gieger C, Anton G, Peters A, Kuehn-Steven A. Impact of long-term storage and freeze-thawing on eight circulating microRnas in plasma samples. PLoS One. 2020;15(1):e0227648. doi:10.1371/journal.pone.0227648.
  • Howard KM, Jati Kusuma R, Baier SR, Friemel T, Markham L, Vanamala J, Zempleni J. Loss of miRnas during processing and storage of cow’s (Bos taurus) milk. J Agric Food Chem. 2015;63(2):588–592. doi:10.1021/jf505526w.
  • Moossavi S, Azad MB. Origins of human milk microbiota: new evidence and arising questions. Gut Microbes. 2020;12(1):1667722. doi:10.1080/19490976.2019.1667722.
  • Mantziari A, Rautava S. Factors influencing the microbial composition of human milk. Semin Perinatol. 2021;45(8):151507 doi:10.1016/j.semperi.2021.151507.
  • Fehr K, Moossavi S, Sbihi H, Boutin RCT, Bode L, Robertson B, Yonemitsu C, Field CJ, Becker AB, Mandhane PJ, et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD cohort study. Cell Host Microbe. 2020;28(2):285–297. doi:10.1016/j.chom.2020.06.009.
  • Pittard WB, Geddes KM, Brown S, Mintz S, Hulsey TC. Bacterial contamination of human milk: container type and method of expression. Am J Perinatol. 1991;8(1):25–27. doi:10.1055/s-2007-999332.
  • World Health Organization. Guidelines on optimal feeding of low birth-weight infants in low- and middle-income countries. World Health Organization. Geneva: WHO; 2011.
  • Fang MT, Chatzixiros E, Grummer-Strawn L, Engmann C, Israel-Ballard K, Mansen K, O’connor DL, Unger S, Herson M, Weaver G, et al. Developing global guidance on human milk banking. Bull World Health Organ. 2021;99(12):892–900. doi:10.2471/BLT.21.286943.
  • Permanyer M, Castellote C, Ramírez-Santana C, Audí C, Pérez-Cano FJ, Castell M, López-Sabater MC, Franch À. Maintenance of breast milk immunoglobulin a after high-pressure processing. J Dairy Sci. 2010;93(3):877–883. doi:10.3168/jds.2009-2643.
  • Martin CR, Ling PR, Blackburn GL. Review of Infant Feeding: key Features of Breast Milk and Infant Formula. Nutrients. 2016;8(5):279. doi:10.3390/nu8050279.
  • Codex Alimentarius Commission. Standard for infant formula and formulas for special medical purposes intended for infants. Codex Stan 72 - 1981. Rome, Codex Alimentarius Commission; 2007. p. 1–18.
  • Maryniak NZ, Sancho AI, Hansen EB, Bøgh KL. Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods. 2022;11(7):926. doi:10.3390/foods11070926.
  • Neumer F, Urraca O, Alonso J, Palencia J, Varea V, Theis S, Rodriguez-palmero M, Moreno-muñoz JA, Guarner F, Veereman G, et al. Long-term safety and efficacy of prebiotic enriched infant formula—a randomized controlled trial. Nutrients. 2021;13(4):1276. doi:10.3390/nu13041276.
  • Azad MB, Nickel NC, Bode L, Brockway M, Brown A, Chambers C, Goldhammer C, Hinde K, McGuire M, Munblit D, et al. Breastfeeding and the origins of health: interdisciplinary perspectives and priorities. Matern Child Nutr. 2021;17(2):e13109. doi:10.1111/mcn.13109.
  • Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity. Curr Opin Microbiol. 2020;56:30–37. doi:10.1016/j.mib.2020.05.011.
  • Laouar A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020;41(3):225–239. doi:10.1016/j.it.2020.01.005.
  • Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, Sant’angelo D, Laouar Y, Laouar A. Transfer of Maternal Immune Cells by Breastfeeding: maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer’s Patches of the Nursed Infant. PLoS One. 2016;11(6):e0156762. doi:10.1371/journal.pone.0156762.
