3,020
Views
3
CrossRef citations to date
0
Altmetric
Review

Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead

&
Article: 2195792 | Received 20 Oct 2022, Accepted 23 Mar 2023, Published online: 03 Apr 2023

References

  • Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, Whitehead WE, Dumitrascu DL, Fang X, Fukudo S, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology. 2021;160:99–114 e3. doi:10.1053/j.gastro.2020.04.014.
  • Tornkvist NT, Aziz I, Whitehead WE, Sperber AD, Palsson OS, Hreinsson JP, Simrén M, Törnblom H. Health care utilization of individuals with Rome IV irritable bowel syndrome in the general population. United European Gastroenterol J. 2021;9:1178–25. doi:10.1002/ueg2.12153.
  • Peery AF, Crockett SD, Murphy CC, Jensen ET, Kim HP, Egberg MD, Lund JL, Moon AM, Pate V, Barnes EL, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2021. Gastroenterology. 2022;162:621–644. doi:10.1053/j.gastro.2021.10.017.
  • Goodoory VC, Ng CE, Black CJ, Ford AC. Direct healthcare costs of Rome IV or Rome III-defined irritable bowel syndrome in the United Kingdom. Aliment Pharmacol Ther. 2022;56:110–120. doi:10.1111/apt.16939.
  • Nellesen D, Yee K, Chawla A, Lewis BE, Carson RT. A systematic review of the economic and humanistic burden of illness in irritable bowel syndrome and chronic constipation. J Manag Care Pharm. 2013;19:755–764. doi:10.18553/jmcp.2013.19.9.755.
  • Zhang F, Xiang W, Li CY, Li S-C. Economic burden of irritable bowel syndrome in China. World J Gastroenterol. 2016;22:10450–10460. doi:10.3748/wjg.v22.i47.10450.
  • Ballou S, McMahon C, Lee HN, Katon J, Shin A, Rangan V, Singh P, Nee J, Camilleri M, Lembo A, et al. Effects of irritable bowel syndrome on daily activities vary among subtypes based on results from the IBS in America survey. Clin Gastroenterol Hepatol. 2019;17:2471–2478 e3. doi:10.1016/j.cgh.2019.08.016.
  • Frandemark A, Tornblom H, Jakobsson S, Simrén M. Work Productivity And Activity Impairment In Irritable Bowel Syndrome (IBS): a Multifaceted problem. Am J Gastroenterol. 2018;113:1540–1549. doi:10.1038/s41395-018-0262-x.
  • Akehurst RL, Brazier JE, Mathers N, O??keefe C, Kaltenthaler E, Morgan A, Platts M, Walters SJ. Health-related quality of life and cost impact of irritable bowel syndrome in a UK primary care setting. Pharmacoeconomics. 2002;20:455–462. doi:10.2165/00019053-200220070-00003.
  • Amouretti M, Le Pen C, Gaudin AF, Bommelaer G, Frexinos J, Ruszniewski P, Poynard T, Maurel F, Priol G, El Hasnaoui A. Impact of irritable bowel syndrome (IBS) on health-related quality of life (HRQOL). Gastroentérologie Clinique et Biologique. 2006;30:241–246. doi:10.1016/S0399-8320(06)73160-8.
  • Gralnek IM, Hays RD, Kilbourne A, Naliboff B, Mayer EA. The impact of irritable bowel syndrome on health-related quality of life. Gastroenterology. 2000;119:654–660. doi:10.1053/gast.2000.16484.
  • Wang YT, Lim HY, Tai D, Krishnamoorthy TL, Tan T, Barbier S, Thumboo J. The impact of irritable bowel syndrome on health-related quality of life: a Singapore perspective. BMC Gastroenterol. 2012;12:104. doi:10.1186/1471-230X-12-104.
  • Chang L, Di Lorenzo C, Farrugia G, Hamilton FA, Mawe GM, Pasricha PJ, Wiley JW. Functional bowel disorders: a roadmap to guide the next generation of research. Gastroenterology. 2018;154:723–735. doi:10.1053/j.gastro.2017.12.010.
  • (CDER). USDoHaHSFaDACfDEaR. Guidance for industry: Irritable bowel syndrome—clinical evaluation of drugs for treatment, 2012.
  • Lacy BE, Chey WD, Lembo AJ. New and emerging treatment options for irritable bowel syndrome. Gastroenterol Hepatol (N Y). 2015;11:1–19.
  • Ford AC, Sperber AD, Corsetti M, Camilleri M. Irritable bowel syndrome. Lancet. 2020;396:1675–1688. doi:10.1016/S0140-6736(20)31548-8.
  • Smalley W, Falck-Ytter C, Carrasco-Labra A, Wani S, Lytvyn L, Falck-Ytter Y. AGA clinical practice guidelines on the laboratory evaluation of functional diarrhea and diarrhea-predominant irritable bowel syndrome in adults (IBS-D). Gastroenterology. 2019;157:851–854. doi:10.1053/j.gastro.2019.07.004.
  • Lacy BE, Pimentel M, Brenner DM, Chey WD, Keefer LA, Long MD, Moshiree B. ACG clinical guideline: management of irritable bowel syndrome. Am J Gastroenterol. 2021;116:17–44. doi:10.14309/ajg.0000000000001036.
  • Rangan V, Ballou S, Shin A, Camilleri M, Lembo A, Nee J, Iturrino J, Singh P, Patel R. Use of treatments for irritable bowel syndrome and patient satisfaction based on the IBS in America Survey. Gastroenterology. 2020;158:786–788 e1. doi:10.1053/j.gastro.2019.10.036.
  • Carrasco-Labra A, Lytvyn L, Falck-Ytter Y, Surawicz CM, Chey WD. AGA technical review on the evaluation of functional diarrhea and diarrhea-predominant irritable bowel syndrome in adults (IBS-D). Gastroenterology. 2019;157:859–880. doi:10.1053/j.gastro.2019.06.014.
