2,148
Views
3
CrossRef citations to date
0
Altmetric
Review

Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions

ORCID Icon, , &
Article: 2197833 | Received 07 Dec 2022, Accepted 28 Mar 2023, Published online: 05 Apr 2023

References

  • Vlasova AN, Amimo JO, Saif LJ. Porcine rotaviruses: epidemiology, immune responses and control strategies. Viruses Internet. 2017 [accessed 2022 Jul 9];9(3):48. doi:10.3390/v9030048.
  • Lundgren O, Svensson L. Pathogenesis of Rotavirus diarrhea. Microbes Infect Internet. 2001 [accessed 2022 Apr 4];3(13):1145–31. doi:10.1016/S1286-4579(01)01475-7.
  • Ciarlet M, Ludert JE, Iturriza-Gómara M, Liprandi F, Gray JJ, Desselberger U, Estes MK. Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin. J Virol. 2002;76(8):4087–4095. doi:10.1128/jvi.76.8.4087-4095.2002.
  • Martínez MA, López S, Arias CF, Isa P. Gangliosides have a functional role during rotavirus cell entry. J Virol. 2013;87(2):1115–1122. doi:10.1128/JVI.01964-12.
  • Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BVV. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature Internet. 2012 [accessed 2021 Dec 2];485(7397):256–259. doi:10.1038/nature10996.
  • Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol Internet. 2012 [accessed 2021 Dec 2];86(9):4833–4843. doi:10.1128/JVI.05507-11.
  • Zhou J, Zhang W, Liu W, Sheng J, Li M, Chen X, Dong R. Histological study of intestinal goblet cells, IgA, and CD3+ lymphocyte distribution in Huang-huai white goat. Folia Morphol (Warsz). 2020;79(2):303–310. doi:10.5603/FM.a2019.0082.
  • Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petrosino JF, Hyser JM. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes Internet. 2020 [accessed 2021 Dec 3];11(5):1324–1347. doi:10.1080/19490976.2020.1754714.
  • Mäkivuokko H, Lahtinen SJ, Wacklin P, Tuovinen E, Tenkanen H, Nikkilä J, Björklund M, Aranko K, Ouwehand AC, Mättö J. Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol. 2012;12:94. doi:10.1186/1471-2180-12-94.
  • Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387. doi:10.3389/fcimb.2017.00387.
  • De Oliveira DMP, Hartley-Tassell L, Everest-Dass A, Day CJ, Dabbs RA, Ve T, Kobe B, Nizet V, Packer NH, Walker MJ, et al. Blood group antigen recognition via the group a streptococcal M protein mediates host colonization. mBio Internet. 2017 accessed 2023 Feb 17;8(1):e02237–16. doi:10.1128/mBio.02237-16.
  • Fernandez-Julia P, Commane DM, van Sinderen D, Munoz-Munoz J. Cross-feeding interactions between human gut commensals belonging to the Bacteroides and Bifidobacterium genera when grown on dietary glycans. Microbio Res Reports Internet. 2022 [accessed 2023 Feb 13];1(2):12. doi:10.20517/mrr.2021.05.
  • Arike L, Holmén-Larsson J, Hansson GC. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology Internet. 2017 [accessed 2022 Apr 12];27(4):318–328. doi:10.1093/glycob/cww134.
  • Comstock LE, Kasper DL. Bacterial glycans: key mediators of diverse host immune responses. Cell Internet. 2006 [accessed 2023 Mar 12];126(5):847–850. doi:10.1016/j.cell.2006.08.021.
  • Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, Nakagomi T, Nakagomi O, Okabe S. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. J Virol Internet. 2013 [accessed 2022 Jan 15;87(17):9441–9451. doi:10.1128/JVI.01060-13.
  • Raev SA, Omwando AM, Guo Y, Raque MS, Amimo JO, Saif LJ, Vlasova AN. Glycan-mediated interactions between bacteria, rotavirus and the host cells provide an additional mechanism of antiviral defence. Benef Microbes. 2022;13:1–14. doi:10.3920/BM2022.0026.
  • Robinson CM, Jesudhasan PR, Pfeiffer JK. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host & Microbe Internet. 2014 [accessed 2023 Mar 3];15(1):36–46. doi:10.1016/j.chom.2013.12.004.
  • Lang T, Klasson S, Larsson E, Johansson MEV, Hansson GC, Samuelsson T. Searching the evolutionary origin of epithelial mucus protein components-mucins and FCGBP. Mol Biol Evol. 2016;33(8):1921–1936. doi:10.1093/molbev/msw066.
  • Johansson MEV. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. Plos One. 2012;7(7):e41009. doi:10.1371/journal.pone.0041009.
  • Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol Internet. 2001 [accessed 2021 Dec 2];280(5):G922–929. doi:10.1152/ajpgi.2001.280.5.G922.
  • Melhem H, Regan-Komito D, Niess JH. Mucins dynamics in physiological and pathological conditions. Int J Mol Sci Internet. 2021 [accessed 2023 Mar 19];22(24):13642. doi:10.3390/ijms222413642.
  • Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol Internet. 2016 [accessed 2022 Oct 27];16(10):639–649. doi:10.1038/nri.2016.88.
  • Patel KS, Thavamani A. Physiology, peristalsis. In: StatPearls Internet. Treasure Island (FL); StatPearls Publishing: 2022 [accessed 2023 Feb 15]. http://www.ncbi.nlm.nih.gov/books/NBK556137/
  • Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal Internet. 2009 [accessed 2023 Feb 15];21(8):1237–1244. doi:10.1016/j.cellsig.2009.02.011.
  • Uchida H, Kawai Y, Kinoshita H, Kitazawa H, Miura K, Shiiba K, Horii A, Kimura K, Taketomo N, Oda M, et al. Lactic acid bacteria (LAB) bind to human B- orThe permeability of the mucus layer has been fou H-antigens expressed on intestinal mucosa. Biosci Biotechnol Biochem. 2006;70(12):3073–3076. doi:10.1271/bbb.60407.
  • Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, Brugiroux S, Keller I, Macpherson JA, Rupp S, et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun. Internet 2015 [accessed 2023 Feb 17];6(1):8292. doi:10.1038/ncomms9292.
  • Krupa L, Bajka B, Staroń R, Dupont D, Singh H, Gutkowski K, Macierzanka A. Comparing the permeability of human and porcine small intestinal mucus for particle transport studies. Sci Rep Internet. 2020 [accessed 2021 Dec 2];10(1):20290. doi:10.1038/s41598-020-77129-4.
  • Ermund A, Schütte A, Johansson MEV, Gustafsson JK, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am J Physiol Gastrointest Liver Physiol Internet. 2013 [accessed 2022 May 19];305(5):G341–347. doi:10.1152/ajpgi.00046.2013.
  • Nason R, Büll C, Konstantinidi A, Sun L, Ye Z, Halim A, Du W, Sørensen DM, Durbesson F, Furukawa S, et al. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat Commun Internet. 2021 [accessed 2023 Feb 17];12(1):4070. doi:10.1038/s41467-021-24366-4.
  • Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem. 1993;41(10):1479–1485. doi:10.1177/41.10.8245407.
  • Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC2008The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. [accessed 2022 May 19]. 105(39):15064–15069. doi:10.1073/pnas.0803124105
  • Hansson GC. Mucins and the microbiome. Annu Rev Biochem Internet. 2020 [accessed 2023 Mar 25];89(1):769–793. doi:10.1146/annurev-biochem-011520-105053.
  • Reis CA, David L, Carvalho F, Mandel U, de Bolós C, Mirgorodskaya E, Clausen H, Sobrinho-Simões M. Immunohistochemical study of the expression of MUC6 mucin and co-expression of other secreted mucins (MUC5AC and MUC2) in human gastric carcinomas. J Histochem Cytochem Internet. 2000 [accessed 2023 Feb 10];48(3):377–388. doi:10.1177/002215540004800307.
