1,369
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

E. coli Common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments

, , , & ORCID Icon
Article: 2190308 | Received 22 Apr 2022, Accepted 07 Mar 2023, Published online: 22 Mar 2023

References

  • Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26(4):822–20. doi:10.1128/CMR.00022-13.
  • Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–140. doi:10.1038/nrmicro818.
  • Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11(1):142–201. doi:10.1128/CMR.11.1.142.
  • Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee MJ, Black RE, Sestak K. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One. 2013;8(9):e72788. doi:10.1371/journal.pone.0072788.
  • Ochoa TJ, Barletta F, Contreras C, Mercado E. New insights into the epidemiology of enteropathogenic Escherichia coli infection. Trans R Soc Trop Med Hyg. 2008;102(9):852–856. doi:10.1016/j.trstmh.2008.03.017.
  • Gomes TA, Irino K, Girao DM, Girao VB, Guth BE, Vaz TM, Moreira FC, Chinarelli SH, Vieira MAM. Emerging enteropathogenic Escherichia coli strains? Emerg Infect Dis. 2004;10(10):1851–1855. doi:10.3201/eid1010.031093.
  • Hernandes RT, Elias WP, Vieira MA, Gomes TA. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett. 2009;297(2):137–149. doi:10.1111/j.1574-6968.2009.01664.x.
  • Trabulsi LR, Keller R, Tardelli Gomes TA. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis. 2002;8(5):508–513. doi:10.3201/eid0805.010385.
  • Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. J Infect Dis. 2001;183 Suppl 1:S1–4. doi:10.1086/318850.
  • Waller TA, Pantin SAL, Yenior AL, Pujalte GGA. Urinary tract infection antibiotic resistance in the United States. Prim Care. 2018;45:455–466. doi:10.1016/j.pop.2018.05.005.
  • van der Mee-Marquet Nl, Blanc DS, Gbaguidi-Haore H, Dos Santos Borges S, Santos Borges S D, Bertrand X, van der Mee-Marquet NL, Quentin R. Marked increase in incidence for bloodstream infections due to Escherichia coli, a side effect of previous antibiotic therapy in the elderly. Front Microbiol. 2015;6:646. doi:10.3389/fmicb.2015.00646.
  • Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28(1):1–13. doi:10.1016/j.idc.2013.09.003.
  • Wijetunge DS, Gongati S, DebRoy C, Kim KS, Couraud PO, Romero IA, Weksler B, Kariyawasam S. Characterizing the pathotype of neonatal meningitis causing Escherichia coli (NMEC). BMC Microbiol. 2015;15(1):211. doi:10.1186/s12866-015-0547-9.
  • Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y, Yoshida O. Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli. J Urol. 1997;157(3):1127–1129. doi:10.1016/S0022-5347(01)65154-1.
  • Russo TA, Stapleton A, Wenderoth S, Hooton TM, Stamm WE. Chromosomal restriction fragment length polymorphism analysis of Escherichia coli strains causing recurrent urinary tract infections in young women. J Infect Dis. 1995;172(2):440–445. doi:10.1093/infdis/172.2.440.
  • Bm F, Lw R, Phan MD, Km P, Ba F, Cw R, Lenherr SM, Myers JB, Barker AP, Fisher MA, et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun. 2019;10(1):3643. doi:10.1038/s41467-019-11571-5.
  • Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-dependent requirements for fimh and other canonical virulence factors in gut colonization by extraintestinal pathogenic Escherichia coli. Infect Immun. 2018;86(3). doi:10.1128/IAI.00746-17.
  • Moreno E, Andreu A, Pigrau C, Kuskowski MA, Johnson JR, Prats G. Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. J Clin Microbiol. 2008;46(8):2529–2534. doi:10.1128/JCM.00813-08.
  • Chen SL, Wu M, Henderson JP, Hooton TM, Hibbing ME, Hultgren SJ, Gordon JI. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med. 2013;5(184):184ra60. doi:10.1126/scitranslmed.3005497.
  • Brzuszkiewicz E, Thurmer A, Schuldes J, Leimbach A, Liesegang H, Meyer FD, Boelter J, Petersen H, Gottschalk G, Daniel R. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: entero-aggregative-haemorrhagic Escherichia coli (EAHEC). Arch Microbiol. 2011;193(12):883–891. doi:10.1007/s00203-011-0725-6.
  • Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104: h4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6(7):e22751. doi:10.1371/journal.pone.0022751.
  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin C-S, Iliopoulos D, et al. Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med. 2011;365(8):709–717. doi:10.1056/NEJMoa1106920.
  • Bueris V, Sircili MP, Taddei CR, dos Santos MF, Franzolin MR, Martinez MB, Ferrer SR, Barreto ML, Trabulsi LR. Detection of diarrheagenic Escherichia coli from children with and without diarrhea in Salvador, Bahia, Brazil. Memórias do Instituto Oswaldo Cruz. 2007;102(7):839–844. doi:10.1590/S0074-02762007005000116.
  • Abe CM, Trabulsi LR, Blanco J, Blanco M, Dahbi G, Blanco JE, Mora A, Franzolin MR, Taddei CR, Martinez MB, et al. Virulence features of atypical enteropathogenic Escherichia coli identified by the eae+ EAF-negative stx− genetic profile. Diagn Microbiol Infect Dis. 2009;64(4):357–365. doi:10.1016/j.diagmicrobio.2009.03.025.
  • Ingle DJ, Tauschek M, Edwards DJ, Hocking DM, Pickard DJ, Azzopardi KI, Amarasena T, Bennett-Wood V, Pearson JS, Tamboura B, et al. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants. Nat Microbiol. 2016;1(2):15010. doi:10.1038/nmicrobiol.2015.10.
  • Munhoz DD, Santos FF, Mitsunari T, Schuroff PA, Elias WP, Carvalho E, Piazza RMF. Hybrid atypical enteropathogenic and extraintestinal Escherichia coli (aEPEC/ExPEC) BA1250 Strain: a Draft Genome. Pathogens. 2021;10(4):10. doi:10.3390/pathogens10040475.
  • Hu J, Torres AG. Enteropathogenic Escherichia coli: foe or innocent bystander? Clin Microbiol Infect. 2015;21(8):729–734. doi:10.1016/j.cmi.2015.01.015.
  • Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli. Infect Immun. 1992;60(10):3953–3961. doi:10.1128/iai.60.10.3953-3961.1992.
  • Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun. 2005;73(1):18–29. doi:10.1128/IAI.73.1.18-29.2005.
  • Avalos Vizcarra I, Hosseini V, Kollmannsberger P, Meier S, Weber SS, Arnoldini M, Ackermann M, Vogel V. How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci Rep. 2016;6(1):18109. doi:10.1038/srep18109.
  • Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N, Brun YV, Dalia AB. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol. 2018;3(7):773–780. doi:10.1038/s41564-018-0174-y.
  • Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev. 2012;36(6):1046–1082. doi:10.1111/j.1574-6976.2012.00342.x.
  • Munhoz DD, Nara JM, Freitas NC, Moraes CTP, Nunes KO, Yamamoto BB, Vasconcellos FM, Martínez-Laguna Y, Girón JA, Martins FH, et al. Distribution of major pilin subunit genes among atypical enteropathogenic Escherichia coli and influence of growth media on expression of the ecp operon. Front Microbiol. 2018;9:942. doi:10.3389/fmicb.2018.00942.
  • Hansmeier N, Miskiewicz K, Elpers L, Liss V, Hensel M, Sterzenbach T. Functional expression of the entire adhesiome of Salmonella enterica serotype Typhimurium. Sci Rep. 2017;7(1):10326. doi:10.1038/s41598-017-10598-2.
  • Chahales P, Thanassi DS, Mulvey MA, Stapleton AE, Klumpp DJ. Function, and assembly of adhesive organelles by uropathogenic bacteria. Microbiol Spectr. 2015;3(5). doi:10.1128/microbiolspec.UTI-0018-2013.
  • Pouttu R, Westerlund-Wikstrom B, Lang H, Alsti K, Virkola R, Saarela U, Siitonen A, Kalkkinen N, Korhonen TK. matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol. 2001;183(16):4727–4736. doi:10.1128/JB.183.16.4727-4736.2001.
  • Rendon MA, Saldana Z, Erdem AL, Monteiro-Neto V, Vazquez A, Kaper JB, Puente JL, Girón JA. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A. 2007;104(25):10637–10642. doi:10.1073/pnas.0704104104.