  • Simren M, Tornblom H, Palsson OS, van Tilburg MAL, Van Oudenhove L, Tack J, Whitehead WE. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut. 2018;67:255–262. doi:10.1136/gutjnl-2016-312361.
  • Simren M, Tornblom H, Palsson OS, Van Oudenhove L, Whitehead WE, Tack J. Cumulative effects of psychologic distress, visceral hypersensitivity, and abnormal transit on patient-reported outcomes in irritable bowel syndrome. Gastroenterology. 2019;157:391–402 e2. doi:10.1053/j.gastro.2019.04.019.
  • Yu V, Ballou S, Hassan R, Singh P, Shah E, Rangan V, Iturrino J, Nee J, Lembo A. Abdominal pain and depression, not bowel habits, predict health care utilization in patients with functional bowel disorders. Am J Gastroenterol. 2021;116:1720–1726. doi:10.14309/ajg.0000000000001306.
  • Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH. Targeted and untargeted proteomics approaches in biomarker development. Proteomics. 2020;20:e1900029. doi:10.1002/pmic.201900029.
  • Clarke G, Quigley EM, Cryan JF, Dinan TG. Irritable bowel syndrome: towards biomarker identification. Trends Mol Med. 2009;15:478–489. doi:10.1016/j.molmed.2009.08.001.
  • Knowles CH, Aziz Q. Basic and clinical aspects of gastrointestinal pain. Pain. 2009;141:191–209. doi:10.1016/j.pain.2008.12.011.
  • Camilleri M. Genetics of human gastrointestinal sensation. Neurogastroenterol Motil. 2013;25:458–466. doi:10.1111/nmo.12132.
  • Johnson AC, Farmer AD, Ness TJ, Greenwood‐van Meerveld B. Critical evaluation of animal models of visceral pain for therapeutics development: a focus on irritable bowel syndrome. Neurogastroenterol Motil. 2020;32:e13776. doi:10.1111/nmo.13776.
  • Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am. 2017;46:77–89. doi:10.1016/j.gtc.2016.09.007.
  • Esquerre N, Basso L, Dubuquoy C, Djouina M, Chappard D, Blanpied C, Desreumaux P, Vergnolle N, Vignal C, Body-Malapel M. Aluminum ingestion promotes colorectal hypersensitivity in rodents. Cell Mol Gastroenterol Hepatol. 2019;7:185–196. doi:10.1016/j.jcmgh.2018.09.012.
  • De Palma G, Shimbori C, Reed DE, Yu Y, Rabbia V, Lu J, Jimenez-Vargas N, Sessenwein J, Lopez-Lopez C, Pigrau M, et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci Transl Med. 2022;14:eabj1895. doi:10.1126/scitranslmed.abj1895.
  • Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, Appeltans I, Cuende-Estevez M, Fabre N, Van Beek K, Perna E, et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature. 2021;590:151–156. doi:10.1038/s41586-020-03118-2.
  • Grabauskas G, Wu X, Gao J, Li J-Y, Turgeon DK, Owyang C. Prostaglandin E2, produced by mast cells in colon tissues from patients with irritable bowel syndrome, contributes to visceral hypersensitivity in mice. Gastroenterology. 2020;158:2195–2207 e6. doi:10.1053/j.gastro.2020.02.022.
  • Klooker TK, Braak B, Koopman KE, Welting O, Wouters MM, van der Heide S, Schemann M, Bischoff SC, van den Wijngaard RM, Boeckxstaens GE. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut. 2010;59:1213–1221. doi:10.1136/gut.2010.213108.
  • Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, Alpizar YA, Valdez-Morales EE, Nasser Y, Van Veldhoven PP, Vanbrabant W, et al. Histamine receptor H1–Mediated Sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology. 2016;150:875–87 e9. doi:10.1053/j.gastro.2015.12.034.
  • Long Y, Du L, Kim JJ, Chen B, Zhu Y, Zhang Y, Yao S, He H, Zheng X, Huang Z, et al. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI-IBS mice. Neurogastroenterol Motil. 2018;30:e13348. doi:10.1111/nmo.13348.
  • Wiley JW, Zong Y, Zheng G, Zhu S, Hong S. Histone H3K9 methylation regulates chronic stress and IL-6–induced colon epithelial permeability and visceral pain. Neurogastroenterol Motil. 2020;32:e13941. doi:10.1111/nmo.13941.
  • Hanning N, Edwinson AL, Ceuleers H, Peters SA, De Man JG, Hassett LC, De Winter BY, Grover M. Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Therap Adv Gastroenterol. 2021;14:1756284821993586. doi:10.1177/1756284821993586.
  • Perna E, Aguilera-Lizarraga J, Florens MV, Jain P, Theofanous SA, Hanning N, De Man JG, Berg M, De Winter B, Alpizar YA, et al. Effect of resolvins on sensitisation of TRPV1 and visceral hypersensitivity in IBS. Gut. 2021;70:1275–1286. doi:10.1136/gutjnl-2020-321530.
  • Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology. 2007;132:615–627. doi:10.1053/j.gastro.2006.11.014.
  • Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ, et al. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA B receptors. Gut. 2017;66:1083–1094. doi:10.1136/gutjnl-2015-310971.
  • Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S, Grundy L, Rychkov GY, et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature. 2016;534:494–499. doi:10.1038/nature17976.
  • Peiris M, Weerts Z, Aktar R, Masclee AAM, Blackshaw A, Keszthelyi D. A putative anti-inflammatory role for TRPM8 in irritable bowel syndrome—an exploratory study. Neurogastroenterol Motil. 2021;33:e14170. doi:10.1111/nmo.14170.
  • Akbar A, Yiangou Y, Facer P, Walters JRF, Anand P, Ghosh S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut. 2008;57:923–929. doi:10.1136/gut.2007.138982.