  • Nordman H, Davies JR, Lindell G, de Bolós, Real F, Carlstedti C, de Bolós F. Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem J Internet. 2002 [accessed 2023 Feb 10];364(1):191–200. doi:10.1042/bj3640191.
  • Magalhães A, Reis CA. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz J Med Biol Res Internet. 2010 [accessed 2023 Feb 10]. 43:611–618. 10.1590/S0100-879X2010007500049.
  • Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. Plos Pathog. 2010;6(5):e1000902. doi:10.1371/journal.ppat.1000902.
  • Baos SC, Phillips DB, Wildling L, McMaster TJ, Berry M. Distribution of sialic acids on mucins and gels: a defense mechanism. Biophys J Internet. 2012 [accessed 2022 Aug 12];102(1):176–184. doi:10.1016/j.bpj.2011.08.058.
  • Javitt G, Calvo MLG, Albert L, Reznik N, Ilani T, Diskin R, Fass D. Intestinal gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains. J Mol Biol Internet. 2019 [accessed 2023 Feb 17];431(19):3740–3752. doi:10.1016/j.jmb.2019.07.018.
  • Offner GD, Troxler RF. Heterogeneity of high-molecular-weight human salivary mucins. Adv Dent Res. 2000;14:69–75. doi:10.1177/08959374000140011101.
  • Sheng YH, Triyana S, Wang R, Das I, Gerloff K, Florin TH, Sutton P, McGuckin MA. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 2013;6(3):557–568. doi:10.1038/mi.2012.98.
  • Coltart DM, Royyuru AK, Williams LJ, Glunz PW, Sames D, Kuduk SD, Schwarz JB, Chen X-T, Danishefsky SJ, Live DH. Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono-, Di-, Tri-, and hexasaccharide glycodomains. J Am Chem Soc Internet. 2002 [accessed 2023 Feb 17];124(33):9833–9844. doi:10.1021/ja020208f.
  • Gill DJ, Chia J, Senewiratne J, Bard F. Regulation of O-glycosylation through golgi-to-ER relocation of initiation enzymes. J Cell Biol Internet. 2010 [accessed 2023 Feb 17];189(5):843–858. doi:10.1083/jcb.201003055.
  • Tran DT, Ten Hagen KG. Mucin-type O-glycosylation during development. J Biol Chem. 2013;288(10):6921–6929. doi:10.1074/jbc.R112.418558.
  • Brockhausen I, Schachter H, Stanley P 2009. O-Galnac Glycans. In: Essentials of Glycobiology 2nd. Varki A, Cummings R.D, Esko J.D, Freeze H.H, Stanley P, Bertozzi C.R, Hart G.W, Etzler M, editors. Cold Spring Harbor (NY);Cold Spring Harbor Laboratory Press. Internet [accessed 2023 Mar 10]. http://www.ncbi.nlm.nih.gov/books/NBK1896/
  • An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J, Xia L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 2007;204(6):1417–1429. doi:10.1084/jem.20061929.
  • Clausen H, Hakomori S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution1. Vox Sang Internet 1989 [accessed 2023 Feb 10];56(1):1–20. doi:10.1111/j.1423-0410.1989.tb03040.x.
  • Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. APMIS Internet. 2000 [accessed 2022 Mar 27];108(1):1–28. doi:10.1034/j.1600-0463.2000.d01-1.x.
  • Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology Internet 2005 [accessed 2023 Feb 17];15(8):805–817. doi:10.1093/glycob/cwi063.
  • Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group alpha(1,3/1,4)fucosyltransferase. Genes Dev. Internet. 1990 [accessed 2023 Feb 10];4(8):1288–1303. doi:10.1101/gad.4.8.1288.
  • Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature Internet. 1990 [accessed 2023 Feb 10];345(6272):229–233. doi:10.1038/345229a0.
  • Ferrer-Admetlla A, Sikora M, Laayouni H, Esteve A, Roubinet F, Blancher A, Calafell F, Bertranpetit J, Casals F. A natural history of FUT2 polymorphism in humans. Mol Biol Evol Internet. 2009 [accessed 2023 Feb 17];26(9):1993–2003. doi:10.1093/molbev/msp108.
  • Guo M, Luo G, Lu R, Shi W, Cheng H, Lu Y, Jin K, Yang C, Wang Z, Long J, et al.Distribution of lewis and secretor polymorphisms and corresponding CA19‐9 antigen expression in a Chinese population. FEBS Open Bio Internet. 2017 [accessed 2023 Feb 10]. 7(11):1660–1671. doi: 10.1002/2211-5463.12278.
  • Priatel JJ, Chui D, Hiraoka N, Simmons CJ, Richardson KB, Page DM, Fukuda M, Varki NM, Marth JD. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity. 2000;12(3):273–283. doi:10.1016/s1074-7613(00)80180-6.
  • Ruvoën-Clouet N, Ganière JP, André-Fontaine G, Blanchard D, Le Pendu J. Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J VirolInternet 2000 [accessed 2022 Nov 2];74(24):11950–11954. doi:10.1128/JVI.74.24.11950-11954.2000.
  • Bomidi C, Robertson M, Coarfa C, Estes MK, Blutt SE. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proc Natl Acad Sci. Internet 2021 [accessed 2023 Mar 11];118(45):e2112814118. doi:10.1073/pnas.2112814118.
  • Crawford SE, Patel DG, Cheng E, Berkova Z, Hyser JM, Ciarlet M, Finegold MJ, Conner ME, Estes MK. Rotavirus viremia and extraintestinal viral infection in the neonatal rat model. J Virol Internet. 2006 [accessed 2022 Aug 8];80(10):4820–4832. doi:10.1128/JVI.80.10.4820-4832.2006.
  • Shao L, Fischer DD, Kandasamy S, Rauf A, Langel SN, Wentworth DE, Stucker KM, Halpin RA, Lam HC, Marthaler D, et al. Comparative in vitro and in vivo studies of porcine rotavirus G9P[13] and human rotavirus wa G1P[8]. J Virol Internet 2015 [accessed 2022 Sep 13];90(1):142–151. doi:10.1128/JVI.02401-15.
  • Blutt SE, Kirkwood CD, Parreño V, Warfield KL, Ciarlet M, Estes MK, Bok K, Bishop RF, Conner ME. Rotavirus antigenaemia and viraemia: a common event? Lancet. 2003;362(9394):1445–1449. doi:10.1016/S0140-6736(03)14687-9.
  • Justino MCA, Campos EA, Mascarenhas JDP, Soares LS, Guerra S, de Fs Furlaneto IP, Pavão MJC Jr, Maciel TS, Farias FP, Bezerra OM, et al. Rotavirus antigenemia as a common event among children hospitalised for severe, acute gastroenteritis in Belém, northern Brazil. BMC Pediatr Internet. 2019 [accessed 2023 Mar 3];19:193. doi:10.1186/s12887-019-1535-2.
  • Azevedo MSP, Yuan L, Pouly S, Gonzales AM, Jeong KI, Nguyen TV, Saif LJ. Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus. J Virol. Internet. 2006 [accessed 2023 Mar 3];80(1):372–382. doi:10.1128/JVI.80.1.372-382.2006.
  • Gómez-Rial J, Sánchez-Batán S, Rivero-Calle I, Pardo-Seco J, Martinón-Martínez JM, Salas A, Martinón-Torres F. Rotavirus infection beyond the gut. Infect Drug Resist Internet. 2018 [accessed 2022 Aug 8]. 12:55–64. 10.2147/IDR.S186404.
  • Nelsen A, Lager KM, Stasko J, Nelson E, Lin C-M, Hause BM. Identification of pulmonary infections with porcine rotavirus a in pigs with respiratory disease. Front Vet Sci. 2022;9:918736. doi:10.3389/fvets.2022.918736.
  • Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, Estes MK. VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. J Virol. 2002;76(3):1109–1123. doi:10.1128/jvi.76.3.1109-1123.2002.
  • Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BVV. Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol Internet. 2001 [accessed 2023 Feb 17];75(13):6052–6061. doi:10.1128/JVI.75.13.6052-6061.2001.
