3,408
Views
9
CrossRef citations to date
0
Altmetric
Review

Maternal-infant antibiotic resistance genes transference: what do we know?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2194797 | Received 08 Feb 2023, Accepted 21 Mar 2023, Published online: 05 Apr 2023

References

  • Annunziato G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: a review. Int J Mol Sci. 2019;20:20. doi:10.3390/ijms20235844.
  • Fletcher S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med. 2015;20:243. doi:10.1007/s12199-015-0468-0.
  • Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 2020;10:731. doi:10.3389/fcimb.2020.572912.
  • Sir Alexander Fleming – Nobel Lecture - NobelPrize.org. [Internet]. cited 2022 Jul 25: Available from https://www.nobelprize.org/prizes/medicine/1945/fleming/lecture/
  • Antimicrobial resistance: global report on surveillance [Internet]. cited 2022 May 13: Available from https://apps.who.int/iris/handle/10665/112642
  • European Centre for Disease Prevention and Control & World Health Organization. Regional Office for Europe‎. Antimicrobial resistance surveillance in Europe. 2022–2020 data. 2022.
  • Centers for Disease Control U. 2019. Antibiotic resistance threats in the United States. Atlanta (GA): U.S. Department of Health and Human Services, CDC.
  • Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56–20. doi:10.1016/S1473-3099(18)30605-4.
  • The state of the world’s antibiotics report in 2021 - Center for Disease Dynamics, Economics & Policy (CDDEP). [Internet]. cited 2022 Aug 12: Available from https://cddep.org/blog/posts/the-state-of-the-worlds-antibiotics-report-in-2021/
  • WHO publishes list of bacteria for which new antibiotics are urgently needed [Internet]. cited 2022 Aug 12: Available from https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020;33. doi:10.1128/CMR.00181-19.
  • Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE Pathogens. Biomed Res Int. 2016;2016:1–8. cited 2022 Aug 12. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/27274985/.
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25:1340. cited 2022 Aug 12. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/32187986/.
  • Ten Threats to global health in 2019 [Internet] Available fromcited 2022 Aug 12https://www.who.int/vietnam/news/feature-stories/detail/ten-threats-to-global-health-in-2019
  • Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, Rautava S, Isolauri E, Salminen S, Kumar H, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Available from: www.nature.com/naturecommunications
  • Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr. 2017;106:87–94. doi:10.1111/apa.13613.
  • Fink G, D’acremont V, Leslie HH, Cohen J. Antibiotic exposure among children younger than 5 years in low-income and middle-income countries: a cross-sectional study of nationally representative facility-based and household-based surveys. Lancet Infect Dis. 2020;20:179–187. doi:10.1016/S1473-3099(19)30572-9.
  • Kuperman AA, Koren O. Antibiotic use during pregnancy: how bad is it? BMC Med. 2016;14. doi:10.1186/s12916-016-0636-0.
  • Thinkhamrop J, Hofmeyr GJ, Adetoro O, Lumbiganon P. Prophylactic antibiotic administration during second and third trimester in pregnancy for preventing infectious morbidity and mortality. Cochrane Database Syst Rev. 4. 2002.
  • Survival Program, Guidelines Review Committee. WHO Recommendations for Prevention and Treatment of Maternal Peripartum Infections. 2015.
  • Intrapartum care for a positive childbirth experience WHO recommendations. 2018;
  • Jarde A, Lewis-Mikhael AM, Moayyedi P, Stearns JC, Collins SM, Beyene J, McDonald SD. Pregnancy outcomes in women taking probiotics or prebiotics: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018; 18:1–14. cited 2023 Mar 6. [Internet] Available from: 10.1186/s12884-017-1629-5.
  • Chen Y, Li Z, Tye KD, Luo H, Tang X, Liao Y, Wang D, Zhou J, Yang P, Li Y, et al. Probiotic supplementation during human pregnancy affects the gut microbiota and immune status. Front Cell Infect Microbiol. [Internet] Available from. 2019 cited 2023 Mar 6;9. https://pubmed.ncbi.nlm.nih.gov/31380297/.
  • Huang T, Li Z, Tye KD, Chan SN, Tang X, Luo H, Wang D, Zhou J, Duan X, Xiao X. Probiotic supplementation during pregnancy alters gut microbial networks of pregnant women and infants. Front Microbiol [Internet] Available from. 2022;13. cited 2023 Mar 6. https://pubmed.ncbi.nlm.nih.gov/36532501/.
  • Casaburi G, Duar RM, Vance DP, Mitchell R, Contreras L, Frese SA, Smilowitz JT, Underwood MA. Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. Antimicrob Resist Infect Control. 2019;8. doi:10.1186/s13756-019-0583-6.
  • Esaiassen E, Hjerde E, Cavanagh JP, Pedersen T, Andresen JH, Rettedal SI, Støen R, Nakstad B, Willassen NP, Klingenberg C. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front Pediatr. 2018;6:6. doi:10.3389/fped.2018.00347.
  • Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. Microbiome. 2022;10:1–16. doi:10.1186/s40168-022-01327-7.
  • Montassier E, Valdamp R, Batard E, Zmora N, Dori-Bachash M, Suez J, Elinav E Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner.
  • Feehan A, Garcia-Diaz JB. Gut microbiome-modifying therapies to defend against multidrug resistant organisms. Microorganisms. 2020;8:166. doi:10.3390/microorganisms8020166.
  • McLain JE, Cytryn E, Durso LM, Young S. Culture-based methods for detection of antibiotic resistance in agroecosystems: advantages, challenges, and gaps in knowledge. J Environ Qual. 2016;45:432–440. doi:10.2134/jeq2015.06.0317.
  • Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18:1185–1193. doi:10.1111/1469-0691.12023.
  • Escobar-Zepeda A, Godoy-Lozano EE, Raggi L, Segovia L, Merino E, Gutiérrez-Rios RM, Juarez K, Licea-Navarro AF, Pardo-Lopez L, Sanchez-Flores A. Analysis of sequencing strategies and tools for taxonomic annotation: defining standards for progressive metagenomics. Sci Rep. 2018;8(1):1–13. doi:10.1038/s41598-018-30515-5.
  • Leggett RM, Alcon-Giner C, Heavens D, Caim S, Brook TC, Kujawska M, Martin S, Peel N, Acford-Palmer H, Hoyles L, et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol. 2020;5:430–442. doi:10.1038/s41564-019-0626-z.
  • Berbers B, Saltykova A, Garcia-Graells C, Philipp P, Arella F, Marchal K, Winand R, Vanneste K, Roosens NHC, De Keersmaecker SCJ. Combining short and long read sequencing to characterize antimicrobial resistance genes on plasmids applied to an unauthorized genetically modified Bacillus. Sci Rep. 2020;10(1):1–13. doi:10.1038/s41598-020-61158-0.
  • Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from individual to multiomics analyses. Experimental & Molecular Medi. 2020;52(9):1419–1427. doi:10.1038/s12276-020-00499-2.
  • Levy SB, Bonnie M. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–9. doi:10.1038/nm1145.
  • Nogacka AM, Salazar N, Arboleya S, Suárez M, Fernández N, Solís G, de Los Reyes-Gavilán CG, Gueimonde M. Early microbiota, antibiotics and health. Cell Mol Life Sci. 2018;75:83–91. cited 2022 Jan 27. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/28988290/.
  • Parkin K, Christophersen CT, Verhasselt V, Cooper MN, Martino D. Risk Factors for Gut Dysbiosis in Early Life. Microorganisms. 2021;9:2066. cited 2022 Feb 15. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/34683389/.
  • Aires J. First 1000 days of life: consequences of antibiotics on gut microbiota. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.681427.
  • Michael Cotten C, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sanchez PJ, Ambalavanan N, Benjamin DK2009Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infantsPediatrics [Internet] Available from :/pmc/articles/PMC2760222/cited 2022 Feb 75810.1542/peds.2007-3423123
  • Gasparrini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao IM, Tarr PI, Warner BB, Dantas G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbio. 2019 [cited 2022 Aug 13];4(12):2285–2297. [Internet] Available from https://www.nature.com/articles/s41564-019-0550-2.
  • Reyman M, van Houten MA, Watson RL, Chu MLJN, Arp K, de Waal WJ, Schiering I, Plötz FB, Willems RJL, van Schaik W, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. [Internet] Available from. 2022 cited 2022 Aug 13;13. https://pubmed.ncbi.nlm.nih.gov/35173154/.
  • Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol. 2021;21:177–191. cited 2022 Feb 15. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/32918062/.
  • Zhang Z, Wang J, Wang H, Li Y, Jia Y, Yi M, Chen O. Association of infant antibiotic exposure and risk of childhood asthma: a meta-analysis. World Allergy Organ J [Internet] Available from. 2021;14. cited 2022 Feb 15. https://pubmed.ncbi.nlm.nih.gov/34934469/.
  • Dhudasia MB, Spergel JM, Puopolo KM, Koebnick C, Bryan M, Grundmeier RW, Gerber JS, Lorch SA, Quarshie WO, Zaoutis T, et al. Intrapartum group B Streptococcal prophylaxis and childhood allergic disorders. Pediatrics. [Internet] Available from. 2021 cited 2022 Dec 19;147. https://pubmed.ncbi.nlm.nih.gov/33833072/.
  • Baron R, Taye M, der Vaart IB, van Ujčič-Voortman J, Szajewska H, Seidell JC, Verhoeff A, Seidell JC. The relationship of prenatal antibiotic exposure and infant antibiotic administration with childhood allergies: a systematic review. BMC Pediatr [Internet] Available from. 2020;20. cited 2022 Feb 15-20. https://pubmed.ncbi.nlm.nih.gov/32593308/.