  • Grover M, Berumen A, Peters S, Wei T, Breen‐lyles M, Harmsen WS, Busciglio I, Burton D, Vazquez Roque M, DeVault KR, et al. Intestinal chemosensitivity in irritable bowel syndrome associates with small intestinal TRPV channel expression. Aliment Pharmacol Ther. 2021;54:1179–1192. doi:10.1111/apt.16591.
  • Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, Bertrand J, Liedtke W, Dubourdeau M, Bertrand-Michel J, et al. Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology. 2015;149:433–44 e7. doi:10.1053/j.gastro.2015.04.011.
  • Locke GR 3rd, Ackerman MJ, Zinsmeister AR, Thapa P, Farrugia G. Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy. Am J Gastroenterol. 2006;101:1299–1304. doi:10.1111/j.1572-0241.2006.00507.x.
  • Long X, Li M, Li LX, Sun Y-Y, Zhang W-X, Zhao D-Y, Li Y-Q. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol Motil. 2018;30:e13227. doi:10.1111/nmo.13227.
  • Bourdu S, Dapoigny M, Chapuy E, Artigue F, Vasson M-P, Dechelotte P, Bommelaer G, Eschalier A, Ardid D. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology. 2005;128:1996–2008. doi:10.1053/j.gastro.2005.03.082.
  • Vanhoutvin SA, Troost FJ, Kilkens TO, Lindsey PJ, Hamer HM, Jonkers DMAE, Venema K, Brummer RJM. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol Motil. 2009;21:952–e76. doi:10.1111/j.1365-2982.2009.01324.x.
  • Wang P, Du C, Chen FX, Li C-Q, Yu Y-B, Han T, Akhtar S, Zuo X-L, Tan X-D, Li Y-Q. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit. Sci Rep. 2016;6:20320. doi:10.1038/srep20320.
  • Liang WJ, Zhang G, Luo HS, Liang L-X, Huang D, Zhang F-C. Tryptase and protease-activated receptor 2 expression levels in irritable bowel syndrome. Gut Liver. 2016;10:382–390. doi:10.5009/gnl14319.
  • Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol. 2022. doi:10.1038/s41575-022-00682-y.
  • Cremon C, Stanghellini V, Barbaro MR, Cogliandro RF, Bellacosa L, Santos J, Vicario M, Pigrau M, Alonso Cotoner C, Lobo B, et al. Randomised clinical trial: the analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Aliment Pharmacol Ther. 2017;45:909–922. doi:10.1111/apt.13958.
  • Crouzet L, Gaultier E, Del’homme C, Cartier C, Delmas E, Dapoigny M, Fioramonti J, Bernalier-Donadille A. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil. 2013;25:e272–82. doi:10.1111/nmo.12103.
  • Li YJ, Li J, Dai C. The role of intestinal microbiota and mast cell in a rat model of visceral hypersensitivity. J Neurogastroenterol Motil. 2020;26:529–538. doi:10.5056/jnm20004.
  • Xu D, Gao J, Gillilland M 3rd, Wu X, Song I, Kao JY, Owyang C. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 2014;146:484–96 e4. doi:10.1053/j.gastro.2013.10.026.
  • Choo C, Mahurkar-Joshi S, Dong TS, Lenhart A, Lagishetty V, Jacobs JP, Labus JS, Jaffe N, Mayer EA, Chang L. Colonic mucosal microbiota is associated with bowel habit subtype and abdominal pain in patients with irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2022;323:G134–143. doi:10.1152/ajpgi.00352.2021.
  • Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, Guarner F, Azpiroz F, Manichanh C. Reduction of butyrate- and methane-producing microorganisms in patients With irritable bowel syndrome. Sci Rep. 2015;5:12693. doi:10.1038/srep12693.
  • Holvoet T, Joossens M, Vazquez-Castellanos JF, Christiaens E, Heyerick L, Boelens J, Verhasselt B, van Vlierberghe H, De Vos M, Raes J, et al. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial. Gastroenterology. 2021;160:145–157 e8. doi:10.1053/j.gastro.2020.07.013.
  • Louwies T, Orock A, Greenwood-Van Meerveld B. Stress-induced visceral pain in female rats is associated with epigenetic remodeling in the central nucleus of the amygdala. Neurobiol Stress. 2021;15:100386.
  • Yuan T, Manohar K, Latorre R, Orock A, Greenwood-Van Meerveld B. Inhibition of microglial activation in the amygdala reverses stress-induced abdominal pain in the male rat. Cell Mol Gastroenterol Hepatol. 2020;10:527–543. doi:10.1016/j.jcmgh.2020.04.020.
  • Videlock EJ, Shih W, Adeyemo M, Mahurkar-Joshi, S, Presson, AP, Polytarchou, C, Alberto, M, Iliopoulos, D, Mayer, EA, Chang, L, et al. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression. Psychoneuroendocrinology. 2016;69:67–76. doi:10.1016/j.psyneuen.2016.03.016.
  • Du L, Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease activated receptor-2 induces immune activation and visceral hypersensitivity in post-infectious irritable bowel syndrome mice. Dig Dis Sci. 2019;64:729–739. doi:10.1007/s10620-018-5367-y.
  • Zhao Q, Yang WR, Wang XH, Li G-Q, Xu L-Q, Cui X, Liu Y, Zuo X-L. Clostridium butyricum alleviates intestinal low-grade inflammation in TNBS-induced irritable bowel syndrome in mice by regulating functional status of lamina propria dendritic cells. World J Gastroenterol. 2019;25:5469–5482. doi:10.3748/wjg.v25.i36.5469.
  • Yang J, Shang B, Shi H, Zhu S, Lu G, Dai F. The role of toll-like receptor 4 and mast cell in the ameliorating effect of electroacupuncture on visceral hypersensitivity in rats. Neurogastroenterol Motil. 2019;31:e13583. doi:10.1111/nmo.13583.