  • Dormitzer PR, Sun ZY, Wagner G, Harrison SC. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. Embo J Internet. 2002 [accessed 2022 Mar 14];21(5):885. doi:10.1093/emboj/21.5.885.
  • Estes MK, Graham DY, Mason BB. Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol Internet. 1981 [accessed 2022 Mar 25];39(3):879–888. 10.1128/jvi.39.3.879-888.1981.
  • Guerrero CA, Bouyssounade D, Zárate S, Iša P, López T, Espinosa R, Romero P, Méndez E, López S, Arias CF. Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol Internet. 2002 [accessed 2023 Feb 1];76(8):4096–4102. doi:10.1128/JVI.76.8.4096-4102.2002.
  • Torres-Flores JM, Arias CF. Tight Junctions Go Viral! Viruses. Internet. 2015 [accessed 2023 Feb 1];7(9):5145–5154. 10.3390/v7092865.
  • Salas-Cárdenas SP, Olaya-Galán NN, Fernández K, Velez F, Guerrero CA, Guitiérrez MF. Decreased rotavirus infection of MA104 cells via probiotic extract binding to Hsc70 and ß3 integrin receptors. Univ Sci Internet. 2018 [accessed 2022 May 19];23(2):219–239. doi:10.11144/Javeriana.SC23-2.drio.
  • Fukudome K, Yoshie O, Konno T. Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology. 1989;172(1):196–205. doi:10.1016/0042-6822(89)90121-9.
  • Delorme C, Brüssow H, Sidoti J, Roche N, Karlsson K-A, Neeser J-R, Teneberg S. Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J Virol Internet. 2001 [accessed 2022 Mar 25];75(5):2276–2287. doi:10.1128/JVI.75.5.2276-2287.2001.
  • Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS, et al. Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol Internet. 2009 [accessed 2022 Feb 16];5(2):91–93. doi:10.1038/nchembio.134.
  • Guo Y, Candelero-Rueda RA, Saif LJ, Vlasova AN. Infection of porcine small intestinal enteroids with human and pig rotavirus a strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. Plos Pathog. 2021;17(1):e1009237. doi:10.1371/journal.ppat.1009237.
  • Guo Y, Raev S, Kick MK, Raque M, Saif LJ, Vlasova AN. Rotavirus C replication in porcine intestinal enteroids reveals roles for cellular cholesterol and Sialic Acids. Viruses Internet. 2022 [accessed 2022 Sep 15];14(8). 10.3390/v14081825.
  • Superti F, Donelli G. Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. J Gen Virol Internet 1991 [accessed 2022 Mar 25];72(10):2467–2474. doi:10.1099/0022-1317-72-10-2467.
  • Ding S, Diep J, Feng N, Ren L, Li B, Ooi YS, Wang X, Brulois KF, Yasukawa LL, Li X, et al. STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nat Commun Internet. 2018 [accessed 2023 Feb 15];9(1):1485. doi:10.1038/s41467-018-03782-z.
  • Yamasaki M, Kanai Y, Wakamura Y, Kotaki T, Minami S, Nouda R, Nurdin JA, Kobayashi T. Characterization of sialic acid-independent simian rotavirus mutants in viral infection and pathogenesis. J Virol Internet. 2023 [accessed 2023 Feb 2];97(1):e01397–22. 10.1128/jvi.01397-22.
  • Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol. 2002;76(20):10512–10517. doi:10.1128/jvi.76.20.10512-10517.2002.
  • Lee RT, Ichikawa Y, Fay M, Drickamer K, Shao MC, Lee YC. Ligand-binding characteristics of rat serum-type mannose-binding protein (MBP-A). Homology of binding site architecture with mammalian and chicken hepatic lectins. J Biol Chem Internet. 1991 [accessed 2022 Oct 26];266(8):4810–4815. doi:10.1016/S0021-9258(19)67721-5.
  • Kletter D, Cao Z, Bern M, Haab B. Determining lectin specificity from glycan array data using motif segregation and GlycoSearch software. Curr Protoc Chem Biol Internet. 2013 [accessed 2023 Feb 17];5(2):157–169. doi:10.1002/9780470559277.ch130028.
  • Jolly CL, Beisner BM, Holmes IH. Rotavirus infection of MA104 cells is inhibited by ricinus lectin and separately expressed single binding domains. Virology Internet 2000 [accessed 2022 Jan 15];275(1):89–97. doi:10.1006/viro.2000.0470.
  • Storry JR, Clausen FB, Castilho L, Chen Q, Daniels G, Denomme G, Flegel WA, Gassner C, de Haas M, Hyland C, et al. International society of blood transfusion working party on red cell immunogenetics and blood group terminology: report of the Dubai, Copenhagen and Toronto meetings. Vox Sang. 2019;114(1):95–102. doi:10.1111/vox.12717.
  • Domino SE, Zhang L, Lowe JB. Molecular cloning, genomic mapping, and expression of two secretor blood group alpha (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J Biol Chem. 2001;276(26):23748–23756. doi:10.1074/jbc.M100735200.
  • Sarafian VS, Dikov DI, Karaivanov MP. Modulating expression of LAMPs and ABH histo-blood group antigens in normal and neoplastic human skin. Cent Cur J Med Internet. 2006 [accessed 2023 Feb 17];1(2):119–127. doi:10.2478/s11536-006-0012-0.
  • Zhang D, Tan M, Zhong W, Xia M, Huang P, Jiang X. Human intestinal organoids express histo-blood group antigens, bind norovirus VLPs, and support limited norovirus replication. Sci Rep Internet. 2017 [accessed 2023 Feb 17]; 7:12621. 10.1038/s41598-017-12736-2.
  • de Moraes MTB, Olivares AIO, Fialho AM, Malta FC, da Silva E Mouta Junior S, de Souza Bispo R, Velloso AJ, Alves Leitão GA, Cantelli CP, Nordgren J, et al. Phenotyping of Lewis and secretor HBGA from saliva and detection of new FUT2 gene SNPs from young children from the Amazon presenting acute gastroenteritis and respiratory infection. Infect Genet Evol. 2019;70:61–66. doi:10.1016/j.meegid.2019.02.011.
  • Iwamori M, Adachi S, Lin B, Tanaka K, Aoki D, Nomura T. Spermatogenesis-associated changes of fucosylated glycolipids in murine testis. Hum Cell. 2020;33(1):23–28. doi:10.1007/s13577-019-00304-x.
  • Liu Y, Ramelot TA, Huang P, Liu Y, Li Z, Feizi T, Zhong W, Wu F-T, Tan M, Kennedy MA, et al. Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes. J Virol Internet. 2016 [accessed 2022 Sep 5];90(21):9983–9996. doi:10.1128/JVI.01494-16.
  • Sun X, Dang L, Li D, Qi J, Wang M, Chai W, Zhang Q, Wang H, Bai R, Tan M, et al. Structural Basis of Glycan Recognition in Globally Predominant Human P[8] Rotavirus. Virol Sin Internet. 2020 [accessed 2023 Feb 8];35(2):156–170. doi:10.1007/s12250-019-00164-7.
  • Böhm R, Fleming FE, Maggioni A, Dang VT, Holloway G, Coulson BS, von Itzstein M, Haselhorst T. Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nat Commun. 2015;6:5907. doi:10.1038/ncomms6907.
  • Hu L, Sankaran B, Laucirica DR, Patil K, Salmen W, Ferreon ACM, Tsoi PS, Lasanajak Y, Smith DF, Ramani S, et al. Glycan recognition in globally dominant human rotaviruses. Nat Commun Internet 2018 [accessed 2021 Dec 28];9(1):2631. doi:10.1038/s41467-018-05098-4.
  • Sun X, Li D, Qi J, Chai W, Wang L, Wang L, Peng R, Wang H, Zhang Q, Pang L, et al. Glycan Binding Specificity and Mechanism of Human and Porcine P[6]/P[19] Rotavirus VP8*s. J Virol. 2018;92(14): e00538-18. doi: 10.1128/JVI.00538-18.
