4,981
Views
7
CrossRef citations to date
0
Altmetric
Review

The emerging role of the small intestinal microbiota in human health and disease

, &
Article: 2201155 | Received 20 Oct 2022, Accepted 03 Apr 2023, Published online: 19 Apr 2023

References

  • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012 Mar 16;148(6):1258–25. doi:10.1016/j.cell.2012.01.035.
  • Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci (Basel). 2018 Dec 14;6(4):116. doi:10.3390/medsci6040116.
  • Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005 Oct 1;54(2):219–231. doi:10.1016/j.femsec.2005.03.012.
  • Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S. Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol. 2007 Nov;73(22):7435–7442. doi:10.1128/AEM.01143-07.
  • Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol. 2005 Nov;54(11):1093–1101. doi:10.1099/jmm.0.45935-0.
  • Vaga S, Lee S, Ji B, Andreasson A, Talley NJ, Agréus L, Bidkhori, G, Kovatcheva-Datchary, P, Park, J, Lee, D, et al. Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Sci Rep 2020 Sep 11;10(1):14977–2.10.1038/s41598-020-71939-2
  • Villmones HC, Halland A, Stenstad T, Ulvestad E, Weedon-Fekjær H, Kommedal Ø. The cultivable microbiota of the human distal ileum. Clin Microbiol Infect 2021 Jun;27(6):912.e7–912.e13. 10.1016/j.cmi.2020.08.021
  • Villmones HC, Haug ES, Ulvestad E, Grude N, Stenstad T, Halland A, Kommedal Ø Species level description of the human ileal bacterial microbiota. Sci Rep 2018 Mar 16;8(1):4736–5. 10.1038/s41598-018-23198-5
  • Villmones HC, Svanevik M, Ulvestad E, Stenstad T, Anthonisen IL, Nygaard RM, Dyrhovden R, Kommedal Ø. Investigating the human jejunal microbiota. Sci Rep. 2022 Jan 31;12(1):1682–1689. doi:10.1038/s41598-022-05723-9.
  • Ruigrok RAAA, Collij V, Sureda P, Klaassen MAY, Bolte LA, Jansen BH, Voskuil, M.D., Fu, J., Wijmenga, C. Zhernakova, A, et al. The composition and metabolic potential of the human small intestinal microbiota within the context of inflammatory bowel disease. J Crohns Colitis. 2021 Aug 2;15(8):1326–1338. doi:10.1093/ecco-jcc/jjab020.
  • Booijink CC, El-Aidy S, Rajilić-Stojanović M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG. High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol. 2010 Dec;12(12):3213–3227. doi:10.1111/j.1462-2920.2010.02294.x.
  • Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. Isme J. 2012 Jul;6(7):1415–1426. doi:10.1038/ismej.2011.212.
  • Yilmaz B, Fuhrer T, Morgenthaler D, Krupka N, Wang D, Spari D, Candinas, D., Misselwitz, B., Beldi, G., Sauer, U., et al. Plasticity of the adult human small intestinal stoma microbiota. Cell Host & Microbe. 2022 Dec 14;30(12):1773–1787.e6. doi:10.1016/j.chom.2022.10.002.
  • Dreskin BW, Luu K, Dong TS, Benhammou J, Lagishetty V, Vu J, Sanford, D., Durazo, F., Agopian, V.G., Jacobs, J.P., et al. Specimen collection and analysis of the Duodenal Microbiome. J Vis Exp. 2021 Jan 12;(167): 10.3791/61900.
  • Seekatz AM, Schnizlein MK, Koenigsknecht MJ, Baker JR, Hasler WL, Bleske BE, Young, VB, Sun, D. SpAtial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. mSphere 2019 Mar 13;4(2):e00126–19.10.1128/mSphere.00126-19
  • Rehan M, Al-Bahadly I, Thomas DG, Avci E. Capsule robot for gut microbiota sampling using shape memory alloy spring. Int J Med Robot. 2020 Oct;16(5):1–14. doi:10.1002/rcs.2140.