  • Feng B, La JH, Schwartz ES, Gebhart GF. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1085–98. doi:10.1152/ajpgi.00542.2011.
  • Shimbori C, De Palma G, Baerg L, Lu J, Verdu EF, Reed DE, Vanner S, Collins SM, Bercik P. Gut bacteria interact directly with colonic mast cells in a humanized mouse model of IBS. Gut Microbes. 2022;14:2105095. doi:10.1080/19490976.2022.2105095.
  • Li WT, Luo QQ, Wang B, Chen X, Yan X-J, Qiu H-Y, Chen S-L. Bile acids induce visceral hypersensitivity via mucosal mast cell–to–nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis. Faseb J. 2019;33:2435–2450. doi:10.1096/fj.201800935RR.
  • Gong L, Li J, Tang Y, Han T, Wei C, Yu X, Li J, Wang R, Ma X, Liu K, et al. The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca(2+)-NOS pathway. Sci Rep. 2016;6:31452. doi:10.1038/srep31452.
  • Xu X, Dong Q, Zhong Q, Xiu W, Chen Q, Wang J, Zhou Z. The flavonoid kurarinone regulates macrophage functions via aryl hydrocarbon receptor and alleviates intestinal inflammation in irritable bowel syndrome. J Inflamm Res. 2021;14:4347–4359. doi:10.2147/JIR.S329091.
  • Ren YJ, Zhang L, Bai T, Yu H-L, Li Y, Qian W, Jin S, Xiong Z-F, Wang H, Hou X-H. Transfer of CD11c+ lamina propria mononuclear phagocytes from post-infectious irritable bowel syndrome causes mucosal barrier dysfunction and visceral hypersensitivity in recipient mice. Int J Mol Med. 2017;39:1555–1563. doi:10.3892/ijmm.2017.2966.
  • Maeva M, Elodie B, Nathalie R, Defaye M, Straube M, Daugey V, Modoux M, Wawrzyniak I, Delbac F, Villéger R, et al. AhR/IL-22 pathway as new target for the treatment of post-infectious irritable bowel syndrome symptoms. Gut Microbes. 2022;14:2022997. doi:10.1080/19490976.2021.2022997.
  • Li M, Zhang L, Lu B, Chen Z, Chu L, Meng L, Fan Y. Role of dendritic cell-mediated abnormal immune response in visceral hypersensitivity. Int J Clin Exp Med. 2015;8:13243–13250.
  • Cardoso FC, Castro J, Grundy L, Schober G, Garcia-Caraballo S, Zhao T, Herzig V, King GF, Brierley SM, Lewis RJ. A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain. 2021;162:569–581. doi:10.1097/j.pain.0000000000002041.
  • Salvatierra J, Castro J, Erickson A, Li Q, Braz J, Gilchrist J, Grundy L, Rychkov GY, Deiteren A, Rais R, et al. NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight. 2018;3. doi:10.1172/jci.insight.121000.
  • Scanzi J, Accarie A, Muller E, Pereira B, Aissouni Y, Goutte M, Joubert-Zakeyh J, Picard E, Boudieu L, Mallet C, et al. Colonic overexpression of the T-type calcium channel Cav 3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil. 2016;28:1632–1640. doi:10.1111/nmo.12860.
  • Bai T, Li Y, Xia J, Jiang Y, Zhang L, Wang H, Qian W, Song J, Hou X. Piezo2: a candidate biomarker for visceral hypersensitivity in irritable bowel syndrome? J Neurogastroenterol Motil. 2017;23:453–463. doi:10.5056/jnm16114.
  • Hughes PA, Harrington AM, Castro J, Liebregts T, Adam B, Grasby DJ, Isaacs NJ, Maldeniya L, Martin CM, Persson J, et al. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut. 2013;62:1456–1465. doi:10.1136/gutjnl-2011-301856.
  • Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T, et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology. 2009;137:2084–2095 e3. doi:10.1053/j.gastro.2009.07.048.
  • Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. J Gastroenterol. 2017;52:72–80. doi:10.1007/s00535-016-1208-y.
  • Gao J, Xiong T, Grabauskas G, Owyang C. Mucosal serotonin reuptake transporter expression in irritable bowel syndrome is modulated by gut microbiota via mast cell–prostaglandin E2. Gastroenterology. 2022;162:1962–1974 e6. doi:10.1053/j.gastro.2022.02.016.
  • Grabauskas G, Gao J, Wu X, Zhou, SY, Turgeon, DK, Owyang, C, et al. Gut Microbiota Alter Visceral Pain Sensation and Inflammation via Modulation of Synthesis of Resolvin D1 in Colonic Tuft Cells. Gastroenterology. 2022. doi:10.1053/j.gastro.2022.07.053.
  • Matsumoto K, Takata K, Yamada D, Usuda H, Wada K, Tada M, Mishima Y, Ishihara S, Horie S, Saitoh A, et al. Juvenile social defeat stress exposure favors in later onset of irritable bowel syndrome-like symptoms in male mice. Sci Rep. 2021;11:16276. doi:10.1038/s41598-021-95916-5.
  • El-Ayache N, Galligan JJ. 5-HT3 receptor signaling in serotonin transporter-knockout rats: a female sex-specific animal model of visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol. 2019;316:G132–143. doi:10.1152/ajpgi.00131.2018.
  • Liao XJ, Mao WM, Wang Q, Yang G-G, Wu W-J, Shao S-X. MicroRNA-24 inhibits serotonin reuptake transporter expression and aggravates irritable bowel syndrome. Biochem Biophys Res Commun. 2016;469:288–293. doi:10.1016/j.bbrc.2015.11.102.