  • Nordgren J, Sharma S, Bucardo F, Nasir W, Günaydın G, Ouermi D, Nitiema LW, Becker-Dreps S, Simpore J, Hammarström L, et al. Both Lewis and Secretor Status Mediate Susceptibility to Rotavirus Infections in a Rotavirus Genotype–Dependent Manner. Clin Infect Dis Internet 2014 [accessed 2022 Sep 5];59(11):1567–1573. doi:10.1093/cid/ciu633.
  • Fleming FE, Böhm R, Dang VT, Holloway G, Haselhorst T, Madge PD, Deveryshetty J, Yu X, Blanchard H, von Itzstein M, et al. Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection. J Virol. 2014;88(8):4558–4571. doi:10.1128/JVI.03431-13.
  • Farahmand M, Jalilvand S, Arashkia A, Shahmahmoodi S, Afchangi A, Mollaei-Kandelous Y, Shoja Z. Association between circulating rotavirus genotypes and histo-blood group antigens in the children hospitalized with acute gastroenteritis in Iran. J Med Virol Internet 2021 [accessed 2022 Jun 4];93(8):4817–4823. doi:10.1002/jmv.26808.
  • Gozalbo-Rovira R, Ciges-Tomas JR, Vila-Vicent S, Buesa J, Santiso-Bellón C, Monedero V, Yebra MJ, Marina A, Rodríguez-Díaz J. Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. Plos Pathog. Internet. 2019 [accessed 2023 Mar 16];15(6):e1007865. doi:10.1371/journal.ppat.1007865.
  • Ayouni S, Sdiri-Loulizi K, de Rougemont A, Estienney M, Ambert-Balay K, Aho S, Hamami S, Aouni M, Neji-Guediche M, Pothier P, et al. Rotavirus P[8] Infections in Persons with Secretor and Nonsecretor Phenotypes, Tunisia. Emerg Infect Dis Internet. 2015 [accessed 2023 Feb 13];21(11):2055–2058. doi:10.3201/eid2111.141901.
  • Lee B, Dickson DM, deCamp AC, Ross Colgate E, Diehl SA, Uddin MI, Sharmin S, Islam S, Bhuiyan TR, Alam M, et al. Histo–Blood Group Antigen Phenotype Determines Susceptibility to Genotype-Specific Rotavirus Infections and Impacts Measures of Rotavirus Vaccine Efficacy. J Infect Dis Internet 2018 [accessed 2022 Apr 26];217(9):1399–1407. doi:10.1093/infdis/jiy054.
  • Huang P, Jiang B, Tan M, Morrow AL, Jiang X, Jiang X. Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants.Gangopadhyay N, editor. Plos One Internet. 2013 [accessed 2021 Dec 2];8(11):e78113. doi:10.1371/journal.pone.0078113.
  • Liu Y, Huang P, Jiang B, Tan M, Morrow AL, Jiang X. Poly-LacNAc as an age-specific ligand for rotavirus P[11] in neonates and infants. Plos One. 2013;8(11):e78113. doi:10.1371/journal.pone.0078113.
  • Ramani S, Cortes-Penfield NW, Hu L, Crawford SE, Czako R, Smith DF, Kang G, Ramig RF, Le Pendu J, Prasad BVV, et al. The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans. J Virol. 2013;87(13):7255–7264. doi:10.1128/JVI.03518-12.
  • Li D, Wang M, Qi J, Zhang Q, Wang H, Pang L, Sun X, Duan Z. Human group A rotavirus P[25] VP8* specifically binds to A-type histo-blood group antigen. Virology. 2021;555:56–63. doi:10.1016/j.virol.2020.12.016.
  • Li Z, Gao C, Zhang Y, Palma AS, Childs RA, Silva LM, Liu Y, Jiang X, Liu Y, Chai W, et al. O-Glycome Beam Search Arrays for Carbohydrate Ligand Discovery. Mol Cell Proteomics Internet. 2018 [accessed 2023 Feb 9];17(1):121–133. doi:10.1074/mcp.RA117.000285.
  • Ludert JE, Feng N, Yu JH, Broome RL, Hoshino Y, Greenberg HB. Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol Internet. 1996 [accessed 2022 Dec 6];70(1):487–493. 10.1128/jvi.70.1.487-493.1996.
  • Pérez-Ortín R, Vila-Vicent S, Carmona-Vicente N, Santiso-Bellón C, Rodríguez-Díaz J, Buesa J. Histo-Blood Group Antigens in Children with Symptomatic Rotavirus Infection. Viruses Internet. 2019 [accessed 2022 Jun 4];11(4):339. doi:10.3390/v11040339.
  • Liu Y, Huang P, Tan M, Liu Y, Biesiada J, Meller J, Castello AA, Jiang B, Jiang X. Rotavirus VP8*: Phylogeny, Host Range, and Interaction with Histo-Blood Group Antigens. J Virol Internet. 2012 [accessed 2021 Dec 2];86(18):9899–9910. doi:10.1128/JVI.00979-12.
  • Rakau K, Gededzha M, Peenze I, Huang P, Tan M, Steele AD, Seheri LM. The Association between Symptomatic Rotavirus Infection and Histo-Blood Group Antigens in Young Children with Diarrhea in Pretoria, South Africa. Viruses. 2022;14(12):2735. doi:10.3390/v14122735.
  • Zhang X-F, Long Y, Tan M, Zhang T, Huang Q, Jiang X, Tan W-F, J-D L, G-F H, Tang S, et al. P[8] and P[4] Rotavirus Infection Associated with Secretor Phenotypes Among Children in South China. Sci Rep Internet. 2016 [accessed 2023 Mar 10];6(1):34591. doi:10.1038/srep34591.
  • Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem. 1995;270(9):4640–4649. doi:10.1074/jbc.270.9.4640.
  • Kwon SW, Ahn A, Chung Y. Biological Meaning of the Histo-Blood Group Antigens Composed of Sugar Chains. Korean J of Blood Transfus Internet. 2016 [accessed 2023 Mar 14];26(2):103–122. 10.17945/kjbt.2015.26.2.103.
  • Imbert-Marcille B-M, Barbé L, Dupé M, Le Moullac-Vaidye B, Besse B, Peltier C, Ruvoën-Clouet N, Le Pendu J. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis. 2014;209(8):1227–1230. doi:10.1093/infdis/jit655.
  • Günaydın G, Nordgren J, Sharma S, Hammarström L. Association of elevated rotavirus-specific antibody titers with HBGA secretor status in Swedish individuals: The FUT2 gene as a putative susceptibility determinant for infection. Virus Res Internet. 2016 [accessed 2022 May 18];211:64–68.10.1016/j.virusres.2015.10.005.
  • Hu L, Ramani S, Czako R, Sankaran B, Yu Y, Smith DF, Cummings RD, Estes MK, Venkataram Prasad BV. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nat Commun. 2015;6:8346. doi:10.1038/ncomms9346.
  • Yang X, Forier K, Steukers L, Van Vlierberghe S, Dubruel P, Braeckmans K, Glorieux S, Nauwynck HJ. Immobilization of Pseudorabies Virus in Porcine Tracheal Respiratory Mucus Revealed by Single Particle Tracking. Plos One Internet. 2012 [accessed 2022 Aug 15];7(12):e51054. doi:10.1371/journal.pone.0051054.
  • Jiménez-Zaragoza M, Yubero MP, Martín-Forero E, Castón JR, Reguera D, Luque D, de Pablo PJ, Rodríguez JM. Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. eLife Internet. [accessed 2023 Feb 9];7:e37295. 10.7554/eLife.37295
  • Liu Y, Xu S, Woodruff AL, Xia M, Tan M, Kennedy MA, Jiang X, Zhou ZH. Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution. Plos Pathog Internet. 2017 [accessed 2022 Aug 30];13(11):e1006707. doi:10.1371/journal.ppat.1006707.
  • Vinall LE, King M, Novelli M, Green CA, Daniels G, Hilkens J, Sarner M, Swallow DM. Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology. 2002;123(1):41–49. doi:10.1053/gast.2002.34157.
