2,595
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

GPR120 promotes neutrophil control of intestinal bacterial infection

, , , , , , , , , , , & ORCID Icon show all
Article: 2190311 | Received 19 Apr 2021, Accepted 08 Mar 2023, Published online: 16 Mar 2023

References

  • Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16:457–17. doi:10.1038/s41579-018-0036-x.
  • Davies JM, Abreu MT. The innate immune system and inflammatory bowel disease. Scand J Gastroenterol. 2015;50:24–33. doi:10.3109/00365521.2014.966321.
  • Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis. 2017;18:495–503. doi:10.1111/1751-2980.12540.
  • Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11:519–531. doi:10.1038/nri3024.
  • Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354–366. doi:10.1038/mi.2012.24.
  • Zhou G, Yu L, Fang L, Yang W, Yu T, Miao Y, Chen M, Wu K, Chen F, Cong Y, et al. CD177 + neutrophils as functionally activated neutrophils negatively regulate IBD. Gut. 2018;67(6):1052–1063. doi:10.1136/gutjnl-2016-313535.
  • Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 2017;7:373. doi:10.3389/fcimb.2017.00373.
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science (New York, NY). 2004;303(5663):1532–1535. doi:10.1126/science.1092385.
  • Tu M, Wang W, Zhang G, Hammock BD. ω-3 Polyunsaturated fatty acids on Colonic Inflammation and colon cancer: roles of lipid-metabolizing Enzymes Involved. Nutrients. 2020;12(11):3301. doi:10.3390/nu12113301.
  • Karakuła-Juchnowicz H, Róg J, Juchnowicz D, Morylowska-Topolska J. GPR120: mechanism of action, role and potential for medical applications. Postepy higieny i medycyny doswiadczalnej (Online). 2017;71:942–953. doi:10.5604/01.3001.0010.5809.
  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687–698. doi:10.1016/j.cell.2010.07.041.
  • Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64:362–369. doi:10.1002/iub.1017.
  • Yang W, Liu H, Xu L, Yu T, Zhao X, Yao S, Zhao Q, Barnes S, Cohn SM, Dann SM, et al. GPR120 inhibits colitis through regulation of CD4(+) T cell interleukin 10 production. Gastroenterology. 2022;162(1):150–165. doi:10.1053/j.gastro.2021.09.018.
  • Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483(7389):350–354. doi:10.1038/nature10798.
  • Paschoal VA, Walenta E, Talukdar S, Pessentheiner AR, Osborn O, Hah N, Chi TJ, Tye GL, Armando AM, Evans RM, et al. Positive reinforcing mechanisms between GPR120 and PPARγ modulate insulin sensitivity. Cell Metab. 2020;31(6):1173–88.e5. doi:10.1016/j.cmet.2020.04.020.
  • Zhou Y, Zhi F. Lower Level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. 2016;2016:5828959. doi:10.1155/2016/5828959.
  • El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PMC. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273(1):180–193. doi:10.1111/imr.12447.
  • Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem. 2016;85:765–792. doi:10.1146/annurev-biochem-060815-014442.
  • Twaddell SH, Baines KJ, Grainge C, Gibson PG. The emerging role of neutrophil extracellular traps in respiratory disease. Chest. 2019;156(4):774–782. doi:10.1016/j.chest.2019.06.012.
  • Lazzaretto B, Fadeel B. Intra- and extracellular degradation of neutrophil extracellular traps by macrophages and dendritic cells. Journal of Immunology. 2019;203:2276–2290. doi:10.4049/jimmunol.1800159.
  • Carlsen ED, Liang Y, Shelite TR, Walker DH, Melby PC, Soong L. Permissive and protective roles for neutrophils in leishmaniasis. Clin Exp Immunol. 2015;182:109–118. doi:10.1111/cei.12674.
  • Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med. 2014;20(8):942–947. doi:10.1038/nm.3614.
  • Kraaij T, Tengström FC, Kamerling SWA, Pusey CD, Scherer HU, Toes REM, Rabelink TJ, van Kooten C, Teng YKO. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev. 2016;15(6):577–584. doi:10.1016/j.autrev.2016.02.018.
  • Nash JH, Villegas A, Kropinski AM, Aguilar-Valenzuela R, Konczy P, Mascarenhas M, Ziebell K, Torres AG, Karmali MA, Coombes BK. Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC Genomics. 2010;11(1):667. doi:10.1186/1471-2164-11-667.