  • Sun H, Ma Y, An S, Wang Z. Altered gene expression signatures by calcitonin gene-related peptide promoted mast cell activity in the colon of stress-induced visceral hyperalgesia mice. Neurogastroenterol Motil. 2021;33:e14073. doi:10.1111/nmo.14073.
  • Gilet M, Eutamene H, Han H, Kim, HW, Bueno, L, et al. Influence of a new 5-HT4 receptor partial agonist, YKP10811, on visceral hypersensitivity in rats triggered by stress and inflammation. Neurogastroenterol Motil. 2014;26:1761–1770.
  • Zielinska M, Fichna J, Bashashati M, Habibi S, Sibaev A, Timmermans J-P, Storr M. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. Neurogastroenterol Motil. 2017;29. doi:10.1111/nmo.13025.
  • Rolland-Fourcade C, Denadai-Souza A, Cirillo C, Lopez C, Jaramillo JO, Desormeaux C, Cenac N, Motta J-P, Larauche M, Taché Y, et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut. 2017;66:1767–1778. doi:10.1136/gutjnl-2016-312094.
  • Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R, Jensen DD, Castro J, Aurelio L, Le GT, Flynn B, et al. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc Natl Acad Sci U S A. 2018;115:E7438–7447. doi:10.1073/pnas.1721891115.
  • Castro J, Harrington AM, Hughes PA, Martin CM, Ge P, Shea CM, Jin H, Jacobson S, Hannig G, Mann E, et al. Linaclotide Inhibits Colonic Nociceptors and Relieves Abdominal Pain via Guanylate Cyclase-C and Extracellular Cyclic Guanosine 3′,5′-Monophosphate. Gastroenterology. 2013;145: 1334-46 e1-11. doi:10.1053/j.gastro.2013.08.017.
  • Moloney RD, Johnson AC, O’mahony SM, Dinan TG, Greenwood-Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: relevance to Irritable Bowel Syndrome. CNS Neurosci Ther. 2016;22:102–117. doi:10.1111/cns.12490.
  • Bashashati M, Moossavi S, Cremon C, Barbaro MR, Moraveji S, Talmon G, Rezaei N, Hughes PA, Bian ZX, Choi CH, et al. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. 2018:30. doi:10.1111/nmo.13192
  • Robles A, Perez Ingles D, Myneedu K, Deoker A, Sarosiek I, Zuckerman MJ, Schmulson MJ, Bashashati M. Mast cells are increased in the small intestinal mucosa of patients with irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol Motil. 2019;31:e13718. doi:10.1111/nmo.13718.
  • Braak B, Klooker TK, Wouters MM, Welting O, van der Loos CM, Stanisor OI, van Diest S, van den Wijngaard RM, Boeckxstaens GE. Mucosal immune cell numbers and visceral sensitivity in patients with irritable bowel syndrome: is there any relationship? Am J Gastroenterol. 2012;107:715–726. doi:10.1038/ajg.2012.54.
  • Liebregts T, Adam B, Bredack C, Röth A, Heinzel S, Lester S, Downie–Doyle S, Smith E, Drew P, Talley NJ, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007;132:913–920. doi:10.1053/j.gastro.2007.01.046.
  • Shulman RJ, Jarrett ME, Cain KC, Broussard EK, Heitkemper MM. Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J Gastroenterol. 2014;49:1467–1476. doi:10.1007/s00535-013-0919-6.
  • Clave P, Acalovschi M, Triantafillidis JK, Uspensky YP, Kalayci C, Shee V, Tack J. Randomised clinical trial: otilonium bromide improves frequency of abdominal pain, severity of distention and time to relapse in patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2011;34:432–442. doi:10.1111/j.1365-2036.2011.04730.x.
  • Saito YA, Almazar AE, Tilkes KE, Choung RS, Van Norstrand MD, Schleck CD, Zinsmeister AR, Talley NJ. Randomised clinical trial: pregabalin vs placebo for irritable bowel syndrome. Aliment Pharmacol Ther. 2019;49:389–397. doi:10.1111/apt.15077.
  • Houghton LA, Fell C, Whorwell PJ, Jones I, Sudworth DP, Gale JD. Effect of a second-generation 2 ligand (pregabalin) on visceral sensation in hypersensitive patients with irritable bowel syndrome. Gut. 2007;56:1218–1225. doi:10.1136/gut.2006.110858.
  • Mawe GM, Hoffman JM. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–486. doi:10.1038/nrgastro.2013.105.
  • Cremon C, Carini G, Wang B, Vasina V, Cogliandro RF, De Giorgio R, Stanghellini V, Grundy D, Tonini M, De Ponti F, et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am J Gastroenterol. 2011;106:1290–1298. doi:10.1038/ajg.2011.86.
  • Kerckhoffs AP, Ter Linde JJ, Akkermans LM, Samsom M. SERT and TPH-1 mRNA expression are reduced in irritable bowel syndrome patients regardless of visceral sensitivity state in large intestine. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1053–60. doi:10.1152/ajpgi.00153.2011.
  • Thijssen AY, Mujagic Z, Jonkers DM, Ludidi S, Keszthelyi D, Hesselink MA, Clemens CHM, Conchillo JM, Kruimel JW, Masclee AAM. Alterations in serotonin metabolism in the irritable bowel syndrome. Aliment Pharmacol Ther. 2016;43:272–282. doi:10.1111/apt.13459.
  • Quigley EM. Editorial: serotonin and irritable bowel syndrome–reconciling pharmacological effects with basic biology. Aliment Pharmacol Ther. 2016;43:644–646. doi:10.1111/apt.13501.
  • Labus JS, Osadchiy V, Hsiao EY, Tap J, Derrien M, Gupta A, Tillisch K, Le Nevé B, Grinsvall C, Ljungberg M, et al. Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome. 2019;7:45. doi:10.1186/s40168-019-0656-z.