  • Arvola M, Gustafsson E, Svensson L, Jansson L, Holmdahl R, Heyman B, Okabe M, Mattsson R. Immunoglobulin-Secreting Cells of Maternal Origin Can Be Detected in B Cell-Deficient Mice1. Biol Reprod. 2000;63(6):1817–1824. doi:10.1095/biolreprod63.6.1817.
  • Field CJ. The Immunological Components of Human Milk and Their Effect on Immune Development in Infants. J Nutr. 2005;135(1):1–4. doi:10.1093/jn/135.1.1.
  • Tuaillon E, Valea D, Becquart P, Al TY, Meda N, Bollore K, van de PP, Vendrell J-P. Human Milk-Derived B Cells: a Highly Activated Switched Memory Cell Population Primed to Secrete Antibodies. J Immunol. 2009;182(11):7155–7162. doi:10.4049/jimmunol.0803107.
  • Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell. 2021;184(6):1486–1499. doi:10.1016/j.cell.2021.02.031.
  • Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science. 2015;349(6251):993–997. doi:10.1126/science.aaa9420.
  • Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, Galan C, Belkaid Y, Bonneau R, Littman DR. C-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 2018;554(7692):373–377. doi:10.1038/nature25500.
  • Ohnmacht C, Park J-H, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, et al. The microbiota regulates type 2 immunity through RORγt + T cells. Science. 2015;349(6251):989–993. doi:10.1126/science.aac4263.
  • Sonnenberg GF, Artis D. Innate Lymphoid Cell Interactions with Microbiota: implications for Intestinal Health and Disease. Immunity. 2012;37(4):601–610. doi:10.1016/j.immuni.2012.10.003.
  • Baban B, Malik A, Bhatia J, Yu JC. Presence and Profile of Innate Lymphoid Cells in Human Breast Milk. JAMA Pediatr. 2018;172(6):594–596. doi:10.1001/jamapediatrics.2018.0148.
  • Oddy WH, Rosales F. A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child. Pediatr Allergy Immunol. 2010;21:47–59. doi:10.1111/j.1399-3038.2009.00913.x.
  • Sitarik AR, Bobbitt KR, Havstad SL, Fujimura KE, Levin AM, Zoratti EM, Kim H, Woodcroft KJ, Wegienka G, Ownby DR, et al. Breast Milk Transforming Growth Factor β is Associated with Neonatal Gut Microbial Composition. J Pediatr Gastroenterol Nutr. 2017;65(3):e60–e67. doi:10.1097/MPG.0000000000001585.
  • Rautava S, Nanthakumar NN, Dubert-Ferrandon A, Lu L, Rautava J, Walker WA. Breast Milk-Transforming Growth Factor-β2 Specifically Attenuates IL-1β-Induced Inflammatory Responses in the Immature Human Intestine via an SMAD6- and ERK-Dependent Mechanism. Neonatology. 2011;99(3):192–201. doi:10.1159/000314109.
  • Järvinen KM, Suárez-Fariñas M, Savilahti E, Sampson HA, Berin MC. Immune factors in breast milk related to infant milk allergy are independent of maternal atopy. J Allergy Clin Immunol. 2015;135(5):1390–1393. doi:10.1016/j.jaci.2014.10.051.
  • Gersting JA, Christensen RD, Calhoun DA. Effects of enterally administering granulocyte colony-stimulating factor to suckling mice. Pediatr Res. 2004;55(5):802–806. doi:10.1203/01.PDR.0000117846.51197.7C.
  • Aspinall R, Prentice AM, Ngom PT, Ryffel B. Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T-Cell Development in Offspring. PLoS One. 2011;6(6):e20812. doi:10.1371/journal.pone.0020812.
  • Jones-Hall YL, Nakatsu CH. The Intersection of TNF, IBD and the Microbiome. Gut Microbes. 2016;7(1):58–62. doi:10.1080/19490976.2015.1121364.