  • Mårild K, Ludvigsson J, Sanz Y, Ludvigsson JF. Antibiotic exposure in pregnancy and risk of coeliac disease in offspring: a cohort study. BMC Gastroenterol [Internet] Available from. 2014;14. cited 2023 Mar 6. https://pubmed.ncbi.nlm.nih.gov/24731164/.
  • Uzan-Yulzari A, Turta O, Belogolovski A, Ziv O, Kunz C, Perschbacher S, Neuman H, Pasolli E, Oz A, Ben-Amram H, et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat Commun. 2021;12. doi:10.1038/s41467-020-20495-4.
  • Abdellatif M, Ghozy S, Kamel MG, Elawady SS, Ghorab MME, Attia AW, le Huyen TT, Duy DTV, Hirayama K, Huy NT. Association between exposure to macrolides and the development of infantile hypertrophic pyloric stenosis: a systematic review and meta-analysis. Eur J Pediatr. 2019;178:301–314. cited 2022 May 14. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/30470884/.
  • Aris IM, Lin PID, Rifas-Shiman SL, Bailey LC, Boone-Heinonen J, Eneli IU, Solomonides AE, Janicke DM, Toh S, Forrest CB, et al. Association of early antibiotic exposure with childhood body mass index trajectory milestones. JAMA Netw Open. 2021 cited 2022 Feb 15;4:e2116581. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/34251440/.
  • Meng X, Zhu Y, Di H, Zhang M, Feng J, Xu M, Xia W, Tian Q, He Y, Gan Y, et al. Dose-response association of early-life antibiotic exposure and subsequent overweight or obesity in children: a meta-analysis of prospective studies. Obes Rev. [Internet] Available from. 2021 cited 2022 Feb 15;22. https://pubmed.ncbi.nlm.nih.gov/34328260/.
  • Bernstein CN. Review article: changes in the epidemiology of inflammatory bowel disease-clues for aetiology. Aliment Pharmacol Ther. 2017;46:911–919. doi:10.1111/apt.14338.
  • Khan I, Yasir M, Farman M, Kumosani T, Albasri SF, Bajouh OS, Azhar EI2019Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi populationInfect Drug Resist [Internet] Available from :/pmc/articles/PMC6593780/cited 2022 Feb 10174910.2147/IDR.S20021312
  • Guernier-Cambert V, Chamings A, Collier F, Alexandersen SDiverse bacterial resistance genes detected in fecal samples from clinically healthy women and infants in Australia—A descriptive pilot studyFront Microbiol2021 [Internet] Available from :/pmc/articles/PMC8484959/cited 2022 Feb 101210.3389/fmicb.2021.596984
  • Sosa-Moreno A, Comstock SS, Sugino KY, Ma TF, Paneth N, Davis Y, Olivero R, Schein R, Maurer J, Zhang L. Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. Plos One. 2020; 15:e0234751. cited 2022 May 13. [Internet] Available from: 10.1371/journal.pone.0234751.
  • Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvenius J, Oikarinen S, Hyöty H, Virtanen SM, et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host & Microbe. [ [Internet] Available from :/pmc/articles/PMC6091882/]. 2018 [cited 2022 Feb 10];24:146. doi:10.1016/j.chom.2018.06.007.
  • Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer MOA, Lee SY. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun. 2017;8(1):1–7. doi:10.1038/ncomms15784.
  • Li X, Stokholm J, Brejnrod A, Vestergaard GA, Russel J, Trivedi U, Thorsen J, Gupta S, Hjelmsø MH, Shah SA, et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host & Microbe. 2021 cited 2022 Feb 10;29:975–987.e4. [Internet] Available from http://www.cell.com/article/S1931312821001451/fulltext.
  • Lawson MAE, O’neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, Chalklen L, Hall LJ. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. Isme J. 2019 [cited 2022 Oct 18];14(2):635–648. [Internet] Available from https://www.nature.com/articles/s41396-019-0553-2.
  • Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. doi:10.1016/j.jff.2020.104074.
  • Taft DH, Liu J, Maldonado-Gomez MX, Akre S, Huda MN, Ahmad SM, Stephensen CB, Mills DA. Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance. mSphere [Internet] Available from. 2018;3. cited 2022 Oct 21. https://pubmed.ncbi.nlm.nih.gov/30258040/.
  • Saturio S, Suárez M, Mancabelli L, Fernández N, Mantecón L, de Los Reyes-Gavilán CG, Ventura M, Gueimonde M, Arboleya S, Solís G. Effect of intrapartum antibiotics prophylaxis on the bifidobacterial establishment within the neonatal gut. Microorganisms. 2021;9:1867. cited 2022 Feb 8. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/34576761/.