  • Hadizadeh F, Bonfiglio F, Belheouane M, Vallier M, Sauer S, Bang C, Bujanda L, Andreasson A, Agreus L, Engstrand L, et al. Faecal microbiota composition associates with abdominal pain in the general population. Gut. 2018;67:778–779. doi:10.1136/gutjnl-2017-314792.
  • Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, Palva A, de Vos WM. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. Plos One. 2011;6:e23035. doi:10.1371/journal.pone.0023035.
  • Frost F, Kacprowski T, Ruhlemann MC, Franke A, Heinsen F-A, Völker U, Völzke H, Aghdassi AA, Mayerle J, Weiss FU, et al. Functional abdominal pain and discomfort (IBS) is not associated with faecal microbiota composition in the general population. Gut. 2019;68:1131–1133. doi:10.1136/gutjnl-2018-316502.
  • Camilleri M, Busciglio I, Acosta A, Shin A, Carlson P, Burton D, Ryks M, Rhoten D, Lamsam J, Lueke A, et al. Effect of increased bile acid synthesis or fecal excretion in irritable bowel syndrome-diarrhea. Am J Gastroenterol. 2014;109:1621–1630. doi:10.1038/ajg.2014.215.
  • Wei W, Wang HF, Zhang Y, Zhang Y-L, Niu B-Y, Yao S-K. Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhea-predominant irritable bowel syndrome. World J Gastroenterol. 2020;26:7153–7172. doi:10.3748/wjg.v26.i45.7153.
  • Camilleri M, Carlson P, BouSaba J, McKinzie S, Vijayvargiya P, Magnus Y, Sannaa W, Wang XJ, Chedid V, Zheng T, et al. Comparison of biochemical, microbial and mucosal mRNA expression in bile acid diarrhoea and irritable bowel syndrome with diarrhoea. Gut. 2022;72:54–65. doi:10.1136/gutjnl-2022-327471.
  • Tap J, Storsrud S, Le Neve B, Cotillard A, Pons N, Doré J, Öhman L, Törnblom H, Derrien M, Simrén M. Diet and gut microbiome interactions of relevance for symptoms in irritable bowel syndrome. Microbiome. 2021;9:74. doi:10.1186/s40168-021-01018-9.
  • Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N, Gupta A, Acosta J, Luna RA, Aagaard K, Versalovic J, et al. Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome. 2017;5:49. doi:10.1186/s40168-017-0260-z.
  • Xu XJ, Zhang YL, Liu L, Pan L, Yao SK. Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study. Aliment Pharmacol Ther. 2017;45:100–114. doi:10.1111/apt.13848.
  • Icenhour A, Witt ST, Elsenbruch S, Lowén M, Engström M, Tillisch K, Mayer EA, Walter S. Brain functional connectivity is associated with visceral sensitivity in women with Irritable Bowel Syndrome. Neuroimage Clin. 2017;15:449–457. doi:10.1016/j.nicl.2017.06.001.
  • Mayer EA, Labus J, Aziz Q, Tracey I, Kilpatrick L, Elsenbruch S, Schweinhardt P, Van Oudenhove L, Borsook D. Role of brain imaging in disorders of brain–gut interaction: a Rome Working Team Report. Gut. 2019;68:1701–1715. doi:10.1136/gutjnl-2019-318308.
  • Bhatt RR, Gupta A, Labus JS, Zeltzer LK, Tsao JC, Shulman RJ, Tillisch K. Altered Brain Structure and Functional Connectivity and Its Relation to Pain Perception in Girls with Irritable Bowel Syndrome. Psychosom Med. 2019;81:146–154. doi:10.1097/PSY.0000000000000655.
  • Kano M, Dupont P, Aziz Q, Fukudo S. Understanding Neurogastroenterology from Neuroimaging Perspective: a Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders. J Neurogastroenterol Motil. 2018;24:512–527. doi:10.5056/jnm18072.
  • Wilder-Smith CH, Schindler D, Lovblad K, Redmond, SM, Nirkko, A, et al. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut. 2004;53:1595–1601. doi:10.1136/gut.2003.028514.
  • Chang L, Sundaresh S, Elliott J, Anton PA, Baldi P, Licudine A, Mayer M, Vuong T, Hirano M, Naliboff BD, et al. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in irritable bowel syndrome. Neurogastroenterol Motil. 2009;21:149–159. doi:10.1111/j.1365-2982.2008.01171.x.
  • Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: from Motility to Mood. Gastroenterology. 2021;160:1486–1501. doi:10.1053/j.gastro.2020.10.066.
  • Jacobs JP, Gupta A, Bhatt RR, Brawer J, Gao K, Tillisch K, Lagishetty V, Firth R, Gudleski GD, Ellingson BM, et al. Cognitive behavioral therapy for irritable bowel syndrome induces bidirectional alterations in the brain-gut-microbiome axis associated with gastrointestinal symptom improvement. Microbiome. 2021;9:236. doi:10.1186/s40168-021-01188-6.
  • Bhatt RR, Gupta A, Labus JS, Liu C, Vora PP, Stains J, Naliboff BD, Mayer EA. A neuropsychosocial signature predicts longitudinal symptom changes in women with irritable bowel syndrome. Mol Psychiatry. 2022;27:1774–1791. doi:10.1038/s41380-021-01375-9.
  • Mayer EA, Gupta A, Kilpatrick LA, Hong J-Y. Imaging brain mechanisms in chronic visceral pain. Pain. 2015;156 Suppl 1:S50–63. doi:10.1097/j.pain.0000000000000106.
  • Sclocco R, Beissner F, Bianciardi M, Polimeni, JR, Napadow, V, et al. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage. 2018;168:412–426. doi:10.1016/j.neuroimage.2017.02.052.