  • Thathiah A, Brayman M, Dharmaraj N, Julian JJ, Lagow EL, Carson DD. Tumor necrosis factor alpha stimulates MUC1 synthesis and ectodomain release in a human uterine epithelial cell line. Endocrinology. 2004;145(9):4192–4203. doi:10.1210/en.2004-0399.
  • Hakim MS, Ding S, Chen S, Yin Y, Su J, van der Woude CJ, Fuhler GM, Peppelenbosch MP, Pan Q, Wang W. TNF-α exerts potent anti-rotavirus effects via the activation of classical NF-κB pathway. Virus Res Internet. 2018 [accessed 2023 Feb 9];253:28–37.10.1016/j.virusres.2018.05.022.
  • Yolken RH, Peterson JA, Vonderfecht SL, Fouts ET, Midthun K, Newburg DS. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J Clin Invest Internet. 1992 [accessed 2022 Apr 26];90(5):1984–1991. 10.1172/JCI116078.
  • Chen CC, Baylor M, Bass DM. Murine intestinal mucins inhibit rotavirus infection. Gastroenterology. 1993;105(1):84–92. doi:10.1016/0016-5085(93)90013-3.
  • Kvistgaard AS, Pallesen LT, Arias CF, López S, Petersen TE, Heegaard CW, Rasmussen JT. Inhibitory Effects of Human and Bovine Milk Constituents on Rotavirus Infections. J Dairy Sci Internet 2004 [accessed 2022 Apr 12];87(12):4088–4096. doi:10.3168/jds.S0022-0302(04)73551-1.
  • Mungul A, Cooper L, Brockhausen I, Ryder K, Mandel U, Clausen H, Rughetti A, Miles DW, Taylor-Papadimitriou J, Burchell JM. Sialylated core 1 based O-linked glycans enhance the growth rate of mammary carcinoma cells in MUC1 transgenic mice. Int J Oncol. 2004;25:937–943.
  • Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, van Ham VJJ, Bouma J, Gerwig GJ, Koopmans MPG, Büller HA, Dekker J, Einerhand AWC. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology. 2005;337(2):210–221. doi:10.1016/j.virol.2005.03.039.
  • LaMonica R, Kocer SS, Nazarova J, Dowling W, Geimonen E, Shaw RD, Mackow ER. VP4 differentially regulates TRAF2 signaling, disengaging JNK activation while directing NF-kappa B to effect rotavirus-specific cellular responses. J Biol Chem. 2001;276(23):19889–19896. doi:10.1074/jbc.M100499200.
  • Lin H, An Y, Hao F, Wang Y, Tang H. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State. Sci Rep Internet. 2016 [accessed 2023 Feb 17]; 6:21618. 10.1038/srep21618.
  • Gulhane M, Murray L, Lourie R, Tong H, Sheng YH, Wang R, Kang A, Schreiber V, Wong KY, Magor G, et al. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci Rep Internet. 2016 [accessed 2022 Sep 5];6(1):28990. doi:10.1038/srep28990.
  • Arnold MM, Sen A, Greenberg HB, Patton JT, Hobman TC. The Battle between Rotavirus and Its Host for Control of the Interferon Signaling Pathway. PLoS Pathog Internet. 2013 [accessed 2023 Feb 16];9(1):e1003064. doi:10.1371/journal.ppat.1003064.
  • Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV. The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science Internet. 2011 [accessed 2022 Mar 30];334(6053):255–258. doi:10.1126/science.1209791.
  • Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin THJ, Sutton P, McGuckin MA. MUC1 Limits Helicobacter pylori Infection both by Steric Hindrance and by Acting as a Releasable Decoy. Plos Pathog Internet. 2009 [accessed 2021 Dec 14;5(10):e1000617. doi:10.1371/journal.ppat.1000617.
  • Petrova MI, Imholz NCE, Verhoeven TLA, Balzarini J, Damme EJMV, Schols D, Vanderleyden J, Lebeer S, Biswas I. Lectin-Like Molecules of Lactobacillus rhamnosus GG Inhibit Pathogenic Escherichia coli and Salmonella Biofilm Formation. Plos One Internet. 2016 [accessed 2022 Mar 15];11(8):e0161337. doi:10.1371/journal.pone.0161337.
  • Lakhtin VM, Lakhtin MV, Pospelova VV, Shenderov BA. Lectins of lactobacilli and bifidobacteria. II. Probiotic lectins of lactobacilli and bifidobacteria as possible signal molecules regulating inter- and intrapopulation relationships between bacteria and between bacteria and the host. Microb Ecol Health Dis Internet 2007 [[accessed 2022 Mar 15];19(3):153–157. doi:10.1080/08910600701538257.
  • Cohen LJ, Han SM, Lau P, Guisado D, Liang Y, Nakashige TG, Ali T, Chiang D, Rahman A, Brady SF. Unraveling function and diversity of bacterial lectins in the human microbiome. Nat Commun Internet. 2022 [accessed 2023 Mar 13];13(1):3101. doi:10.1038/s41467-022-29949-3.
  • Pabst O, Slack E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol Internet. 2020 [accessed 2023 Mar 13];13(1):12–21. doi:10.1038/s41385-019-0227-4.
  • Mantis NJ, McGuinness CR, Sonuyi O, Edwards G, Farrant SA. Immunoglobulin A antibodies against ricin A and B subunits protect epithelial cells from ricin intoxication. Infect Immun. 2006;74(6):3455–3462. doi:10.1128/IAI.02088-05.
  • Martinoli C, Chiavelli A, Rescigno M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity. 2007;27(6):975–984. doi:10.1016/j.immuni.2007.10.011.
  • Randal Bollinger R, Everett ML, Palestrant D, Love SD, Lin SS, Parker W. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology. Internet 2003 [[accessed 2022 May 21];109(4):580–587. doi:10.1046/j.1365-2567.2003.01700.x.
  • Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, Conner ME, Earl AM, Knight R, Bjorkman PJ, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science Internet. 2018 [accessed 2023 Mar 13];360(6390):795–800. doi:10.1126/science.aaq0926.
  • Nanthakumar NN, Meng D, Newburg DS. Glucocorticoids and microbiota regulate ontogeny of intestinal fucosyltransferase 2 requisite for gut homeostasis. Glycobiology Internet 2013 [accessed 2023 Mar 13];23(10):1131–1141. doi:10.1093/glycob/cwt050.
  • Zhang M, Zhang M, Zhang C, Du H, Wei G, Pang X, Zhou H, Liu B, Zhao L. Pattern extraction of structural responses of gut microbiota to rotavirus infection via multivariate statistical analysis of clone library data. FEMS Microbiol Ecol Internet 2009 [accessed 2022 May 21];70(2):177–185. doi:10.1111/j.1574-6941.2009.00694.x.
  • Kaur H, Ali SA, Yan F. Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells – implication in the microbiota-host mutualism. Front Immunol Internet. 2022 [accessed 2023 Mar 13];13. 10.3389/fimmu.2022.1006081
  • Johansson MEV, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM, Arike L, Wising C, Svensson F, Bäckhed F, et al. Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host & Microbe Internet. 2015 [accessed 2021 Dec 2];18(5):582–592. doi:10.1016/j.chom.2015.10.007.
  • Sommer F, Nookaew I, Sommer N, Fogelstrand P, Bäckhed F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 2015;16:62. doi:10.1186/s13059-015-0614-4.
  • J-D L, Feng W, Gallup M, Kim J-H, Gum J, Kim Y, Basbaum C. Activation of NF-κB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa -induced mucin overproduction in epithelial cells. Proc Natl Acad Sci U S A Internet. 1998 [accessed 2022 Apr 19];95(10):5718–5723. doi:10.1073/pnas.95.10.5718.