  • Martinez-Santos ML VI, Saldana A, Giron Z, Puente JA, Puente, Jl JL. Transcriptional regulation of the ecp operon by EcpR, IHF, and H-NS in attaching and effacing Escherichia coli. J Bacteriol. 2012;194(18):5020–5033. doi:10.1128/JB.00915-12.
  • Werneburg GT, Thanassi DG, Donnenberg MS. Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella. EcoSal Plus. 2018;8(1). doi:10.1128/ecosalplus.ESP-0007-2017.
  • Saldana Z, De la Cruz MA, Carrillo-Casas EM, Duran L, Zhang Y, Hernandez-Castro R, Puente JL, Daaka Y, Girón JA. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium. PLoS One. 2014;9(7):e101200. doi:10.1371/journal.pone.0101200.
  • Avelino F, Saldana Z, Islam S, Monteiro-Neto V, Dall’agnol M, Eslava CA, Girón JA. The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells. Int J Med Microbiol. 2010;300(7):440–448. doi:10.1016/j.ijmm.2010.02.002.
  • Lehti TA, Bauchart P, Heikkinen J, Hacker J, Korhonen TK, Dobrindt U, Westerlund-Wikström B. Mat fimbriae promote biofilm formation by meningitis-associated Escherichia coli. Microbiology. 2010;156(8):2408–2417. doi:10.1099/mic.0.039610-0.
  • Barber AE, Norton JP, Wiles TJ, Mulvey MA. Strengths and limitations of model systems for the study of urinary tract infections and related pathologies. Microbiol Mol Biol Rev. 2016;80(2):351–367. doi:10.1128/MMBR.00067-15.
  • Stream A, Madigan CA. Zebrafish: an underutilized tool for discovery in host–microbe interactions. Trends Immunol. 2022;43(6):426–437. doi:10.1016/j.it.2022.03.011.
  • Trede NS, Langenau DM, Traver D, Look AT, Zon LI. The use of zebrafish to understand immunity. Immunity. 2004;20(4):367–379. doi:10.1016/S1074-7613(04)00084-6.
  • Wiles TJ, Bower JM, Redd MJ, Mulvey MA, Ramakrishnan L. Use of zebrafish to probe the divergent virulence potentials and toxin requirements of extraintestinal pathogenic Escherichia coli. PLoS Pathog. 2009;5(12):e1000697. doi:10.1371/journal.ppat.1000697.
  • Stones DH, Fehr AGJ, Thompson L, Rocha J, Perez-Soto N, Madhavan VTP, Voelz K, Krachler AM, Zebrafish (Danio rerio) as a Vertebrate Model Host to Study Colonization, Pathogenesis, and Transmission of Foodborne Escherichia coli O157. mSphere. 2017;2(5). doi:10.1128/mSphereDirect.00365-17.
  • Barber AE, Fleming BA, Mulvey MA, D’orazio SEF. Similarly lethal strains of extraintestinal pathogenic Escherichia coli trigger markedly diverse host responses in a zebrafish model of sepsis. mSphere. 2016;1(2). doi:10.1128/mSphere.00062-16.
  • Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother. 2014;58(12):7240–7249. doi:10.1128/AAC.03320-14.
  • Lavigne J-P, Vergunst AC, Goret L, Sotto A, Combescure C, Blanco J, O’Callaghan D, Nicolas-Chanoine M-H. Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLoS One. 2012;7(3):e34294. doi:10.1371/journal.pone.0034294.
  • Keij FM, Koch BEV, Lozano Vigario F, Simons SHP, van Hasselt JGC, Taal HR, Knibbe CAJ, Spaink HP, Reiss IKM, Krekels EHJ. Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. J Clin Transl Sci. 2021;5(1):e140. doi:10.1017/cts.2021.803.
  • Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract–microbe interactions. Cell Microbiol. 2020;22(3):e13152. doi:10.1111/cmi.13152.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–6645. doi:10.1073/pnas.120163297.
  • Murphy KC, Campellone KG. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol. 2003;4(1):11. doi:10.1186/1471-2199-4-11.
