3,060
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Temperate bacteriophages infecting the mucin-degrading bacterium Ruminococcus gnavus from the human gut

ORCID Icon, , , , , , , & ORCID Icon show all
Article: 2194794 | Received 04 Jan 2023, Accepted 20 Mar 2023, Published online: 30 Mar 2023

References

  • Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically Ill. Surg Clin North Am. 2011;91(4):771. doi:10.1016/j.suc.2011.05.001.
  • Bhattacharya T, Ghosh TS, Mande SS, Aziz RK. Global profiling of carbohydrate active enzymes in human gut microbiome. Plos One. 2015;10(11):e0142038. doi:10.1371/journal.pone.0142038.
  • Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol. 2010;28(1):623–19. doi:10.1146/annurev-immunol-030409-101330.
  • Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14:676. doi:10.1038/ni.2640.
  • Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801. doi:10.1038/nri3535.
  • Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, et al. The long-term stability of the human gut microbiota. Science (80-). 2013;341(6141):341. doi:10.1126/science.1237439.
  • Shaw LP, Bassam H, Barnes CP, Walker AS, Klein N, Balloux F. Modelling microbiome recovery after antibiotics using a stability landscape framework. Isme J. 2019;13:1845. doi:10.1038/s41396-019-0392-1.
  • Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel disease. Gut. 2004;53:1. doi:10.1136/gut.53.1.1.
  • Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, Eaton V, Seok R, Leiner IM, Pamer EG. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity. Cell Host & Microbe. 2020;28:134. doi:10.1016/j.chom.2020.05.005.
  • Togo AH, Diop A, Bittar F, Maraninchi M, Valero R, Armstrong N, Dubourg G, Labas N, Richez M, Delerce J, et al. Description of mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Antonie Van Leeuwenhoek. Int J Gen Mol Microbiol. 2018;111:2107–2128. doi:10.1007/s10482-018-1104-y.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Tailford LE, Owen CD, Walshaw J, Crost EH, Hardy-Goddard J, Le Gall G, de Vos Wm, Taylor GL, Juge N, de Vos WM. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun. 2015;6:7624. doi:10.1038/ncomms8624.
  • Crost EH, Ajandouz EH, Villard C, Geraert PA, Puigserver A, Fons M. Ruminococcin C, a new anti-Clostridium perfringens bacteriocin produced in the gut by the commensal bacterium Ruminococcus gnavus E1. Biochimie. 2011;93:1487–1494. doi:10.1016/j.biochi.2011.05.001.
  • Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol. 2015;11:685. doi:10.1038/nchembio.1864.
  • Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–2428. doi:10.1038/ajg.2010.281.
  • Nishino K, Nishida A, Inoue R, Kawada Y, Ohno M, Sakai S, Inatomi O, Bamba S, Sugimoto M, Kawahara M, et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol. 2018;53:95–106. doi:10.1007/s00535-017-1384-4.
  • Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017;9. doi:10.1186/s13073-017-0490-5.
  • Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, Järnerot G, Tysk C, Jansson JK, Engstrand L. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–1854.e1. doi:10.1053/j.gastro.2010.08.049.
  • Henke MT, Brown EM, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Capsular polysaccharide correlates with immune response to the human gut microbe Ruminococcus gnavus. Proc Natl Acad Sci U S A. 2021;118:1–7. doi:10.1073/pnas.2007595118.
  • Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A. 2019;116:12672–12677. doi:10.1073/pnas.1904099116.
  • Breban M, Tap J, Leboime A, Said-Nahal R, Langella P, Chiocchia G, Furet JP, Sokol H. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76:1614–1622. doi:10.1136/annrheumdis-2016-211064.
  • Shkoporov AN, Hill C. Bacteriophages of the human gut: the “Known unknown” of the microbiome. Cell Host & Microbe. 2019;25:195–209. doi:10.1016/j.chom.2019.01.017.
  • Albright MBN, Louca S, Winkler DE, Feeser KL, Haig SJ, Whiteson KL, Emerson JB, Dunbar J. Solutions in microbiome engineering: prioritizing barriers to organism establishment. Isme J. 2021;1616(2):331–338. doi:10.1038/s41396-021-01088-5.
  • Kwiatek M, Parasion S, Nakonieczna A. Therapeutic bacteriophages as a rescue treatment for drug-resistant infections – an in vivo studies overview. J Appl Microbiol. 2020;128:985–1002. doi:10.1111/jam.14535.
  • Shkoporov A, Clooney A, Sutton T, Ryan F, Daly K, Nolan J, McDonnell S, Khokhlova E, Draper L, Forde A, et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host & Microbe. 2019;26:527–541.e5. doi:10.1016/j.chom.2019.09.009.
  • Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol. 2022;20(12):737–749. doi:10.1038/s41579-022-00755-4.
  • Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O’regan O, Ryan FJ, Draper LA, Plevy SE, Ross RP, et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host & Microbe. 2019;26:764–778.e5. doi:10.1016/j.chom.2019.10.009.
  • Stockdale SR, Harrington RS, Shkoporov AN, Ev K, Daly KM, McDonnell SA, O’reagan O, Nolan JA, Sheehan D, Lavelle A, et al. Metagenomic assembled plasmids of the human microbiome vary across disease cohorts. Sci Rep. 2022;12. doi:10.1038/s41598-022-13313-y.
  • Shkoporov AN, Ryan FJ, Draper LA, Forde A, Stockdale SR, Daly KM, McDonnell SA, Nolan JA, Sutton TDS, Dalmasso M, et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome. 2018;6:68. doi:10.1186/s40168-018-0446-z.
  • Shkoporov AN, Stockdale SR, Lavelle A, Kondova I, Heuston C, Upadrasta A, Khokhlova EV, van der Kamp I, Ouwerling B, Draper LA, et al. Viral biogeography of the mammalian gut and parenchymal organs. Nat Microbiol. 2022;7(8):1301–1311. doi:10.1038/s41564-022-01178-w.