  • Paim FC, Langel SN, Fischer DD, Kandasamy S, Shao L, Alhamo MA, Huang H-C, Kumar A, Rajashekara G, Saif LJ, et al. Effects of Escherichia coli Nissle 1917 and Ciprofloxacin on small intestinal epithelial cell mRNA expression in the neonatal piglet model of human rotavirus infection. Gut Pathog Internet. 2016 [accessed 2021 Dec 20];8:66. 10.1186/s13099-016-0148-7.
  • Robbe-Masselot C, Maes E, Rousset M, Michalski J-C, Capon C. Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj J. 2009;26(4):397–413. doi:10.1007/s10719-008-9186-9.
  • Meng D, Newburg DS, Young C, Baker A, Tonkonogy SL, Sartor RB, Walker WA, Nanthakumar NN. Bacterial symbionts induce a FUT2-dependent fucosylated niche on colonic epithelium via ERK and JNK signaling. Am J Physiol Gastrointest Liver Physiol Internet 2007 [accessed 2021 Dec 14];293(4):G780–787. doi:10.1152/ajpgi.00010.2007.
  • Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol Internet. 2008 accessed 2022 Sep 1;181(7):1073–1081. doi:10.1083/jcb.200704079.
  • Caballero-Franco C, Keller K, De Simone C, Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol Internet. 2007 [accessed 2022 Jan 8];292(1):G315–322. doi:10.1152/ajpgi.00265.2006.
  • Varyukhina S, Freitas M, Bardin S, Robillard E, Tavan E, Sapin C, Grill J-P, Trugnan G. Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microb and Infect Internet. 2012 [accessed 2022 Jun 13];14(3):273–278. doi:10.1016/j.micinf.2011.10.007.
  • Park D, Xu G, Barboza M, Shah IM, Wong M, Raybould H, Mills DA, Lebrilla CB. Enterocyte glycosylation is responsive to changes in extracellular conditions: implications for membrane functions. Glycobiology Internet. 2017 [accessed 2022 Mar 30];27(9):847–860. doi:10.1093/glycob/cwx041.
  • Huang Y-L, Chassard C, Hausmann M, von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun. 2015;6:8141. doi:10.1038/ncomms9141.
  • Wrzosek L, Miquel S, Noordine M-L, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, et al.Bacteroides thetaiotaomicron and Faecalibacterium prausnitziiinfluence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol Internet. 2013 [accessed 2022 Jan 8];11(1):61. doi: 10.1186/1741-7007-11-61.
  • Rausch P, Rehman A, Kunzel S, Hasler R, Ott SJ, Schreiber S, Rosenstiel P, Franke A, Baines JF2011Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotypeInternetaccessed 2021 Dec 21084719030–1903510.1073/pnas.1106408108
  • Wacklin P, Tuimala J, Nikkilä J, Tims S, Mäkivuokko H, Alakulppi N, Laine P, Rajilic-Stojanovic M, Paulin L, de Vos WM, et al. Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status. Plos One Internet. 2014 [accessed 2021 Dec 11];9(4):e94863. doi:10.1371/journal.pone.0094863.
  • Davenport ER, Goodrich JK, Bell JT, Spector TD, Ley RE, Clark AG. ABO antigen and secretor statuses are not associated with gut microbiota composition in 1,500 twins. BMC Genomics Internet. 2016 [accessed 2022 Jun 6];17:941. 10.1186/s12864-016-3290-1.
  • Rodríguez-Díaz J, García-Mantrana I, Vila-Vicent S, Gozalbo-Rovira R, Buesa J, Monedero V, Collado MC. Relevance of secretor status genotype and microbiota composition in susceptibility to rotavirus and norovirus infections in humans. Sci Rep Internet. 2017 [accessed 2021 Dec 11];7(1):45559. doi:10.1038/srep45559.
  • Harris VC, Haak BW, Handley SA, Jiang B, Velasquez DE, Hykes BL, Droit L, Berbers GAM, Kemper EM, van Leeuwen EMM, et al. Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial. Cell Host & Microbe Internet. 2018 [accessed 2023 Mar 13];24(2):197–207.e4. doi:10.1016/j.chom.2018.07.005.
  • Wacklin P, Mäkivuokko H, Alakulppi N, Nikkilä J, Tenkanen H, Räbinä J, Partanen J, Aranko K, Mättö J. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. Plos One. 2011;6(5):e20113. doi:10.1371/journal.pone.0020113.
  • Fernandez-Duarte KP, Olaya-Galán NN, Salas-Cárdenas SP, Lopez-Rozo J, Gutierrez-Fernandez MF. Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26-DSL): Probiotics Able to Block the In Vitro Adherence of Rotavirus in MA104 Cells. Probiotics Antimicrob Proteins Internet. 2018 [accessed 2022 Feb 18];10(1):56. doi:10.1007/s12602-017-9277-7.
  • Larsson JMH, Karlsson H, Sjövall H, Hansson GC. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology. 2009;19(7):756–766. doi:10.1093/glycob/cwp048.
  • Tang PW, Scudder P, Mehmet H, Hounsell EF, Feizi T. Sulphate groups are involved in the antigenicity of keratan sulphate and mask i antigen expression on their poly-N-acetyllactosamine backbones. European J Biochem Internet. 1986 [accessed 2022 May 18];160(3):537–545. doi:10.1111/j.1432-1033.1986.tb10072.x.
  • Gustafsson BE, Midtvedt T, Strandberg K. Effects of Microbial Contamination on the Cecum Enlargement of Germfree Rats. Scand J Gastroenterol Internet. 1970 [accessed 2021 Dec 30];5(4):309–314. doi:10.1080/00365521.1970.12096595.
  • Raimondi S, Musmeci E, Candeliere F, Amaretti A, Rossi M. Identification of mucin degraders of the human gut microbiota. Sci Rep Internet. 2021 [accessed 2022 May 19];11(1):11094. doi:10.1038/s41598-021-90553-4.
  • Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ. Mucolytic Bacteria With Increased Prevalence in IBD Mucosa AugmentIn VitroUtilization of Mucin by Other Bacteria. Official Am J Gastroentero Internet. 2010 [accessed 2023 Feb 17];105(11):2420. doi:10.1038/ajg.2010.281.
  • Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R, Goodrich-Blair H. Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Appl Environ Microbiol Internet 2015 [accessed 2023 Feb 17];81(11):3655–3662. doi:10.1128/AEM.04050-14.
  • Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep Internet. 2022 [accessed 2022 Sep 2];12(1):8456. doi:10.1038/s41598-022-11819-z.
  • Cockburn DW, Koropatkin NM. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol Internet 2016 [accessed 2021 Dec 30];428(16):3230–3252. doi:10.1016/j.jmb.2016.06.021.
  • Katoh T, Maeshibu T, Kikkawa K-I, Gotoh A, Tomabechi Y, Nakamura M, Liao W-H, Yamaguchi M, Ashida H, Yamamoto K, et al. Identification and characterization of a sulfoglycosidase from Bifidobacterium bifidum implicated in mucin glycan utilization. Biosci Biotechnol Biochem. 2017;81(10):2018–2027. doi:10.1080/09168451.2017.1361810.
  • Meng X, Wang W, Lan T, Yang W, Yu D, Fang X, Wu H. A Purified Aspartic Protease from Akkermansia Muciniphila Plays an Important Role in Degrading Muc2. Int J Mol Sci Internet. 2019 [accessed 2023 Feb 16];21(1):72. doi:10.3390/ijms21010072.
  • Zúñiga M, Monedero V, Yebra MJ. Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Front Microbiol Internet. 2018 [accessed 2021 Dec 20];9:1917. 10.3389/fmicb.2018.01917.
  • György P, Jeanloz RW, von Nicolai H, Zilliken F. Undialyzable growth factors for Lactobacillus bifidus var. pennsylvanicus. Protective effect of sialic acid bound to glycoproteins and oligosaccharides against bacterial degradation. Eur J Biochem. 1974;43(1):29–33. doi:10.1111/j.1432-1033.1974.tb03380.x.
  • Schenkman S, Jiang MS, Hart GW, Nussenzweig V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 1991;65(7):1117–1125. doi:10.1016/0092-8674(91)90008-m.