  • Czosnykowska-Łukacka M, Orczyk-Pawiłowicz M, Broers B, Królak-Olejnik B. Lactoferrin in Human Milk of Prolonged Lactation. Nutrients. 2019;11(10):2350. doi:10.3390/nu11102350.
  • Manzoni P. Clinical Benefits of Lactoferrin for Infants and Children. J Pediatr. 2016;173:S43–52. doi:10.1016/j.jpeds.2016.02.075.
  • Ellison RT, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991;88(4):1080–1091. doi:10.1172/JCI115407.
  • Vega-Bautista A, de la Garza M, Carrero JC, Campos-Rodríguez R, Godínez-Victoria M, Drago-Serrano ME. The Impact of Lactoferrin on the Growth of Intestinal Inhabitant Bacteria. Int J Mol Sci. 2019;20(19):4707. doi:10.3390/ijms20194707.
  • Oda H, Wakabayashi H, Yamauchi K, Abe F. Lactoferrin and bifidobacteria. Biometals. 2014;27(5):915–922. doi:10.1007/s10534-014-9741-8.
  • Lönnerdal B, Jiang R, Du X. Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. J Pediatr Gastroenterol Nutr. 2011;53(6):606–614. https://pubmed.ncbi.nlm.nih.gov/21832946/.
  • Demers-Mathieu V, Huston RK, Markell AM, McCulley EA, Martin RL, Spooner M, Dallas DC. Differences in Maternal Immunoglobulins within Mother’s Own Breast Milk and Donor Breast Milk and across Digestion in Preterm Infants. Nutrients. 2019;11(4):920. doi:10.3390/nu11040920.
  • Takemura T, Eishi Y. Distribution of secretory component and immunoglobulins in the developing lung. Am Rev Respir Dis. 1985;131(1):125–130. doi:10.1164/arrd.1985.131.1.125.
  • Granato A, Chen Y, Wesemann DR. Primary immunoglobulin repertoire development: time and space matter. Curr Opin Immunol. 2015;33:126–131. doi:10.1016/j.coi.2015.02.011.
  • Donald K, Petersen C, Turvey SE, Finlay BB, Azad MB. Secretory IgA: linking microbes, maternal health, and infant health through human milk. Cell Host Microbe. 2022;30(5):650–659. doi:10.1016/j.chom.2022.02.005.
  • Dzidic M, Mira A, Artacho A, Abrahamsson TR, Jenmalm MC, Collado MC, Ebisawa M. Allergy development is associated with consumption of breastmilk with a reduced microbial richness in the first month of life. Pediatr Allergy Immunol. 2020;31(3):250–257. doi:10.1111/pai.13176.
  • Kramer DR, Cebra JJ. Role of maternal antibody in the induction of virus specific and bystander IgA responses in peyer’s patches of suckling mice. Int Immunol. 1995;7(6):911–918. doi:10.1093/intimm/7.6.911.
  • Ramanan D, Sefik E, Galván-Peña S, Wu M, Yang L, Yang Z, Kostic A, Golovkina TV, Kasper DL, Mathis D, et al. An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell. 2020;181(6):1276–1290. doi:10.1016/j.cell.2020.04.030.
  • Koch MA, Reiner GL, Lugo KA, Kreuk LSM, Stanbery AG, Ansaldo E, Seher TD, Ludington WB, Barton GM. Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life. Cell. 2016;165(4):827–841. doi:10.1016/j.cell.2016.04.055.
  • Thai JD, Gregory KE. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients. 2020;12(2):581. doi:10.3390/nu12020581.
  • Rogier EW, Frantz AL, Bruno MEC, Wedlund L, Cohen DA, Stromberg AJ, Kaetzel CS Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA. 2014;111(8):3074–3079. doi:10.1073/pnas.1315792111.
  • Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol. 2021;12:683022. doi:10.3389/fimmu.2021.683022.