  • Zuo W, Wu Y. Dynamic motility selection drives population segregation in a bacterial swarm. Proc Natl Acad Sci U S A. 2020;117(9):4693–4700. doi:10.1073/pnas.1917789117.
  • Wiles TJ, Schlomann BH, Wall ES, Betancourt R, Parthasarathy R, Guillemin K, Ayres JS. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol. 2020;18(3):e3000661. doi:10.1371/journal.pbio.3000661.
  • Hicks S, Candy DC, Phillips AD. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect Immun. 1996;64(11):4751–4760. doi:10.1128/iai.64.11.4751-4760.1996.
  • Price NL, Raivio TL. Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol. 2009;191(6):1798–1815. doi:10.1128/JB.00798-08.
  • Kim H, Wu K, Lee C. Stress-responsive periplasmic chaperones in bacteria. Front Mol Biosci. 2021;8:678697. doi:10.3389/fmolb.2021.678697.
  • Hews CL, Cho T, Rowley G, Raivio TL. Maintaining integrity under stress: envelope stress response regulation of pathogenesis in gram-negative bacteria. Front Cell Infect Microbiol. 2019;9:313. doi:10.3389/fcimb.2019.00313.
  • Cho THS, Pick K, Raivio TL. Bacterial envelope stress responses: essential adaptors and attractive targets. Biochim Biophys Acta Mol Cell Res. 2022;1870(2):119387. doi:10.1016/j.bbamcr.2022.119387.
  • Jones CH, Danese PN, Pinkner JS, Silhavy TJ, Hultgren SJ. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. Embo J. 1997;16(21):6394–6406. doi:10.1093/emboj/16.21.6394.
  • Raffa RG, Raivio TL. A third envelope stress signal transduction pathway in Escherichia coli. Mol Microbiol. 2002;45(6):1599–1611. doi:10.1046/j.1365-2958.2002.03112.x.
  • Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence. 2014;5(8):835–851. doi:10.4161/21505594.2014.965580.
  • Nevesinjac AZ, Raivio TL. The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli. J Bacteriol. 2005;187:672–686. doi:10.1128/JB.187.2.672-686.2005.
  • Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS, Armstrong GD, Raivio TL. The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol. 2010;76(5):1095–1110. doi:10.1111/j.1365-2958.2010.07145.x.
  • Sachdeva G, Kumar K, Jain P, Ramachandran S. SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics. 2005;21(4):483–491. doi:10.1093/bioinformatics/bti028.
  • Santos ACM, Santos FF, Silva RM, Gomes TAT. Diversity of hybrid- and hetero-pathogenic Escherichia coli and their potential implication in more severe diseases. Front Cell Infect Microbiol. 2020;10:339. doi:10.3389/fcimb.2020.00339.
  • Cusumano CK, Hultgren SJ. Bacterial adhesion--a source of alternate antibiotic targets. IDrugs. 2009;12:699–705.
  • Durand E, Verger D, Rego AT, Chandran V, Meng G, Fronzes R, Waksman G. Structural biology of bacterial secretion systems in gram-negative pathogens–potential for new drug targets. 2009;9(5):518–547. doi:10.2174/187152609789105722.
  • Elpers L, Hensel M. Expression and functional characterization of various chaperon-usher fimbriae, curli fimbriae, and type 4 pili of enterohemorrhagic Escherichia coli O157: h7 Sakai. Front Microbiol. 2020;11:378. doi:10.3389/fmicb.2020.00378.
  • Dufresne K, Saulnier-Bellemare J, Daigle F. Functional analysis of the chaperone-usher fimbrial gene clusters of Salmonella enterica serovar Typhi. Front Cell Infect Microbiol. 2018;8:26. doi:10.3389/fcimb.2018.00026.
  • Zeng L, Zhang L, Wang P, Meng G. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. Elife. 2017;6:6. doi:10.7554/eLife.28619.
  • Lehti TA, Heikkinen J, Korhonen TK, Westerlund-Wikstrom B. The response regulator RcsB activates expression of mat fimbriae in meningitic Escherichia coli. J Bacteriol. 2012;194(13):3475–3485. doi:10.1128/JB.06596-11.
  • Wang Z, Du J, Lam SH, Mathavan S, Matsudaira P, Gong Z. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genomics. 2010;11(1):392. doi:10.1186/1471-2164-11-392.