  • Mujagic Z, Keszthelyi D, Aziz Q, Reinisch W, Quetglas EG, De Leonardis F, Segerdahl M, Masclee AAM. Systematic review: instruments to assess abdominal pain in irritable bowel syndrome. Aliment Pharmacol Ther. 2015;42:1064–1081. doi:10.1111/apt.13378.
  • Shin A, Preidis GA, Shulman R, Kashyap PC. The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin Gastroenterol Hepatol. 2019;17:256–274. doi:10.1016/j.cgh.2018.08.054.
  • Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, Moayyedi P. Gut Microbiota in Patients with Irritable Bowel Syndrome—A Systematic Review. Gastroenterology. 2019;157:97–108. doi:10.1053/j.gastro.2019.03.049.
  • Mars RAT, Frith M, Kashyap PC. Functional Gastrointestinal Disorders and the Microbiome-What is the Best Strategy for Moving Microbiome-based Therapies for Functional Gastrointestinal Disorders into the Clinic? Gastroenterology. 2021;160:538–555. doi:10.1053/j.gastro.2020.10.058.
  • Tap J, Derrien M, Tornblom H, Brazeilles R, Cools-Portier S, Doré J, Störsrud S, Le Nevé B, Öhman L, Simrén M. Identification of an Intestinal Microbiota Signature Associated with Severity of Irritable Bowel Syndrome. Gastroenterology. 2017;152:111–123 e8. doi:10.1053/j.gastro.2016.09.049.
  • Botschuijver S, Roeselers G, Levin E, Jonkers DM, Welting O, Heinsbroek SEM, de Weerd HH, Boekhout T, Fornai M, Masclee AA, et al. Intestinal Fungal Dysbiosis is Associated with Visceral Hypersensitivity in Patients with Irritable Bowel Syndrome and Rats. Gastroenterology. 2017;153:1026–1039. doi:10.1053/j.gastro.2017.06.004.
  • Hillestad EMR, van der Meeren A, Nagaraja BH, Bjørsvik BR, Haleem N, Benitez-Paez A, Sanz Y, Hausken T, Lied GA, Lundervold A, et al. Gut bless you: the microbiota-gut-brain axis in irritable bowel syndrome. World J Gastroenterol. 2022;28:412–431. doi:10.3748/wjg.v28.i4.412.
  • Coughlan S, Das A, O’herlihy E, Shanahan F, O’toole PW, Jeffery IB. The gut virome in Irritable Bowel Syndrome differs from that of controls. Gut Microbes. 2021;13:1–15. doi:10.1080/19490976.2021.1887719.
  • Mihindukulasuriya KA, Mars RAT, Johnson AJ, Ward T, Priya S, Lekatz HR, Kalari KR, Droit L, Zheng T, Blekhman R, et al. Multi-Omics Analyses Show Disease, Diet, and Transcriptome Interactions with the Virome. Gastroenterology. 2021;161:1194–1207 e8. doi:10.1053/j.gastro.2021.06.077.
  • Botschuijver S, van Diest SA, van Thiel IAM, Saia RS, Strik AS, Yu Z, Maria-Ferreira D, Welting O, Keszthelyi D, Jennings G, et al. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Sci Rep. 2019;9:12530. doi:10.1038/s41598-019-49096-y.
  • McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, Madsen K, Bercik P, Vanner S. Fodmaps alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 2017;66:1241–1251. doi:10.1136/gutjnl-2015-311339.
  • Balemans D, Aguilera-Lizarraga J, Florens MV, Jain P, Denadai-Souza A, Viola MF, Alpizar YA, Van Der Merwe S, Vanden Berghe P, Talavera K, et al. Histamine-mediated potentiation of transient receptor potential (TRP) ankyrin 1 and TRP vanilloid 4 signaling in submucosal neurons in patients with irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2019;316:G338–349. doi:10.1152/ajpgi.00116.2018.
  • Tanaka Y, Yamashita R, Kawashima J, Mori H, Kurokawa K, Fukuda S, Gotoh Y, Nakamura K, Hayashi T, Kasahara Y, et al. Omics profiles of fecal and oral microbiota change in irritable bowel syndrome patients with diarrhea and symptom exacerbation. J Gastroenterol. 2022. doi:10.1007/s00535-022-01888-2.
  • Baranska A, Mujagic Z, Smolinska A, Dallinga JW, Jonkers DMAE, Tigchelaar EF, Dekens J, Zhernakova A, Ludwig T, Masclee AAM, et al. Volatile organic compounds in breath as markers for irritable bowel syndrome: a metabolomic approach. Aliment Pharmacol Ther. 2016;44:45–56. doi:10.1111/apt.13654.
  • Zhu S, Liu S, Li H, Zhang Z, Zhang Q, Chen L, Zhao Y, Chen Y, Gu J, Min L, et al. Identification of Gut Microbiota and Metabolites Signature in Patients with Irritable Bowel Syndrome. Front Cell Infect Microbiol. 2019;9:346. doi:10.3389/fcimb.2019.00346.
  • Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, Tang X, Sun Z, Kalari KR, Korem T, et al. Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome. Cell. 2020;182:1460–1473 e17. doi:10.1016/j.cell.2020.08.007.
  • Gargari G, Taverniti V, Gardana C, Cremon C, Canducci F, Pagano I, Barbaro MR, Bellacosa L, Castellazzi AM, Valsecchi C, et al. Fecal Clostridiales distribution and short-chain fatty acids reflect bowel habits in irritable bowel syndrome. Environ Microbiol. 2018;20:3201–3213. doi:10.1111/1462-2920.14271.
  • Jeffery IB, Das A, O’herlihy E, Coughlan S, Cisek K, Moore M, Bradley F, Carty T, Pradhan M, Dwibedi C, et al. Differences in Fecal Microbiomes and Metabolomes of People with vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology. 2020;158:1016–1028 e8. doi:10.1053/j.gastro.2019.11.301.