  • Gibson MK, Wang B, Ahmadi S, Burnham CAD, Tarr PI, Warner BB, Dantas G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbio. 2016 [cited 2022 Jul 21];1(4):1–10. [Internet] Available from https://www.nature.com/articles/nmicrobiol201624.
  • Moore AM, Ahmadi S, Patel S, Gibson MK, Wang B, Ndao IM, Deych E, Shannon W, Tarr PI, Warner BB, et al. Gut resistome development in healthy twin pairs in the first year of life. Microbiome. 2015 cited 2022 Jul 21;3:1–10. [Internet] Available from https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0090-9.
  • Yassour M, Vatanen T, Siljander H, Hämäläinen AM, Härkönen T, Ryhänen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. [Internet] Available from. 2016 cited 2022 May 13;8. https://pubmed.ncbi.nlm.nih.gov/27306663/.
  • Lebeaux RM, Coker MO, Dade EF, Palys TJ, Morrison HG, Ross BD, Baker ER, Karagas MR, Madan JC, Hoen AG. The infant gut resistome is associated with E. coli and early-life exposures. BMC Microbiol. 2021;21:1–18. cited 2022 Jul 21. [Internet] Available from https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-021-02129-x.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe [Internet]. 2015 cited 2022 Jul 21;17:690–703. Available from http://www.cell.com/article/S1931312815001626/fulltext.
  • Siefert JL. Defining the Mobilome. Methods Mol Biol. 2009; 532:13–27. cited 2022 Apr 13. [Internet] Available from: https://doi.org/10.1007/978-1-60327-853-9_2.
  • Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167–176. doi:10.2147/IDR.S48820.
  • Sosa-Moreno A, Comstock SS, Sugino KY, Ma TF, Paneth N, Davis Y, Olivero R, Schein R, Maurer J, Zhang L. Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. Plos One. 2020;15. doi:10.1371/journal.pone.0234751.
  • Patangia DV, Ryan CA, Dempsey E, Stanton C, Ross RP. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis. Trends Microbiol. 2022;30:47–56. doi:10.1016/j.tim.2021.05.006.
  • Klassert TE, Zubiria-Barrera C, Kankel S, Stock M, Neubert R, Lorenzo-Diaz F, Doehring N, Driesch D, Fischer D, Slevogt H2020Early Bacterial Colonization and Antibiotic Resistance Gene Acquisition in NewbornsFront Cell Infect Microbiol [Internet] Available from :/pmc/articles/PMC7366792/cited 2022 May 1433210.3389/fcimb.2020.0033210
  • Loo EXL, Zain A, Yap GC, Purbojati RW, Drautz-Moses DI, Koh YQ, Chong YS, Tan KH, Gluckman PD, Yap F, et al. Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema. BMC Infect Dis. 2020;20:20. doi:10.1186/s12879-020-05000-y.
  • Herindrainy P, Rabenandrasana AN, Andrianirina ZZ, Manitra F, Rakotoarimanana J, Padget M, De Lauzanne A, Ndir A, Kermorvant-Duchemin E, Garin B, et al. Acquisition of extended spectrum beta-lactamase-producing enterobacteriaceae in neonates: a community based cohort in Madagascar. Plos One. 2018;13:e0193325. doi:10.1371/journal.pone.0193325.
  • Kuwelker K, Langeland N, Löhr IH, Gidion J, Manyahi J, Moyo SJ, Blomberg B, Klingenberg C. Use of probiotics to reduce infections and death and prevent colonization with extended-spectrum beta-lactamase (ESBL)-producing bacteria among newborn infants in Tanzania (ProRIDE Trial): study protocol for a randomized controlled clinical trial. Trials. 2021;22. doi:10.1186/s13063-021-05251-3.
  • Haddad EN, Comstock SS2021Archive for research in child health (ARCH) and baby gut: study protocol for a remote, prospective, longitudinal pregnancy and birth cohort to address microbiota development and child healthMethods Protoc [Internet] Available from :/pmc/articles/PMC8395764/cited 2022 Feb 105210.3390/mps40300524
  • Karami N, Nowrouzian F, Adlerberth I, Wold AE. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob Agents Chemother [Internet]. 2006;50:156–161. cited 2022 Feb 10]. Available from https://pubmed.ncbi.nlm.nih.gov/16377681/.
  • Same RG, Tamma PD2018Campylobacter Infections in ChildrenPediatr Rev [Internet] Available from:/pediatricsinreview/article/39/11/533/35101/Campylobacter-Infections-in-Childrencited 2022 May 14533–54110.1542/pir.2017-028539
  • Severgnini M, Camboni T, Ceccarani C, Morselli S, Cantiani A, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, et al. Distribution of ermb, ermf, tet(w), and tet(m) resistance genes in the vaginal ecosystem of women during pregnancy and puerperium. Pathogens. [ [Internet] Available from:/pmc/articles/PMC8705968/]. 2021 [cited 2022 May 14];10:1546. doi:10.3390/pathogens10121546.