  • Gao B, Han YH, Wang L, Lin YJ, Sun Z, Lu WG, Hu Y-Q, Li J-Q, Lin X-S, Liu B-H, et al. Eicosapentaenoic acid attenuates dexamethasone-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Cell Death & Disease. 2016;7(5):e2235. doi:10.1038/cddis.2016.144.
  • Kumar S, Dikshit M. Metabolic Iinsight of neutrophils in health and disease. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.02099.
  • Yang W, Yu T, Cong Y. CD4(+) T cell metabolism, gut microbiota, and autoimmune diseases: implication in precision medicine of autoimmune diseases. Precis Clin Med. 2022;5(3):bac018. doi:10.1093/pcmedi/pbac018.
  • Moschen AR, Tilg H, Raine T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol. 2019;16:185–196. doi:10.1038/s41575-018-0084-8.
  • Valeri M, Raffatellu M, Napier B. Cytokines IL-17 and IL-22 in the host response to infection. Pathog Dis. 2016;74(9):111. doi:10.1093/femspd/ftw111.
  • Chen F, Yang W, Huang X, Cao AT, Bilotta AJ, Xiao Y, Sun M, Chen L, Ma C, Liu X, et al. Neutrophils promote Amphiregulin production in intestinal Epithelial cells through TGF-β and contribute to intestinal homeostasis. Journal of Immunology. 2018;201(8):2492–2501. doi:10.4049/jimmunol.1800003.
  • Chen F, Cao A, Yao S, Evans-Marin HL, Liu H, Wu W, Carlsen ED, Dann SM, Soong L, Sun J, et al. mTOR mediates IL-23 induction of Neutrophil IL-17 and IL-22 production. Journal of Immunology. 2016;196(10):4390–4399. doi:10.4049/jimmunol.1501541.
  • Hebert KD, McLaughlin N, Galeas-Pena M, Zhang Z, Eddens T, Govero A, Pilewski JM, Kolls JK, Pociask DA. Targeting the IL-22/IL-22BP axis enhances tight junctions and reduces inflammation during influenza infection. Mucosal Immunol. 2020;13(1):64–74. doi:10.1038/s41385-019-0206-9.
  • Xiao Y, Huang X, Zhao Y, Chen F, Sun M, Yang W, Chen L, Yao S, Peniche A, Dann SM, et al. Interleukin-33 promotes REG3γ expression in intestinal Epithelial cells and Regulates gut microbiota. Cell Mol Gastroenterol Hepatol. 2019;8(1):21–36. doi:10.1016/j.jcmgh.2019.02.006.
  • Osaka T, Moriyama E, Arai S, Date Y, Yagi J, Kikuchi J, Tsuneda S. Meta-analysis of fecal microbiota and Metabolites in experimental Colitic mice during the inflammatory and healing phases. Nutrients. 2017;9(12):1329. doi:10.3390/nu9121329.
  • Zhao C, Zhou J, Meng Y, Shi N, Wang X, Zhou M, Li G, Yang Y. DHA sensor GPR120 in host defense exhibits the dual characteristics of regulating Dendritic cell function and Skewing the balance of Th17/Tregs. Int J Biol Sci. 2020;16(3):374–387. doi:10.7150/ijbs.39551.
  • Injarabian L, Devin A, Ransac S, Marteyn BS. Neutrophil metabolic shift during their lifecycle: impact on their survival and activation. Int J Mol Sci. 2019;21(1):21. doi:10.3390/ijms21010287.
  • Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, López-Villegas EO, Sánchez-García FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145:213–224. doi:10.1111/imm.12437.
  • Amini P, Stojkov D, Felser A, Jackson CB, Courage C, Schaller A, Gelman L, Soriano ME, Nuoffer J-M, Scorrano L, et al. Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production. Nat Commun. 2018;9(1):2958. doi:10.1038/s41467-018-05387-y.
  • Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol. 2008;190(20):6881–6893. doi:10.1128/JB.00619-08.
  • Yang W, Yu T, Cong Y. Induction of Intestinal Inflammation by adoptive transfer of CBir1 TCR transgenic CD4+ T cells to immunodeficient Mice. J Vis Exp. 2021;178. doi:10.3791/63293-v.
  • Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11(1):4457. doi:10.1038/s41467-020-18262-6.
  • Yu T, Yang W, Yao S, Yu Y, Wakamiya M, Golovko G, Cong Y. STING promotes intestinal IgA production by regulating Acetate-producing bacteria to maintain host-microbiota Mutualism. Inflamm Bowel Dis. 2023. doi:10.1093/ibd/izac268.
  • Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42(D1):D643–8. doi:10.1093/nar/gkt1209.