  • Vijayvargiya P, Camilleri M, Burton D, Busciglio I, Lueke A, Donato LJ. Bile and fat excretion are biomarkers of clinically significant diarrhoea and constipation in irritable bowel syndrome. Aliment Pharmacol Ther. 2019;49:744–758. doi:10.1111/apt.15106.
  • Ahluwalia B, Iribarren C, Magnusson MK, Sundin J, Clevers E, Savolainen O, Ross AB, Törnblom H, Simrén M, Öhman L. A Distinct Faecal Microbiota and Metabolite Profile Linked to Bowel Habits in Patients with Irritable Bowel Syndrome. Cells. 2021;10. doi:10.3390/cells10061459.
  • Kumar A, Misra BB. Challenges and Opportunities in Cancer Metabolomics. Proteomics. 2019;19:e1900042. doi:10.1002/pmic.201900042.
  • Lin Z, Wang Y, Lin S, Liu D, Mo G, Zhang H, Dou Y. Identification of potential biomarkers for abdominal pain in IBS patients by bioinformatics approach. BMC Gastroenterol. 2021;21:48. doi:10.1186/s12876-021-01626-7.
  • Camilleri M, Zhernakova A, Bozzarelli I, D’amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol. 2022;19:689–702. doi:10.1038/s41575-022-00662-2.
  • Eijsbouts C, Zheng T, Kennedy NA, Bonfiglio F, Anderson CA, Moutsianas L, Holliday J, Shi J, Shringarpure S, Agee M, et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat Genet. 2021;53:1543–1552. doi:10.1038/s41588-021-00950-8.
  • Vollert J, Wang R, Regis S, Yetman H, Lembo AJ, Kaptchuk TJ, Cheng V, Nee J, Iturrino J, Loscalzo J, et al. Genotypes of Pain and Analgesia in a Randomized Trial of Irritable Bowel Syndrome. Front Psychiatry. 2022;13:842030. doi:10.3389/fpsyt.2022.842030.
  • Zhang ZF, Duan ZJ, Wang LX, Yang D, Zhao G, Zhang L. The serotonin transporter gene polymorphism (5-HTTLPR) and irritable bowel syndrome: a meta-analysis of 25 studies. BMC Gastroenterol. 2014;14:23. doi:10.1186/1471-230X-14-23.
  • Mahurkar-Joshi S, Chang L. Epigenetic Mechanisms in Irritable Bowel Syndrome. Front Psychiatry. 2020;11:805. doi:10.3389/fpsyt.2020.00805.
  • Zhou Q, Yang L, Larson S, Basra S, Merwat S, Tan A, Croce C, Verne GN. Decreased miR-199 augments visceral pain in patients with IBS through translational upregulation of TRPV1. Gut. 2016;65:797–805. doi:10.1136/gutjnl-2013-306464.
  • Camilleri M, Carlson P, Acosta A, Busciglio I, Nair AA, Gibbons SJ, Farrugia G, Klee EW. RNA sequencing shows transcriptomic changes in rectosigmoid mucosa in patients with irritable bowel syndrome-diarrhea: a pilot case-control study. Am J Physiol Gastrointest Liver Physiol. 2014;306:G1089–98. doi:10.1152/ajpgi.00068.2014.
  • Dussik CM, Hockley M, Grozic A, Kaneko I, Zhang L, Sabir MS, Park J, Wang J, Nickerson CA, Yale SH, et al. Gene Expression Profiling and Assessment of Vitamin D and Serotonin Pathway Variations in Patients with Irritable Bowel Syndrome. J Neurogastroenterol Motil. 2018;24:96–106. doi:10.5056/jnm17021.
  • Wiley JW, Higgins GA, Hong S. Chronic psychological stress alters gene expression in rat colon epithelial cells promoting chromatin remodeling, barrier dysfunction and inflammation. PeerJ. 2022;10:e13287. doi:10.7717/peerj.13287.
  • Gupta A, Cole S, Labus JS, Joshi S, Nguyen TJ, Kilpatrick LA, Tillisch K, Naliboff BD, Chang L, Mayer EA. Gene expression profiles in peripheral blood mononuclear cells correlate with salience network activity in chronic visceral pain: a pilot study. Neurogastroenterol Motil. 2017;29. doi:10.1111/nmo.13027.
  • Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P, Simpson JB, Yang T-Y, Kumar P, Mehta S, et al. Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol. 2022;7:680–694. doi:10.1038/s41564-022-01103-1.
  • Jabbar KS, Dolan B, Eklund L, Wising C, Ermund A, Johansson Å, Törnblom H, Simren M, Hansson GC. Association between Brachyspira and irritable bowel syndrome with diarrhoea. Gut. 2021;70:1117–1129. doi:10.1136/gutjnl-2020-321466.
  • Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nat Microbiol. 2022;7:780–795. doi:10.1038/s41564-022-01121-z.
  • Sarnoff RP, Bhatt RR, Osadchiy V, Dong, T, Labus, JS, Kilpatrick, LA, Chen, Zixi, Subramanyam, V, Zhang, Y, Ellingson, BM, et al. A multi-omic brain gut microbiome signature differs between IBS subjects with different bowel habits. Neuropharmacology. 2023;225:109381. doi:10.1016/j.neuropharm.2022.109381.
  • Kumbhare SV, Francis-Lyon PA, Kachru D, Uday T, Irudayanathan C, Muthukumar KM, Ricchetti RR, Singh-Rambiritch S, Ugalde J, Dulai PS, et al. Digital therapeutics care utilizing genetic and gut microbiome signals for the management of functional gastrointestinal disorders: results from a preliminary retrospective study. Front Microbiol. 2022;13:826916. doi:10.3389/fmicb.2022.826916.
  • Llorens-Rico V, Simcock JA, Huys GRB, Raes J. Single-cell approaches in human microbiome research. Cell. 2022;185:2725–2738. doi:10.1016/j.cell.2022.06.040.