  • Fouhy F, Ogilvie LA, Jones BV, Ross RP, Ryan AC, Dempsey EM, Fitzgerald GF, Stanton C, Cotter PD. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library. Plos One. 2014;9:e108016. cited 2022 May 14. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/25247417/.
  • Gurnee EA, Ndao IM, Johnson JR, Johnston BD, Gonzalez MD, Burnham CAD, Hall-Moore CM, McGhee JE, Mellmann A, Warner BB, et al. Gut colonization of healthy children and their mothers with pathogenic ciprofloxacin-resistant Escherichia coli. J Infect Dis. 2015 cited 2022 Oct 18;212:1862–1868. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/25969564/.
  • Gottesman BS, Low M, Almog R, Chowers M. Quinolone consumption by mothers increases their children’s risk of acquiring quinolone-resistant bacteriuria. Clinical Infectious Diseases. 2020;71:532–538. cited 2022 May 14. [Internet] Available from https://academic.oup.com/cid/article/71/3/532/5556473.
  • Kim DW, Cha CJ2021Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmissionExp Mol Med [Internet] Available from:/pmc/articles/PMC8080597/cited 2022 Jul 2130110.1038/s12276-021-00569-z53
  • Olivares J, Bernardini A, Garcia-Leon G, Corona F, Sanchez MB, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol. 2013;4:103. doi:10.3389/fmicb.2013.00103.
  • Zhang L, Kinkelaar D, Huang Y, Li Y, Li X, Wang HH2011Acquired antibiotic resistance: are we born with it?Appl Environ Microbiol [Internet] Available from:/pmc/articles/PMC3194877/cited 2022 May 13713410.1128/AEM.05087-1177
  • Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS. Genomic DNA amplification from a single bacterium. Appl Environ Microbiol. 2005;71:3342–3347. doi:10.1128/AEM.71.6.3342-3347.2005.
  • Dankó D, Blay JY, Garrison LP. Challenges in the value assessment, pricing and funding of targeted combination therapies in oncology. Health Policy (New York). 2019;123:1230–1236. doi:10.1016/j.healthpol.2019.07.009.
  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–2644.
  • Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, Rovira P, Abdo Z, Jones KL, Ruiz J, et al. Megares: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2017;45:D574.
  • Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. Isme J. 2015;9:207–216.
  • Moore AM, Ahmadi S, Patel S, Gibson MK, Wang B, Ndao MI, Deych E, Shannon W, Tarr PI, Warner BB, et al. Gut resistome development in healthy twin pairs in the first year of life. Microbiome. 2015;3. doi:10.1186/s40168-015-0095-4.
  • Gosalbes MJ, Vallès Y, Jiménez-Hernández N, Balle C, Riva P, Miravet-Verde S, de Vries LE, Llop S, Agerso Y, Sørensen SJ, et al. High frequencies of antibiotic resistance genes in infants’ meconium and early fecal samples. J Dev Orig Health Dis. 2016 cited 2022 May 13;7:35–44. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/26353938/.
  • Kozak K, Charbonneau D, Sanozky-Dawes R, Klaenhammer T Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants. [Internet] 2016 cited 2022 Oct 18; 6:341–351. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=kgmi20
  • Carvalho MJ, Sands K, Thomson K, Portal E, Mathias J, Milton R, Gillespie D, Dyer C, Akpulu C, Boostrom I, et al. 2022. Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Nat Microbio. 7(9):1337–1347. doi:10.1038/s41564-022-01184-y.
  • Devi U, Barman N, Barua P, Malik V, Das JK, Baruah P, Mahanta J. Vaginal carriage of antibiotic resistant Escherichia coli by pregnant women: a concern for the neonate. Clinical Microbiology: Open Access. 2014;03. doi:10.4172/2327-5073.1000153.
  • Sáez-López E, Guiral E, Fernández-Orth D, Villanueva S, Goncé A, López M, Teixidó I, Pericot A, Figueras F, Palacio M, et al. Vaginal versus obstetric infection Escherichia coli isolates among pregnant women: antimicrobial resistance and genetic virulence profile. Plos One. 2016;11:11. doi:10.1371/journal.pone.0146531.
  • Dubois V, De Barbeyrac B, Rogues AM, Arpin C, Coulange L, Andre C, M’zali F, Megraud F, Quentin C. CTX-M-producing Escherichia coli in a maternity ward: a likely community importation and evidence of mother-to-neonate transmission. J Antimicrob Chemother. 2010;65:1368–1371. doi:10.1093/jac/dkq153.
  • McDonald LC, Bryant K, Snyder J. Peripartum transmission of penicillin-resistant Streptococcus pneumoniae. J Clin Microbiol. 2003;41:2258–2260. doi:10.1128/JCM.41.5.2258-2260.2003.