  • Stinson LF, Trevenen ML, Geddes DT. The viable microbiome of human milk differs from the metataxonomic profile. Nutrients. 2021;13(12):4445. doi:10.3390/nu13124445.
  • Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, Lix LM, de Souza RJ, Becker AB, Mandhane PJ, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25(2):324–335.e4. doi:10.1016/j.chom.2019.01.011.
  • Treven P, Mahnič A, Rupnik M, Golob M, Pirš T, Matijašić BB, Lorbeg PM. Evaluation of human milk microbiota by 16S rRNA Gene Next-Generation Sequencing (NGS) and Cultivation/MALDI-TOF mass spectrometry identification. Front Microbiol. 2019;10:2612. doi:10.3389/fmicb.2019.02612.
  • Piñeiro-Ramos JD, Parra-Llorca A, Ten-Doménech I, Gormaz M, Ramón-Beltrán A, Cernada M, Quintás G, Collado MC, Kuligowski J, Vento M. Effect of donor human milk on host-gut microbiota and metabolic interactions in preterm infants. Clin Nutr. 2021;40(3):1296–1309. doi:10.1016/j.clnu.2020.08.013.
  • Cacho NT, Harrison NA, Parker LA, Padgett KA, Lemas DJ, Marcial GE, Li N, Carr LE, Neu J, Lorca GL. Personalization of the microbiota of donor human milk with mother’s own milk. Front Microbiol. 2017;8:1470. doi:10.3389/fmicb.2017.01470.
  • Marin-Gómez W, Grande MJ, Pérez-Pulido R, Galvez A, Lucas R. Changes in the bacterial diversity of human milk during late lactation period (weeks 21 to 48). Foods. 2020;9(9):1184. doi:10.3390/foods9091184.
  • Gil-Campos M, López MÁ, Rodriguez-Benítez MV, Romero J, Roncero I, Linares MD, Maldonado J, López-Huertas E, Berwind R, Ritzenthaler KL, et al. Lactobacillus fermentum CECT 5716 is safe and well tolerated in infants of 1–6 months of age: a randomized controlled trial. Pharmacol Res. 2012;65(2):231–238. doi:10.1016/j.phrs.2011.11.016.
  • Thongaram T, Hoeflinger JL, Chow JM, Miller MJ. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci. 2017;100(10):7825–7833. doi:10.3168/jds.2017-12753.
  • Chong HY, Tan LTH, Law JWF, Hong KW, Ratnasingam V, Ab Mutalib NS, Lee LH, Letchumanan V. Exploring the potential of human milk and formula milk on infants’ gut and health. Nutrients. 2022;14(17):3554. doi:10.3390/nu14173554.
  • Maldonado J, Cañabate F, Sempere L, Vela F, Sánchez AR, Narbona E, López-Huertas E, Geerlings A, Valero AD, Olivares M, et al. Human milk probiotic lactobacillus fermentum CECT5716 reduces the incidence of gastrointestinal and upper respiratory tract infections in infants. J Pediatr Gastroenterol Nutr. 2012;54(1):55–61. doi:10.1097/MPG.0b013e3182333f18.
  • Chi C, Xue Y, Liu R, Wang Y, Lv N, Zeng H, Buys N, Zhu B, Sun J, Yin C. Effects of a formula with a probiotic Bifidobacterium lactis supplement on the gut microbiota of low birth weight infants. Eur J Nutr. 2019;59(4):1493–1503. doi:10.1007/s00394-019-02006-4.
  • Esaiassen E, Hjerde E, Cavanagh JP, Pedersen T, Andresen JH, Rettedal SI, Støen R, Nakstad B, Willassen NP, Klingenberg C. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front Pediatr. 2018;6:347. doi:10.3389/fped.2018.00347.
  • Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60:S129–S134. doi:10.1093/cid/civ085.
  • Quin C, Estaki M, Vollman DM, Barnett JA, Gill SK, Gibson DL. Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci Rep. 2018;8(1):8283. doi:10.1038/s41598-018-26423-3.
  • Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, Hoops SL, Soraisham A, Vayalumkal J, Dersch-Mills D, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 2022;30(5):696–711.e5. doi:10.1016/j.chom.2022.04.005.
  • Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162. doi:10.1093/glycob/cws074.
  • Thum C, Wall CR, Weiss GA, Wang W, Szeto IMY, Day L. Changes in HMO concentrations throughout lactation: influencing factors, health effects and opportunities. Nutri. 2021;13(7):2272. doi:10.3390/nu13072272.
  • Azad MB, Robertson B, Atakora F, Becker AB, Subbarao P, Moraes TJ, Mandhane PJ, Turvey SE, Lefebvre DL, Sears MR, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J Nutr. 2018;148(11):1733–1742. doi:10.1093/jn/nxy175.
  • Arslanoglu S, Moro GE, Boehm G. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr. 2007;137(11):2420–2424. doi:10.1093/jn/137.11.2420.
  • Meli F, Puccio G, Cajozzo C, Ricottone GL, Pecquet S, Sprenger N, Steenhout P. Growth and safety evaluation of infant formulae containing oligosaccharides derived from bovine milk: a randomized, double-blind, noninferiority trial. BMC Pediatr. 2014;14:306. doi:10.1186/s12887-014-0306-3.
  • Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagström H, Luna MS, Migacheva N, Mosselmans JM, Picaud JC, Possner M, et al. Human milk oligosaccharides: 2’-Fucosyllactose (2’-FL) and Lacto-N-Neotetraose (LNnT) in infant formula. Nutrients. 2018;10(9) :1161. doi:10.3390/nu10091161.
  • Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional dynamics of the milk fat globule and its role in infant development. Front Pediatr. 2018;6:313. doi:10.3389/fped.2018.00313.
  • Calder PC. Functional roles of fatty acids and their effects on human health. J Parenter Enteral Nutr. 2015;39:18S–32S. doi:10.1177/0148607115595980.
  • Moossavi S, Atakora F, Miliku K, Sepehri S, Robertson B, Duan QL, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the child cohort. Front Nutr. 2019;6:58. doi:10.3389/fnut.2019.00058.
  • Churchward CP, Alany RG, Snyder LAS. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit Rev Microbiol. 2018;44(5):561–570. doi:10.1080/1040841X20181467875.
  • Perez-Burillo S, Rajakaruna S, Paliy O. Growth of Bifidobacterium species is inhibited by free fatty acids and bile salts but not by glycerides. AIMS Microbiol. 2022;8(1):53–60. doi:10.3934/microbiol.2022005.
  • Bobiński R, Bobińska J. Fatty acids of human milk – a review. Int J Vitam Nutr Res. 2020;92(3-4):280–291. doi:10.1024/0300-9831/a000651.
  • Laitinen K, Hoppu U, Hämäläinen M, Linderborg K, Moilanen E, Isolauri E. Breast milk fatty acids may link innate and adaptive immune regulation: analysis of soluble CD14, prostaglandin E2, and fatty acids. Pediatr Res. 2006;59(5):723–727. doi:10.1203/01.pdr.0000203158.31452.9e.
  • Harbige LS. Fatty acids, the immune response, and autoimmunity: a question of n−6 essentiality and the balance between n−6 and n−3. Lipids. 2003;38(4):323–341. doi:10.1007/s11745-003-1067-z.
  • Walker WA, Iyengar RS. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res. 2015;77(1):220–228. doi:10.1038/pr.2014.160.
  • Zhang L, Qu J, Huppertz T, Liu J, Sun Z, Zhou P. Effects of different freeze-thaw processes on the bioactivity and digestibility of human milk. LWT. 2022;156:113025. doi:10.1016/j.lwt.2021.113025.
  • Kent G. Regulating fatty acids in infant formula: critical assessment of U.S. policies and practices. Int Breastfeed J. 2014;9(1):2. doi:10.1186/1746-4358-9-2.