  • Tailford LE, Owen CD, Walshaw J, Crost EH, Hardy-Goddard J, Le Gall G, de Vos WM, Taylor GL, Juge N. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun. 2015;6:7624. doi:10.1038/ncomms8624.
  • Tanaka H, Ito F, Iwasaki T. Purification and characterization of a sialidase from Bacteroides fragilis SBT3182. Biochem Biophys Res Commun. Internet 1992 [accessed 2023 Feb 13];189(1):524–529. doi:10.1016/0006-291X(92)91589-I.
  • Fukano Y, Ito M. Preparation of GM1 ganglioside with sialidase-producing marine bacteria as a microbial biocatalyst. Appl Environ Microbiol Internet. 1997 [accessed 2023 Feb 13];63(5):1861–1865. 10.1128/aem.63.5.1861-1865.1997.
  • Almagro-Moreno S, Boyd EF. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol Internet. 2009 [accessed 2021 Dec 2];9(1):118. doi:10.1186/1471-2148-9-118.
  • Luis AS, Jin C, Pereira GV, Glowacki RWP, Gugel SR, Singh S, Byrne DP, Pudlo NA, London JA, Baslé A, et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature. 2021;598(7880):332–337. doi:10.1038/s41586-021-03967-5.
  • Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469–1476. doi:10.1099/ijs.0.02873-0.
  • Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest. 1985;75(3):944–953. doi:10.1172/JCI111795.
  • van der Beek CM, Bloemen JG, van den Broek MA, Lenaerts K, Venema K, Buurman WA, Dejong CH. Hepatic Uptake of Rectally Administered Butyrate Prevents an Increase in Systemic Butyrate Concentrations in Humans. J Nutr. 2015;145(9):2019–2024. doi:10.3945/jn.115.211193.
  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes Internet. 2016 [accessed 2023 Mar 13];7(3):189–200. doi:10.1080/19490976.2015.1134082.
  • Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS. Integrin-Using Rotaviruses Bind α2β1 Integrin α2 I Domain via VP4 DGE Sequence and Recognize αXβ2 and αVβ3 by Using VP7 during Cell Entry. J Virol Internet. 2003 [accessed 2022 Jun 16];77(18):9969–9978. doi:10.1128/JVI.77.18.9969-9978.2003.
  • Isberg RR, Leong JM. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell. 1990;60(5):861–871. doi:10.1016/0092-8674(90)90099-z.
  • Coburn J, Cugini C. Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad Sci U S A. 2003;100(12):7301–7306. doi:10.1073/pnas.1131117100.
  • Walker BD, Chua MD, Guttman JA. Hsc70 is a Component of Bacterially Generated Actin-Rich Structures: An Immunolocalization Study. Anat Rec (Hoboken). 2018;301(12):2095–2102. doi:10.1002/ar.23955.
  • Iwashita J, Murata J. Integrin β1 subunit regulates cellular and secreted MUC5AC and MUC5B production in NCI–H292 human lung epithelial cells. Biochem and Biophys Reports Internet. 2021 [accessed 2022 Jun 12];28:101124.10.1016/j.bbrep.2021.101124.
  • Halasz P, Holloway G, Turner SJ, Coulson BS. Rotavirus Replication in Intestinal Cells Differentially Regulates Integrin Expression by a Phosphatidylinositol 3-Kinase-Dependent Pathway, Resulting in Increased Cell Adhesion and Virus Yield. J Virol Internet. 2008 [accessed 2022 Jun 16];82(1):148–160. doi:10.1128/JVI.01980-07.
  • Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK, Godula K, Hudak JE, Lakins JN, Wijekoon AC, Cassereau L, et al.The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature Internet. 2014 [accessed 2022 Aug 29]; 511(7509):319–325. doi: 10.1038/nature13535.
  • Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol. 2015 [accessed 2022 Aug 29]: 36:41–47. 10.1016/j.ceb.2015.06.009.
  • Li X, Wubbolts RW, Bleumink-Pluym NMC, van Putten JPM, Strijbis K. The Transmembrane Mucin MUC1 Facilitates β1-Integrin-Mediated Bacterial Invasion. mBio Internet. 2021 accessed 2022 Aug 29;12(2):e03491–20. 10.1128/mBio.03491-20.
  • Kastl AJ, Terry NA, Wu GD, Albenberg LG. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol Internet. 2020 [accessed 2022 Mar 30];9(1):33–45. doi:10.1016/j.jcmgh.2019.07.006.
  • Chateau N, Deschamps A, Sassi AH. Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Lett Appl Microbiol Internet. 1994 [accessed 2022 Mar 30];18(1):42–44. doi:10.1111/j.1472-765X.1994.tb00796.x.
  • Ibrahim SA, Bezkorovainy A. Survival of bifidobacteria in the presence of bile salt. J Sci Food Agric Internet. 1993 [accessed 2022 Mar 30];62(4):351–354. doi:10.1002/jsfa.2740620407.
  • Begley M, Hill C, Gahan CGM. Bile Salt Hydrolase Activity in Probiotics. Appl Environ Microbiol Internet. 2006 [accessed 2023 Feb 14];72(3):1729–1738. doi:10.1128/AEM.72.3.1729-1738.2006.
  • Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M, Gillevet PM. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol Internet. 2012 [accessed 2022 Sep 14];303(6):G675–685. doi:10.1152/ajpgi.00152.2012.
  • Urdaneta V, Casadesús J. Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne) Internet. 2017 [accessed 2022 Sep 14]. 4:163. 10.3389/fmed.2017.00163.
  • Mistry RH, Verkade HJ, Tietge UJF. Reverse Cholesterol Transport Is Increased in Germ-Free Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology Internet. 2017 [accessed 2022 Sep 14];37(3):419–422. 10.1161/ATVBAHA.116.308306.
  • Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and rectosigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol. 2005;54(11):1093–1101. doi:10.1099/jmm.0.45935-0.
  • Kim Y, Chang K-O. Inhibitory Effects of Bile Acids and Synthetic Farnesoid X Receptor Agonists on Rotavirus Replication▿. J Virol Internet. 2011 [accessed 2022 Mar 30];85(23):12570–12577. doi:10.1128/JVI.05839-11.
  • Oetzmann von Sochaczewski C, Pintelon I, Brouns I, Dreier A, Klemann C, Timmermans J-P, Petersen C, Kuebler JF. Rotavirus particles in the extrahepatic bile duct in experimental biliary atresia. J Pediatr Surg. 2014;49(4):520–524. doi:10.1016/j.jpedsurg.2013.09.064.
  • Sánchez-San Martín C, López T, Arias CF, López S. Characterization of rotavirus cell entry. J Virol. 2004;78(5):2310–2318. doi:10.1128/jvi.78.5.2310-2318.2004.
  • Zheng P-Y, Hua J, H-C N, Yeoh K-G, Bow H. Expression of Lewis(b) blood group antigen in Helicobacter pylori does not interfere with bacterial adhesion property. World J Gastroenterol. 2003;9(1):122–124. doi:10.3748/wjg.v9.i1.122.
  • Coyne MJ, Reinap B, Lee MM, Comstock LE. Human symbionts use a host-like pathway for surface fucosylation. Science. 2005;307(5716):1778–1781. doi:10.1126/science.1106469.
  • Moran AP. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr Res. 2008;343(12):1952–1965. doi:10.1016/j.carres.2007.12.012.
  • Zhu F, Wu R, Zhang H, Wu H. Structural and biochemical analysis of a bacterial glycosyltransferase. Methods Mol Biol Internet. 2013 [accessed 2023 Feb 17]. 1022:29–39. 10.1007/978-1-62703-465-4_3.
  • Martinez-Fleites C, Macauley MS, He Y, Shen DL, Vocadlo DJ, Davies GJ. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat Struct Mol Biol Internet. 2008 [accessed 2023 Feb 16];15(7):764–765. doi:10.1038/nsmb.1443.
  • Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol Internet. 2014 [accessed 2022 Jun 18]. 5:492. 10.3389/fimmu.2014.00492.