  • Alicea-Serrano AM, Contreras M, Magris M, Hidalgo G, Dominguez-Bello MG. Tetracycline resistance genes acquired at birth. Arch Microbiol. 2013;195:447–451. cited 2022 Oct 18. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/23483141/.
  • Das L, Virmani R, Sharma V, Rawat D, Singh Y. Human milk microbiota: transferring the antibiotic resistome to infants. Indian J Microbiol. 2019;59:410–416. cited 2022 Jan 20]. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/31762502/.
  • Nadimpalli ML, Bourke CD, Robertson RC, Delarocque-Astagneau E, Manges AR, Pickering AJ. Can breastfeeding protect against antimicrobial resistance? BMC Med. 2020;18(1):1–11. doi:10.1186/s12916-020-01862-w.
  • Huang MS, Cheng CC, Tseng SY, Lin YL, Min LH, Chen PW. Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance. Microbiologyopen. 2019;8:e00618. cited 2022 Feb 14. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/29577668/.
  • Li X, Zhou Y, Zhan X, Huang W, Wang X. Breast milk is a potential reservoir for livestock-associated Staphylococcus aureus and community-associated Staphylococcus aureus in Shanghai, China. Front Microbiol. 2018;8:2639. doi:10.3389/fmicb.2017.02639.
  • Chen PW, Tseng SY, Huang MS. Antibiotic susceptibility of commensal bacteria from human milk. Curr Microbiol. 2016;72:113–119. doi:10.1007/s00284-015-0925-4.
  • Behari P, Englund J, Alcasid G, Garcia-Houchins S, Weber SG. Transmission of methicillin-resistant Staphylococcus aureus to preterm infants through breast milk. Infect Control Hosp Epidemiol. 2004;25:778–780. doi:10.1086/502476.
  • Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol. 2012;15:588–595. doi:10.1016/j.mib.2012.08.003.
  • Gasparrini AJ, Crofts TS, Gibson MK, Tarr PI, Warner BB, Dantas G. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes. 2016;7:443–449. doi:10.1080/19490976.2016.1218584.
  • Pärnänen KMM, Hultman J, Markkanen M, Satokari R, Rautava S, Lamendella R, Wright J, McLimans CJ, Kelleher SL, Virta MP. Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. Am J Clin Nutr. 2021;115:407–421. doi:10.1093/ajcn/nqab353.
  • Zou ZH, Liu D, Li HD, Zhu DP, He Y, Hou T, Yu JL. Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units. Ann Clin Microbiol Antimicrob [Internet] Available from. 2018;17. cited 2022 Feb 10. https://pubmed.ncbi.nlm.nih.gov/29554907/.
  • Rose G, Shaw AG, Sim K, Wooldridge DJ, Li MS, Gharbia S, Misra R, Kroll JS. Antibiotic resistance potential of the healthy preterm infant gut microbiome. PeerJ. 2017;5:e2928. doi:10.7717/peerj.2928.
  • Selma-Royo M, García-Mantrana I, Calatayud M, Parra-Llorca A, Martínez-Costa C, Collado MC. Maternal microbiota, cortisol concentration, and post-partum weight recovery are dependent on mode of delivery. Nutrients. 2020;12:1779. doi:10.3390/nu12061779.
  • Reyman M, van Houten MA, van Baarle D, Bosch AATM, Man WH, Chu MLJN, Arp K, Watson RL, Sanders EAM, Fuentes S, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun [Internet] Available from. 2019;10(11):1–12. cited 2022 Oct 5. https://www.nature.com/articles/s41467-019-13014-7.
  • Guo C, Zhou Q, Li M, Zhou L, Xu L, Zhang Y, Li D, Wang Y, Dai W, Li S, et al. Breastfeeding restored the gut microbiota in caesarean section infants and lowered the infection risk in early life. BMC Pediatr. 2020 cited 2022 Oct 5;20:1–6. [Internet] Available from https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-020-02433-x.
  • Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado MC. Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis. 2016;7:54–60. cited 2022 Oct 5. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/26286040/.
  • Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr [Internet] Available from. 2019;6. cited 2022 Oct 5. https://pubmed.ncbi.nlm.nih.gov/30778389/.
  • Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–551. cited 2022 Oct 5. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/22836031/.
  • Liu Y, Qin S, Song Y, Feng Y, Lv N, Xue Y, Liu F, Wang S, Zhu B, Ma J, et al. The perturbation of infant gut microbiota caused by cesarean delivery is partially restored by exclusive breastfeeding. Front Microbiol. [Internet] Available from. 2019 cited 2022 Oct 5;10. https://pubmed.ncbi.nlm.nih.gov/30972048/.