  • Stacy AK, Mitchell NM, Maddux JT, De la Cruz MA, Duran L, Giron JA, 3rd RC, Mellata M. Evaluation of the prevalence and production of Escherichia coli common pilus among avian pathogenic E. coli and its role in virulence. PLoS One. 2014;9(1):e86565. doi:10.1371/journal.pone.0086565.
  • Wallace KN, Akhter S, Smith EM, Lorent K, Pack M. Intestinal growth and differentiation in zebrafish. Mech Dev. 2005;122(2):157–173. doi:10.1016/j.mod.2004.10.009.
  • Ribic R, Mestrovic T, Neuberg M, Kozina G. Effective anti-adhesives of uropathogenic Escherichia coli. Acta Pharm. 2018;68(1):1–18. doi:10.2478/acph-2018-0004.
  • Mortezaei N, Singh B, Zakrisson J, Bullitt E, Andersson M. Biomechanical and structural features of CS2 fimbriae of enterotoxigenic Escherichia coli. Biophys J. 2015;109(1):49–56. doi:10.1016/j.bpj.2015.05.022.
  • Farfan MJ, Torres AG, Andrews-Polymenis HL. Molecular mechanisms that mediate colonization of shiga toxin-producing Escherichia coli strains. Infect Immun. 2012;80(3):903–913. doi:10.1128/IAI.05907-11.
  • Mulvey MA. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 2002;4(5):257–271. doi:10.1046/j.1462-5822.2002.00193.x.
  • Wright KJ, Hultgren SJ. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol. 2006;1(1):75–87. doi:10.2217/17460913.1.1.75.
  • Kai-Larsen Y, Luthje P, Chromek M, Peters V, Wang X, Holm A, Kádas L, Hedlund K-O, Johansson J, Chapman MR, et al. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 2010;6(7):e1001010. doi:10.1371/journal.ppat.1001010.
  • Rediers H, Rainey PB, Vanderleyden J, De Mot R. Unraveling the secret lives of bacteria: use of in vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev. 2005;69(2):217–261. doi:10.1128/MMBR.69.2.217-261.2005.
  • Lane MC, Alteri CJ, Smith SN, Mobley HL. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A. 2007;104(42):16669–16674. doi:10.1073/pnas.0607898104.
  • Zhou Q, Ames P, Parkinson JS. Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors. Mol Microbiol. 2009;73(5):801–814. doi:10.1111/j.1365-2958.2009.06819.x.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi:10.1038/nmeth.2019.
  • Albert-Garay JS, Riesgo-Escovar JR, Salceda R. High glucose concentrations induce oxidative stress by inhibiting Nrf2 expression in rat Müller retinal cells in vitro. Sci Rep. 2022;12(1):1261. doi:10.1038/s41598-022-05284-x.
  • Sheikh J, Hicks S, Dall’agnol M, Phillips AD, Nataro JP. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol. 2001;41(5):983–997. doi:10.1046/j.1365-2958.2001.02512.x.
  • Xicohtencatl-Cortes J, Monteiro-Neto V, Ledesma MA, Jordan DM, Francetic O, Kaper JB, Puente JL, Girón JA. Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157: h7. J Clin Invest. 2007;117(11):3519–3529. doi:10.1172/JCI30727.
  • Saldana Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB, Puente JL, Girón JA. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol. 2009;11(4):992–1006. doi:10.1111/j.1462-2920.2008.01824.x.
  • Samadder P, Xicohtencatl-Cortes J, Saldana Z, Jordan D, Tarr PI, Kaper JB, Girón JA. The Escherichia coli ycbQRST operon encodes fimbriae with laminin-binding and epithelial cell adherence properties in Shiga-toxigenic E. coli O157: h7. Environ Microbiol. 2009;11(7):1815–1826. doi:10.1111/j.1462-2920.2009.01906.x.
  • Menezes MA, Rocha LB, Koga PCM, Fernandes I, Nara JM, Magalhaes CA, Abe CM, Ayala CO, Burgos YK, Elias WP, et al. Identification of enteropathogenic and enterohaemorrhagic Escherichia coli strains by immunoserological detection of intimin. J Appl Microbiol. 2010;108(3):878–887. doi:10.1111/j.1365-2672.2009.04484.x.