  • Shi Z, Zou J, Zhang Z, Zhao X, Noriega J, Zhang B, Zhao C, Ingle H, Bittinger K, Mattei LM, et al. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell Internet. 2019 [accessed 2021 Dec 3];179(3):644–658.e13. doi:10.1016/j.cell.2019.09.028.
  • Kandasamy S, Vlasova A, Fischer D, Kumar A, Chattha K, Rauf A, Shao L, Neal Langel S, Rajashekara G, Saif L. Differential Effects of Escherichia coli Nissle and Lactobacillus rhamnosus Strain GG on Human Rotavirus Binding, Infection, and B Cell Immunity. J Immun (Balt Md 1950). 2016;196:1780–1789. doi:10.4049/jimmunol.1501705.
  • Gozalbo-Rovira R, Rubio-Del-Campo A, Santiso-Bellón C, Vila-Vicent S, Buesa J, Delgado S, Molinero N, Margolles A, Yebra MJ, Collado MC, et al. Interaction of Intestinal Bacteria with Human Rotavirus during Infection in Children. IJMS Internet. 2021 [accessed 2021 Dec 3];22(3):1010. doi:10.3390/ijms22031010.
  • Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-Hernandez MB, Iovine NM, Wobus CE, Vinjé J, et al.Enteric bacteria promote human and mouse norovirus infection of B cells. Science Internet. 2014 [accessed 2022 May 3]. 346(6210):755–759. doi: 10.1126/science.1257147.
  • Lim YF, de Loubens C, Love RJ, Lentle RG, Janssen PWM. Flow and mixing by small intestine villi. Food Funct. 2015;6(6):1787–1795. doi:10.1039/c5fo00285k.
  • Johansson MEV, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjövall H, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63(2):281–291. doi:10.1136/gutjnl-2012-303207.
  • Letourneau J, Levesque C, Berthiaume F, Jacques M, Mourez M. In Vitro Assay of Bacterial Adhesion onto Mammalian Epithelial Cells. J Vis Exp Internet. 2011 [accessed 2022 Sep 14]. 51:2783. 10.3791/2783.
  • Yu H, Chokhawala H, Karpel R, Yu H, Wu B, Zhang J, Zhang Y, Jia Q, Chen X. A Multifunctional Pasteurella multocida Sialyltransferase: A Powerful Tool for the Synthesis of Sialoside Libraries. J Am Chem Soc Internet. 2005 [accessed 2023 Feb 17];127(50):17618–17619. doi:10.1021/ja0561690.
  • Skretas G, Carroll S, DeFrees S, Schwartz MF, Johnson KF, Georgiou G. Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Microb Cell Fact Internet. 2009. [accessed 2023 Feb 17]. 8:50. 10.1186/1475-2859-8-50.
  • Benítez-Páez A, Moreno FJ, Sanz ML, Sanz Y. Genome Structure of the Symbiont Bifidobacterium pseudocatenulatum CECT 7765 and Gene Expression Profiling in Response to Lactulose-Derived Oligosaccharides. Front Microbiol Internet. 2016 [accessed 2023 Feb 17]. 7:624. 10.3389/fmicb.2016.00624.
  • Li Y, Chen X. Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol Internet. 2012 [accessed 2022 Jun 12];94(4):887–905. doi:10.1007/s00253-012-4040-1.
  • Tsukamoto H, Takakura Y, Mine T, Yamamoto T. Photobacterium sp. JT-ISH-224 produces two sialyltransferases, alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase. J Biochem. 2008;143(2):187–197. doi:10.1093/jb/mvm208.
  • Yuki N. Current cases in which epitope mimicry is considered a component cause of autoimmune disease: Guillain-Barré syndrome. CMLS, Cell Mol Life Sci Internet. 2000 [accessed 2023 Feb 16];57(4):527–533. doi:10.1007/PL00000714.
  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell Internet. 2005 [accessed 2023 Feb 16];122(1):107–118. doi:10.1016/j.cell.2005.05.007.
  • Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The Toll-like receptor pathway establishes commensal gut colonization. Science Internet. 2011 [accessed 2023 Feb 16];332(6032):974–977. doi:10.1126/science.1206095.
  • Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M, Heikenwalder M, Cahenzli J, Velykoredko Y, Balmer ML, Endt K, et al.Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science Internet. 2010 [accessed 2023 Feb 17]. 328(5986):1705–1709. doi: 10.1126/science.1188454.
  • Bruno MEC, Rogier EW, Frantz AL, Stefka AT, Thompson SN, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor in intestinal epithelial cells by Enterobacteriaceae: implications for mucosal homeostasis. Immunol Invest. 2010;39(4–5):356–382. doi:10.3109/08820131003622809.
  • Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 2006;313(5790):1126–1130. doi:10.1126/science.1127119.
  • Laiño J, Villena J, Kanmani P, Kitazawa H. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells. Microorganisms Internet. 2016 [accessed 2022 Dec 2];4(3):27. doi:10.3390/microorganisms4030027.
  • Kanmani P, Albarracin L, Kobayashi H, Iida H, Komatsu R, Humayun Kober AKM, Ikeda-Ohtsubo W, Suda Y, Aso H, Makino S, et al. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Mol Immunol Internet. 2018 [accessed 2022 Sep 5];93:253–265. doi:10.1016/j.molimm.2017.07.009.
  • Chattha KS, Vlasova AN, Kandasamy S, Rajashekara G, Saif LJ. Divergent immunomodulating effects of probiotics on t cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model. J Immunol Internet. 2013 accessed 2022 Sep 19;191(5):2446–2456. doi:10.4049/jimmunol.1300678.
  • Michael H, Paim FC, Langel SN, Miyazaki A, Fischer DD, Chepngeno J, Amimo J, Deblais L, Rajashekara G, Saif LJ, et al. Escherichia coli nissle 1917 enhances innate and adaptive immune responses in a ciprofloxacin-treated defined-microbiota piglet model of human rotavirus infection. mSphere. 2021;6(2). e00074–21. doi:10.1128/mSphere.00074-21.
  • Uchiyama R, Chassaing B, Zhang B, Gewirtz AT. Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J Infect Dis Internet. 2014 [accessed 2021 Dec 3];210(2):171–182. doi:10.1093/infdis/jiu037.
  • Baldridge MT, Nice TJ, McCune BT, Yokoyama CC, Kambal A, Wheadon M, Diamond MS, Ivanova Y, Artyomov M, Virgin HW. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science Internet 2015 [accessed 2021 Dec 3];347(6219):266–269. doi:10.1126/science.1258025.
  • Chen S-Y, Tsai C-N, Lee Y-S, Lin C-Y, Huang K-Y, Chao H-C, Lai M-W, Chiu C-H. Intestinal microbiome in children with severe and complicated acute viral gastroenteritis. Sci Rep. 2017;7:46130. doi:10.1038/srep46130.
  • Kumar A, Vlasova A, Deblais L, Huang H-C, Wijeratne A, Kandasamy S, Fischer D, Neal Langel S, Paim F, Alhamo M, et al. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterol. 2018;18:93. doi:10.1186/s12876-018-0810-2.
  • Jang J-Y, Kim S, Kwon M-S, Lee J, D-H Y, Song R-H, Choi H-J, Park J. Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves. J Microbiol. 2019;57(2):113–121. doi:10.1007/s12275-019-8549-1.
  • Twitchell EL, Tin C, Wen K, Zhang H, Becker-Dreps S, Azcarate-Peril MA, Vilchez S, Li G, Ramesh A, Weiss M, et al. Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. Gut Pathog. 2016;8:51. doi:10.1186/s13099-016-0136-y.
  • Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V, Li Z, Siu S, Grasset EK, Helmus DS, Dubinsky MC, et al. Fecal IgA Levels Are Determined by Strain-Level Differences in Bacteroides ovatus and Are Modifiable by Gut Microbiota Manipulation. Cell Host & Microbe. 2020;27(3):467–475.e6. doi:10.1016/j.chom.2020.01.016.