  • Bolger AMM, Lohse M, Usadel B. Genome analysis Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi:10.1093/bioinformatics/btu170.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi:10.14806/ej.17.1.200.
  • Bankevich A, Nurk S, Antipov D, Gurevich AAA, Dvorkin M, Kulikov ASS, Lesin VMM, Nikolenko SII, Pham S, Prjibelski ADD, et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–477. doi:10.1089/cmb.2012.0021.
  • Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–546. doi:10.1038/s41587-019-0072-8.
  • Wick RR, Judd LM, Gorrie CL, Holt KE, Phillippy AM. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. doi:10.1371/journal.pcbi.1005595.
  • De Coster W, D’hert S, Schultz DT, Cruts M, Van Broeckhoven C, Berger B. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi:10.1093/bioinformatics/bty149.
  • Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, et al. Rasttk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365. doi:10.1038/srep08365.
  • Söding J, Biegert A, Lupas AN, Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–8. doi:10.1093/nar/gki408.
  • Jones P, Binns D, H-YHYY C, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi:10.1093/bioinformatics/btu031.
  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform. 2009;10:1–9. doi:10.1186/1471-2105-10-421.
  • Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21. doi:10.1093/nar/gkw387.
  • Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–16. doi:10.1093/nar/gkh152.
  • Moraru C, Varsani A, Kropinski AM. VIRIDIC—a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses. 2020;12:1268. doi:10.3390/v12111268.
  • Turner D, Reynolds D, Seto D, Mahadevan P. CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes. BMC Res Notes. 2013;6:140. doi:10.1186/1756-0500-6-140.
  • Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S, Valencia A. ViPTree: the viral proteomic tree server. Bioinformatics. 2017;33:2379–2380. doi:10.1093/bioinformatics/btx157.
  • Meier-Kolthoff JP, Göker M, Kelso J. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017;33:3396–3404. doi:10.1093/bioinformatics/btx440.
  • Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–259. doi:10.1093/nar/gkz239.
  • Ågren J, Sundström A, Håfström T, Segerman B, Ahmed N. Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. Plos One. 2012;7:e39107. doi:10.1371/journal.pone.0039107.
  • Lechner M, Findeiß S, Steiner L, Marz M, Pf S, Sj P. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinform. 2011;12:124. doi:10.1186/1471-2105-12-124.
  • Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic virus orthologous groups (pVogs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–8. doi:10.1093/nar/gkw975.
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi:10.1093/bioinformatics/btu153.
  • Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8(1):12–24. doi:10.1039/C5AY02550H.
  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:944–945. doi:10.1093/bioinformatics/16.10.944.
  • Darling AE, Mau B, Perna NT, Stajich JE. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. Plos One. 2010;5:e11147. doi:10.1371/journal.pone.0011147.
  • Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–460. doi:10.1016/j.cell.2015.01.002.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi:10.1093/bioinformatics/btp352.
  • Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, Hill C. Φcrass001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun. 2018;91(9):1–8. doi:10.1038/s41467-018-07225-7.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi:10.1038/nmeth.1923.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:41. doi:10.1093/nar/gks1219.
  • Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses. 2021;13:506. doi:10.3390/v13030506.
  • Buttimer C, Bottacini F, Shkoporov AN, Draper LA, Ross P, Hill C. Selective isolation of eggerthella lenta from human faeces and characterisation of the species prophage diversity. Microorganisms. 2022;10:195. doi:10.3390/microorganisms10010195.
  • Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL. Prophages mediate defense against phage infection through diverse mechanisms. Isme J. 2016;10(12):2854–2866. doi:10.1038/ismej.2016.79.
  • Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–297. doi:10.1146/annurev-genet-110410-132430.
  • Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B, Loehr J, Romero DA, Fremaux C, Horvath P, Doyon Y, et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat Commun. 2018 91;9:1–10. doi:10.1038/s41467-018-05092-w.
  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol. 2011;9:467–477. doi:10.1038/nrmicro2577.
  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–327. doi:10.1038/nrmicro2315.
  • Danis-Wlodarczyk K, Dąbrowska K, Abedon ST. Phage therapy: the pharmacology of antibacterial viruses. In: Coffey A Buttimer C, editors. Bacterial viruses exploitation for biocontrol and therapeutics. Caister Academic Press; 2020.
  • Nishino K, Nishida A, Inoue R, Kawada Y, Ohno M, Sakai S, Inatomi O, Bamba S, Sugimoto M, Kawahara M, et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. 2018;53:95–106. doi:10.1007/s00535-017-1384-4
  • Tetz G, Tetz V. Bacteriophages as new human viral pathogens. Microorg. 2018;6:54. doi:10.3390/microorganisms6020054.
  • Eun CS, Mishima Y, Wohlgemuth S, Liu B, Bower M, Carroll IM, Sartor RB, McCormick BA. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10 −/− mice. Infect Immun. 2014;82:2239–2246. doi:10.1128/IAI.01513-13.