  • Looijesteijn E, Brouwer RWW, Schoemaker RJW, Ulfman LH, Ham SL, Jeurink P, Karaglani E, van IJcken WFJ, Manios Y. Effect of bovine milk fat-based infant formulae on microbiota, metabolites and stool parameters in healthy term infants in a randomized, crossover, placebo-controlled trial. BMC Nutr. 2022;8(1):93. doi:10.1186/s40795-022-00575-y.
  • Schmelzle H, Wirth S, Skopnik H, Radke M, Knol J, Böckler HM, Wells J, Fusch C. Randomized double-blind study of the nutritional efficacy and bifidogenicity of a new infant formula containing partially hydrolyzed protein, a high β-palmitic acid level, and nondigestible oligosaccharides. J Pediatr Gastroenterol Nutr. 2003;36(3):343–351. doi:10.1097/00005176-200303000-00008.
  • Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. Postbiotics—a step beyond pre- and probiotics. Nutrients. 2020;12(8):2189. doi:10.3390/nu12082189.
  • Kataria J, Li N, Wynn JL, Neu J. Probiotic microbes: do they need to be alive to be beneficial? Nutr Rev. 2009;67:546–550. doi:10.1111/j.1753-4887.2009.00226.x.
  • Sugahara H, Yao R, Odamaki T, Xiao JZ. Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment. Benef Microbes. 2017;8(3):463–472. doi:10.3920/BM2016.0158.
  • Zagato E, Mileti E, Massimiliano L, Fasano F, Budelli A, Penna G, Rescigno M . Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have anti-inflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo. PLoS One. 2014;9(2):e87615. doi:10.1371/journal.pone.0087615.
  • Beghetti I, Barone M, de Fazio L, Laderchi E, Biagi E, Turroni S, Brigidi P, Pession A, Corvaglia L, Aceti A. A pilot study on donor human milk microbiota: a comparison with preterm human milk microbiota and the effect of pasteurization. Nutrients. 2022;14(12):2483. doi:10.3390/nu14122483.
  • Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, Sparwasser T, Bérard M, Cerf-Bensussan N, Eberl G. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity. 2019;50(5):1276–1288.e5. doi:10.1016/j.immuni.2019.02.014.
  • Kulkarni DH, Gustafsson JK, Knoop KA, McDonald KG, Bidani SS, Davis JE, Floyd AN, Hogan SP, Hsieh C-S, Newberry RD. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunol. 2020;13(2):271–282. doi:10.1038/s41385-019-0240-7.
  • Kulkarni DH, McDonald KG, Knoop KA, Gustafsson JK, Kozlowski KM, Hunstad DA, Miller MJ, Newberry RD. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol. 2018;11(4):1103–1113. doi:10.1038/s41385-018-0007-6.
  • Knoop KA, Coughlin PE, Floyd AN, Ndao IM, Hall-Moore C, Shaikh N, Gasparrini AJ, Rusconi B, Escobedo M, Good M, et al. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc Natl Acad Sci U S A. 2020;117(14):7941–7949. doi:10.1073/pnas.1912022117.
  • Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018;11(6):1551–1557. doi:10.1038/s41385-018-0039-y.
  • Clark JA, Doelle SM, Halpern MD, Saunders TA, Holubec H, Dvorak K, Boitano SA, Dvorak B. Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. Am J Physiol Gastrointest Liver Physiol. 2006;291(5):G938–G949. doi:10.1152/ajpgi.00090.2006.
  • Siggers J, Sangild PT, Jensen TK, Siggers RH, Skovgaard K, Støy ACF, Jensen BB, Thymann T, Bering SB, Boye M. Transition from parenteral to enteral nutrition induces immediate diet-dependent gut histological and immunological responses in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G435–G445. doi:10.1152/ajpgi.00400.2010.
  • Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutri. 2010;1(1):8–16. doi:10.3945/an.110.1004.
  • Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F, Mastrolia SA, Neu J, Rautava S, Russo Spena G, Raimondi F, et al. Epigenetic matters: the link between early nutrition microbiome, and long-term health development. Front Pediatr. 2017;5:178. doi:10.3389/fped.2017.00178.
  • Willems R, Krych L, Rybicki V, Jiang P, Sangild PT, Shen RL, Hensel KO, Wirth S, Postberg J, Jenke AC. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs. Epigenomics. 2015;7(4):553–565. doi:10.2217/epi.15.13.
  • Minekawa R, Takeda T, Sakata M, Hayashi M, Isobe A, Yamamoto T, Tasaka K, Murata Y. Human breast milk suppresses the transcriptional regulation of IL-1β-induced NF-κB signaling in human intestinal cells. Am J Physiol Cell Physiol. 2004;287(5):C1404–C1411. doi:10.1152/ajpcell.00471.2003.
  • Melnik BC, John SM, Carrera-Bastos P, Schmitz G. Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation. Clin Transl Allergy. 2016;6:18. doi:10.1186/s13601-016-0108-9.
  • Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transuct Target Ther. 2017;2:17023–. doi:10.1038/sigtrans.2017.23.
  • Xu J, Shin J, McGee M, Unger S, Bando N, Sato J, Vandewouw M, Patel Y, Branson HM, Paus T, et al. Intake of mother’s milk by very-low-birth-weight infants and variation in DNA methylation of genes involved in neurodevelopment at 5.5 years of age. Am J Clin Nutr. 2022;116(4):1038–1048. doi:10.1093/ajcn/nqac221.
  • Benmoussa A, Provost P. Milk MicroRNAs in health and disease. Compr Rev Food Sci Food Saf. 2019;18(3):703–722. doi:10.1111/1541-4337.12424.
  • Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F, Zheng Y. Human milk cells and lipids conserve numerous known and novel miRnas, some of which are differentially expressed during lactation. PLoS One. 2016;11(4):e0152610. doi:10.1371/journal.pone.0152610.
  • Vélez-Ixta JM, Benítez-Guerrero T, Aguilera-Hernández A, Martínez-Corona H, Corona-Cervantes K, Juárez-Castelán CJ, Rangel-Calvillo MN, García-Mena J. Detection and quantification of immunoregulatory miRnas in human milk and infant milk formula. Biotech (Basel). 2022;11(2):11. doi:10.3390/biotech11020011.
  • Cortese R, Lu L, Yu Y, Ruden D, Claud EC. Epigenome-microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics. 2016;11(3):205–215. doi:10.1080/15592294.2016.1155011.
  • Fofanova TY, Petrosino JF, Kellermayer R. Microbiome–epigenome interactions and the environmental origins of inflammatory bowel diseases. J Pediatr Gastroenterol Nutr. 2016;62(2):208–219. doi:10.1097/MPG.0000000000000950.
  • Zhang Q, Cao X. Epigenetic regulation of the innate immune response to infection. Nat Rev Immunol. 2019;19(7):417–432. doi:10.1038/s41577-019-0151-6.
  • Takahashi K, Sugi Y, Nakano K, Tsuda M, Kurihara K, Hosono A, Kaminogawa S. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J Biol Chem. 2011;286(41):35755–35762. doi:10.1074/jbc.M111.271007.
  • Nagy-Szakal D, Kellermayer R. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. Gut Microbes. 2011;2(3):178–182. doi:10.4161/gmic.2.3.16107.
  • Sharma M, Li Y, Stoll ML, Tollefsbol TO. The epigenetic connection between the gut microbiome in obesity and diabetes. Front Genet. 2020;10:1329. doi:10.3389/fgene.2019.01329.
  • Uozaki H, Fukayama M. Epstein-Barr virus and gastric carcinoma–viral carcinogenesis through epigenetic mechanisms. Int J Clin Exp Pathol. 2008;1(3):198–216.