  • Bossung V, Lupatsii M, Dashdorj L, Tassiello O, Jonassen S, Pagel J, Demmert M, Wolf EA, Rody A, Waschina S, et al.Timing of antimicrobial prophylaxis for cesarean section is critical for gut microbiome development in term born infantsGut Microbes [Internet] Available from2022cited 2022 Oct 514https://doi.org/10.1080/19490976.2022.2038855
  • Arboleya S, Suárez M, Fernández N, Mantecón L, Solís G, Gueimonde M, De Los Reyes-Gavilán CG. C-section and the neonatal gut microbiome acquisition: consequences for future health. Ann Nutr Metab. 2018;73:17–23. doi:10.1159/000490843.
  • Prophylactic antibiotics for women undergoing caesarean section.
  • Dohou AM, Buda VO, Yemoa LA, Anagonou S, Van Bambeke F, Van Hees T, Dossou FM, Dalleur O. Antibiotic usage in patients having undergone caesarean section: a three-level study in benin. Antibiotics (Basel). 2022;11:11. doi:10.3390/antibiotics11050617.
  • Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, Kumar N, Stares MD, Rodger A, Brocklehurst P, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. [Internet] Available from 2019 [cited 2022 Oct 5];574(7776):117–121.
  • Velin L, Umutesi G, Riviello R, Muwanguzi M, Bebell LM, Yankurije M, Faktor K, Nkurunziza T, Rukundo G, Gatete JDD, et al. Surgical site infections and antimicrobial resistance after cesarean section delivery in rural rwanda. Ann Glob Health. 2021 cited 2022 Oct 5;87:77. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/34430227/.
  • Didier C, Streicher MP, Chognot D, Campagni R, Schnebelen A, Messer J, Donato L, Langer B, Meyer N, Astruc D, et al. Late-onset neonatal infections: incidences and pathogens in the era of antenatal antibiotics. Eur J Pediatr. 2012 cited 2022 Dec 19;171:681–687. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/22134805/.
  • Li W, Tapiainen T, Brinkac L, Lorenzi HA, Moncera K, Tejesvi MV, Salo J, Nelson KE. Vertical transmission of gut microbiome and antimicrobial resistance genes in infants exposed to antibiotics at birth. J Infect Dis. 2021;224:1236–1246. doi:10.1093/infdis/jiaa155.
  • van Dyke MK, Phares CR, Lynfield R, Thomas AR, Arnold KE, Craig AS, Mohle-Boetani J, Gershman K, Schaffner W, Petit S, et al. Evaluation of universal antenatal screening for group B streptococcus abstract. The New England journal of medicine. 2009;360(25): 2626–2636.
  • Chai G, Governale L, McMahon AW, Trinidad JP, Staffa J, Murphy D. Trends of outpatient prescription drug utilization in US children, 2002-2010. Pediatrics. 2012;130:23–31. cited 2023 Feb 1. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/22711728/.
  • Arboleya S, Saturio S, Gueimonde M, Linares R. Impact of intrapartum antibiotics on the developing microbiota: a review. Microbio Res Reports. 2022;1:22. cited 2023 Feb1. [Internet] Available from https://www.oaepublish.com/mrr/article/view/5051.
  • Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, Fernández N, Alaez L, Hernández-Barranco AM, de Los Reyes-Gavilán CG, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. [Internet] Available from. 2017 cited 2022 Oct 5;5. https://pubmed.ncbi.nlm.nih.gov/28789705/.
  • Reyman M, van Houten MA, Watson RL, Chu MLJN, Arp K, de Waal WJ, Schiering I, Plötz FB, Willems RJL, van Schaik W, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022;13. doi:10.1038/s41467-022-28525-z.
  • Lebeaux RM, Madan JC, Nguyen QP, Coker MO, Dade EF, Moroishi Y, Palys TJ, Ross BD, Pettigrew MM, Morrison HG, et al. Impact of antibiotics on off-target infant gut microbiota and resistance genes in cohort studies. Pediatr Res . 2022;92:1–10.
  • Contributing to one world, one health* a strategic framework for reducing risks of infectious diseases at the animal-human-ecosystems interface. 2008;
  • Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, Golzato D, Armanini F, Cumbo F, Huang KD, Manara S, et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature. 2023 cited 2023 Feb 3;614:7946–35125–35. [Internet] Available from https://www.nature.com/articles/s41586-022-05620-1.
  • Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, Guttman DS, Becker AB, Mandhane PJ, Turvey SE, et al. Exposure to household furry pets influences the gut microbiota of infants at 3–4 months following various birth scenarios. Microbiome. 2017 cited 2022 Apr 25;5:1–14. [Internet] Available from https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0254-x.
  • Gómez-Gallego C, Forsgren M, Selma-Royo M, Nermes M, Carmen Collado M, Salminen S, Beasley S, Isolauri E. The composition and diversity of the gut microbiota in children is modifiable by the household dogs: impact of a canine-specific probiotic. Microorganisms. 2021;9:557. cited 2022 Apr 25. [Internet] Available from https://www.mdpi.com/2076-2607/9/3/557/htm.
  • Pomba C, Belas A, Menezes J, Marques CThe public health risk of companion animal to human transmission of antimicrobial resistance during different types of animal infectionAdvs in Animal Health, Medi and Pro [Internet] Available from2020cited 2022 Apr 25265–278https://doi.org/10.1007/978-3-030-61981-7_14
  • Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, Mateus A, Moreno MA, Pyörälä S, Ružauskas M, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2017;72:957–968. doi:10.1093/jac/dkw481.
  • Belas A, Menezes J, Gama LT, Pomba C Sharing of clinically important antimicrobial resistance genes by companion animals and their human household members. [Internet] 2020 cited 2022 Apr 25; 26:1174–1185. Available from: https://doi.org/10.1089/mdr.2019.0380
  • Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127:4. doi:10.1177/003335491212700103.
  • Pi Y, Gao K, Peng Y, Mu CL, Zhu WY. Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs. Animal. 2019;13:262–272. doi:10.1017/S1751731118001416.
  • Monger XC, Gilbert AA, Saucier L, Vincent AT. Antibiotic resistance: from pig to meat. Antibiotics (Basel). 2021;10:10. doi:10.3390/antibiotics10101209.
  • Zhang RM, Liu X, Wang SL, Fang LX, Sun J, Liu YH, Liao XP. Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure. Sci Total Environ. 2021;758:143654. doi:10.1016/j.scitotenv.2020.143654.
  • Zhang YJ, Hu HW, Chen QL, Singh BK, Yan H, Chen D, He JZ. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130:104912. doi:10.1016/j.envint.2019.104912.
  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. The structure and diversity of human, animal and environmental resistomes. Microbiome [Internet] Available from. 2016;4. cited 2022 Jul 21. https://pubmed.ncbi.nlm.nih.gov/27717408/.
  • Hourigan SK, Subramanian P, Hasan NA, Ta A, Klein E, Chettout N, Huddleston K, Deopujari V, Levy S, Baveja R, et al.Comparison of infant gut and skin microbiota, resistome and virulome between neonatal intensive care unit (NICU) environmentsFront Microbiol [Internet] Available from:/pmc/articles/PMC6026636/2018cited 2022 Jul 21910.3389/fmicb.2018.01361
  • Antimicrobial stewardship programmes in health-care facilities in low - and middle -income countries. [Internet]. cited 2022 Oct 18: Available from https://www.who.int/publications/i/item/9789241515481
  • Lundgren SN, Madan JC, Emond JA, Morrison HG, Christensen BC, Karagas MR, Hoen AG. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 2018; 6:1–11. cited 2023 Mar 6. [Internet] Available from: 10.1186/s40168-018-0490-8.
  • Savage JH, Lee-Sarwar KA, Sordillo JE, Lange NE, Zhou Y, O’connor GT, Sandel M, Bacharier LB, Zeiger R, Sodergren E, et al. Diet during pregnancy and infancy and the infant intestinal microbiome. J Pediatr. 2018 cited 2023 Mar 6;203:47–54.e4. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/30173873/.
  • Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, Aagaard KM. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med [Internet] Available from. 2016;8. cited 2023 Mar 6. https://pubmed.ncbi.nlm.nih.gov/27503374/.
  • Oliver A, Xue Z, Villanueva YT, Durbin-Johnson B, Alkan Z, Taft DH, Liu J, Korf I, Laugero KD, Stephensen CB, et al. Association of diet and antimicrobial resistance in healthy U.S. Adults mBio. 2022;13. doi:10.1128/mbio.00101-22.
  • Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes. 2022;14. doi:10.1080/19490976.2021.2022442.
  • da Silva SF, Reis IB, Monteiro MG, Dias VC, Machado ABF, da Silva VL, Diniz CG. Influence of human eating habits on antimicrobial resistance phenomenon: aspects of clinical resistome of gut microbiota in omnivores, ovolactovegetarians, and strict vegetarians. Antibiotics. 2021;10:1–12. doi:10.3390/antibiotics10030276.
  • Stege PB, Hordijk J, Shetty SA, Visser M, Viveen MC, Rogers MRC, Gijsbers E, Dierikx CM, van der Plaats RQJ, van Duijkeren E, et al. 2022. Impact of long-term dietary habits on the human gut resistome in the Dutch population. Sci Rep. 12(1):1–13. doi:10.1038/s41598-022-05817-4.
  • Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K, Al-Hammadi S, Agarwal A, Beyer K, Burks W, Canonica GW, Ebisawa M, et al. World allergy organization-McMaster University guidelines for allergic disease prevention (GLAD-P): probiotics. World Allergy Organ J. 2015 cited 2023 Mar 6;8:4. [Internet] Available from https://pubmed.ncbi.nlm.nih.gov/25628773/.