  • Nimble science Simba Capsule. 2022; Available at: https://www.nimblesci.com/simbacapsule.
  • Stolaki M, Minekus M, Venema K, Lahti L, Smid EJ, Kleerebezem M, Zoetendal EG. Microbial communities in a dynamic in vitro model for the human ileum resemble the human ileal microbiota. FEMS Microbiol Ecol. 2019 Aug 1;95(8):fiz096. doi:10.1093/femsec/fiz096.
  • Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci. 2018 Jan;75(1):149–160. doi:10.1007/s00018-017-2693-8.
  • Guo P, Wang H, Ji L, Song P, Ma X. Impacts of Fructose on intestinal barrier function, inflammation and microbiota in a Piglet model. Nutrients. 2021 Oct 6;13(10):3515. doi:10.3390/nu13103515.
  • Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859–904. doi:10.1152/physrev.00045.2009.
  • Leser TD, Mølbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol. 2009 Sep;11(9):2194–2206. doi:10.1111/j.1462-2920.2009.01941.x.
  • Hu S, Bourgonje AR, Gacesa R, Jansen BH, Björk JR, Bangma A, Hidding, I.J., van Dullemen, H.M., M.C Visschedijk, Faber, K.N., et al. Mucosal host–microbe interactions associate with clinical phenotypes in inflammatory bowel disease. bioRxiv. 2022; 2022.06.4. 494807.
  • Sommer F, Bäckhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013 Apr;11(4):227–238. doi:10.1038/nrmicro2974.
  • Juge N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 2012 Jan;20(1):30–39. doi:10.1016/j.tim.2011.10.001.
  • Leite G, Barlow GM, Hosseini A, Parodi G, Pimentel ML, Wang J, Fiorentino A, Rezaie A, Pimentel M, Mathur R Smoking has disruptive effects on the small bowel luminal microbiome. Sci Rep 2022 Apr 14;12(1):6231–z. 10.1038/s41598-022-10132-z
  • Lim J, Shin J, Park J. Effect of a proton pump inhibitor on the Duodenum Microbiome of Gastric Ulcer patients. Life (Basel). 2022 Sep 27;12(10):1505. doi:10.3390/life12101505.
  • Garmaeva S, Sinha T, Kurilshikov A, Fu J, Wijmenga C, Zhernakova A Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol 2019 Oct 28;17(1):84–y.10.1186/s12915-019-0704-y
  • Zhang L, Zhan H, Xu W, Yan S, Ng SC. The role of gut mycobiome in health and diseases. Therap Adv Gastroenterol. 2021 Sep 23;14:17562848211047130. doi:10.1177/17562848211047130.
  • Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev, R, Droit, L, Paquette, J, Goyette, P, et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol. 2022 Apr 8;7(70):eabn6660. doi:10.1126/sciimmunol.abn6660.
  • Duca FA, Waise TMZ, Peppler WT, Lam TKT The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021 Feb 10;12(1):903–y.10.1038/s41467-021-21235-y
  • Song Y, Koehler JA, Baggio LL, Powers AC, Sandoval DA, Drucker DJ. Gut-Proglucagon-Derived Peptides are essential for regulating Glucose Homeostasis in mice. Cell Metab. 2019 Nov 5;30(5):976–986.e3. doi:10.1016/j.cmet.2019.08.009.
  • Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal sensing by gut Microbiota: targeting gut Peptides. Front Endocrinol (Lausanne). 2019 Feb 19;10:82. doi:10.3389/fendo.2019.00082.
  • Bauer PV, Duca FA, Waise TMZ, Dranse HJ, Rasmussen BA, Puri A, Rasti M, O’Brien CA, Lam TKT. Lactobacillus gasseri in the upper small intestine impacts an ACSL3-Dependent Fatty Acid-SenSing pathway regulating whole-body Glucose Homeostasis. Cell Metab. 2018 Mar 6;27(3):572–587.e6. doi:10.1016/j.cmet.2018.01.013.
  • Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GW, Lam TK. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012 Jun;18(6):950–955. doi:10.1038/nm.2745.
  • Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009 Aug;10(2):99–109. doi:10.1016/j.cmet.2009.07.005.
  • Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, Gutierrez-Juarez R, Ang M, Schwartz GJ, Lam TKT. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature. 2008 Apr 24;452(7190):1012–1016. doi:10.1038/nature06852.
  • Zadeh-Tahmasebi M, Duca FA, Rasmussen BA, Bauer PV, Côté CD, Filippi BM, Lam TKT. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J Biol Chem. 2016 Apr 15;291(16):8816–8824. doi:10.1074/jbc.M116.718460.
  • Silva YP, Bernardi A, Frozza RL. THe role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020 Jan 31;11:25. doi:10.3389/fendo.2020.00025.
  • Fredborg M, Theil PK, Jensen BB, Purup S. G protein-coupled receptor 120 (GPR120) transcription in intestinal epithelial cells is significantly affected by bacteria belonging to the Bacteroides, Proteobacteria, and Firmicutes phyla. J Anim Sci. 2012 Dec;90(Suppl suppl_4):10–12. doi:10.2527/jas.53792.
  • Bauer PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, Puri A, O’Brien CA, Lam TKT. Metformin alters upper small intestinal microbiota that impact a Glucose-SGLT1-Sensing Glucoregulatory pathway. Cell Metab. 2018 Jan 9;27(1):101–117.e5. doi:10.1016/j.cmet.2017.09.019.
  • Maida A, Lamont BJ, Cao X, Drucker DJ. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia. 2011 Feb;54(2):339–349. doi:10.1007/s00125-010-1937-z.
  • Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes. 2014 Feb;63(2):663–674. doi:10.2337/db13-0805.
  • Lenzen S, Lortz S, Tiedge M. Effect of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats. Biochem Pharmacol. 1996 Apr 12;51(7):893–896. doi:10.1016/0006-2952(95)02243-0.
  • Duca FA, Côté CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, Lam TKT. Metformin activates a duodenal Ampk–dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015 May;21(5):506–511. doi:10.1038/nm.3787.
  • de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, de la Cuesta-Zuluaga J, Escobar JS. Metformin is associated with higher relative abundance of Mucin-Degrading Akkermansia muciniphilA and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care. 2017 Jan;40(1):54–62. doi:10.2337/dc16-1324.
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16219–16224. doi:10.1073/pnas.1408886111.
  • Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol. 2020 Dec;16(12):731–739. doi:10.1038/s41574-020-00427-4.
  • Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge, TC, Cassone, VM. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology. 2007 Oct;133(4):1250–1260. doi:10.1053/j.gastro.2007.07.009.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001 Jan 19;291(5503):490–493. doi:10.1126/science.291.5503.490.
  • Dantas Machado AC, Brown SD, Lingaraju A, Sivaganesh V, Martino C, Chaix A, Zhao, P., Pinto, A.F., Chang, M.W., Richter, R.A., et al. Diet and feeding pattern modulate diurnal dynamics of the ileal microbiome and transcriptome. Cell Rep. 2022 Jul 5;40(1):111008. doi:10.1016/j.celrep.2022.111008.
  • Frazier K, Chang EB. Intersection of the gut microbiome and Circadian rhythms in metabolism. Trends Endocrinol Metab. 2020 Jan;31(1):25–36. doi:10.1016/j.tem.2019.08.013.
  • Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson, L., Katz, M.N., Korem, T., Zmora, N., et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014 Oct 23;159(3):514–529. doi:10.1016/j.cell.2014.09.048.
  • Zarrinpar A, Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics. 2012 Nov;36(10):909–921. doi:10.1111/apt.12084.
  • Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013 Feb 5;17(2):225–235. doi:10.1016/j.cmet.2013.01.003.
  • Yang J, Palmiotti A, Kuipers F. Emerging roles of bile acids in control of intestinal functions. Curr Opin Clin Nutr Metab Care. 2021 Mar 1;24(2):127–133. doi:10.1097/MCO.0000000000000709.
  • Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Pérez, H.E., Sandoval, D.A., Kohli, R., Bäckhed, F., et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014 May 8;509(7499):183–188. doi:10.1038/nature13135.
  • Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T, Arita E, Mataki, C., Sato, H., Tanigawara, Y., Schoonjans, K., et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem. 2011 Jul 29;286(30):26913–26920. doi:10.1074/jbc.M111.248203.
  • Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Velagapudi VR,Dumont, J., Bouchaert, E., Van Dijk, T.H., Lucas, A., et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes. 2011 Jul;60(7):1861–1871. doi:10.2337/db11-0030.
  • Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker, CN, Desai, D, Amin, SG, Bisson, WH, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015 Dec 15;6(1):10166. doi:10.1038/ncomms10166.
  • Trabelsi MS, Daoudi M, Prawitt J, Ducastel S, Touche V, Sayin SI,Perino A, CA Brighton, Sebti Y, Kluza J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015 Jul 2;6(1):7629. doi:10.1038/ncomms8629.
  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009 Sep;10(3):167–177. doi:10.1016/j.cmet.2009.08.001.
  • Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11(2):158–171. doi:10.1080/19490976.2019.1674124.
  • Caliceti C, Calabria D, Roda A, Cicero AFG. Fructose intake, Serum Uric Acid, and Cardiometabolic disorders: a critical review. Nutrients. 2017 Apr 18;9(4):395. doi:10.3390/nu9040395.
  • Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ, Ruzycki P, Rivard, C, Inaba, S, Roncal-Jimenez, CA, Bales, ES, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun. 2013;4(1):2434. doi:10.1038/ncomms3434.
  • Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD. The small intestine converts dietary Fructose into Glucose and Organic Acids. Cell Metab. 2018 Feb 6;27(2):351–361.e3. doi:10.1016/j.cmet.2017.12.016.
  • Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, Mujagic, Z., Jonkers, D.M., Masclee, A.A., Fu, J. and Kurilshikov, A. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 2020 Jan 17;11(1):362–z.10.1038/s41467-019-14177-z
  • van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G, van Kessel SP, van Dijk G, El Aidy S Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 2019 Jan 18;10(1):310–y. 10.1038/s41467-019-08294-y
  • Gundert-Remy U, Hildebrandt R, Stiehl A, Weber E, Zürcher G, Da Prada M. Intestinal absorption of levodopa in man. Eur J Clin Pharmacol. 1983;25(1):69–72. doi:10.1007/BF00544017.
  • Perez M, Calles-Enríquez M, Nes I, Martin MC, Fernandez M, Ladero V, Alvarez MA. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Appl Microbiol Biotechnol. 2015 Apr;99(8):3547–3558. doi:10.1007/s00253-014-6301-7.
  • Zhu H, Xu G, Zhang K, Kong X, Han R, Zhou J, Ni Y. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding. Sci Rep. 2016 Jun 13;6(1):27779. doi:10.1038/srep27779.
  • Jourová L, Lišková B, Lněničková K, Zemanová N, Anzenbacher P, Hermanová P, Hudcovic T, Kozáková H, Anzenbacherová E. Presence or absence of microbiome modulates the response of mice organism to administered drug nabumetone. Physiol Res. 2020 Dec 31;69(Suppl 4):S583–594. doi:10.33549/physiolres.934607.
  • Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol. 2006 Apr;18(2):206–213. doi:10.1016/j.coi.2006.01.011.
  • Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz, S., Routy, B., Roberti, M.P., Duong, C.P., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015 Nov 27;350(6264):1079–1084. doi:10.1126/science.aad1329.
  • Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008 Sep;153(Suppl Supplement_1):3–6. doi:10.1111/j.1365-2249.2008.03713.x.
  • Tokuhara D, Kurashima Y, Kamioka M, Nakayama T, Ernst P, Kiyono H. A comprehensive understanding of the gut mucosal immune system in allergic inflammation. Allergol Int. 2019 Jan;68(1):17–25. doi:10.1016/j.alit.2018.09.004.
  • Obata Y, Pachnis V. THe effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016 Nov;151(5):836–844. doi:10.1053/j.gastro.2016.07.044.
  • Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017 Apr 27;4(1):14–19. 10.1186/s40779-017-0122-9. eCollection 2017.
  • Ohno H. Intestinal M cells. J Biochem. 2016 Feb;159(2):151–160. doi:10.1093/jb/mvv121.
  • Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021 Mar 9;13(3):886. doi:10.3390/nu13030886.
  • Carasi P, Racedo SM, Jacquot C, Romanin DE, Serradell MA, Urdaci MC. Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J Immunol Res 2015. 2015;2015:361604. doi:10.1155/2015/361604.
  • Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Modulation of the gut microbiota to improve innate resistance. Curr Opin Immunol. 2018 Oct;54:137–144. doi:10.1016/j.coi.2018.08.003.
  • Rannug A. How the AHR became Important in intestinal Homeostasis-A Diurnal FICZ/AHR/CYP1A1 feedback controls both immunity and immunopathology. Int J Mol Sci. 2020 Aug 8;21(16):5681. doi:10.3390/ijms21165681.
  • Labbé A, Ganopolsky JG, Martoni CJ, Prakash S, Jones ML. Bacterial bile metabolising gene abundance in Crohn’s, ulcerative colitis and type 2 diabetes metagenomes. PLoS One. 2014 Dec 17;9(12):e115175. doi:10.1371/journal.pone.0115175.
  • Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews, E, Ajami, NJ, Bonham, KS, Brislawn, CJ et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019 May;569(7758):655–662. doi:10.1038/s41586-019-1237-9.
  • Brooks JF 2nd, Behrendt CL, Ruhn KA, Lee S, Raj P, Takahashi JS, Hooper LV. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell. 2021 Aug 5;184(16):4154–4167.e12. doi:10.1016/j.cell.2021.07.001.
  • Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):352–361. doi:10.1038/nrgastro.2013.35.
  • Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs SP, Leshem A, Dori-Bachash, M, Thaiss, CA, Pinker, EY, Ratiner, K, et al. DIet diurnally regulates small intestinal Microbiome-Epithelial-Immune Homeostasis and Enteritis. Cell. 2020 Sep 17;182(6):1441–1459.e21. doi:10.1016/j.cell.2020.08.027.
  • Cao YG, Bae S, Villarreal J, Moy M, Chun E, Michaud M, Lang JK, Glickman JN, Lobel L, Garrett WS. Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host & Microbe. 2022 Aug 12;30(9):1295–1310.e8. doi:10.1016/j.chom.2022.07.015.
  • Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, Campbell, E, Aitoro, R, Nocerino, R, Paparo, L, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019 Mar;25(3):448–453. doi:10.1038/s41591-018-0324-z.
  • Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, Cho, JM, Battaglioli, EJ, Bhattarai, Y, Thompson, KJ, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 2019 May 1;10(1):2012–2017. doi:10.1038/s41467-019-09964-7.
  • Grover M, Kanazawa M, Palsson OS, Chitkara DK, Gangarosa LM, Drossman DA, Whitehead WE. Small intestinal bacterial overgrowth in irritable bowel syndrome: association with colon motility, bowel symptoms, and psychological distress. Neurogastroenterol Motil. 2008 Sep;20(9):998–1008. doi:10.1111/j.1365-2982.2008.01142.x.
  • Ford AC, Spiegel BM, Talley NJ, Moayyedi P. Small intestinal bacterial overgrowth in irritable bowel syndrome: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2009 Dec;7(12):1279–1286. doi:10.1016/j.cgh.2009.06.031.
  • Walters B, Vanner SJ. Detection of bacterial overgrowth in IBS using the lactulose H2 breath test: comparison with 14C-D-xylose and healthy controls. Am J Gastroenterol. 2005 Jul;100(7):1566–1570. doi:10.1111/j.1572-0241.2005.40795.x.
  • Yang M, Zhang L, Hong G, Li Y, Li G, Qian W, Xiong H, Bai T, Song J, Hou X. Duodenal and rectal mucosal microbiota related to small intestinal bacterial overgrowth in diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol. 2020 May;35(5):795–805. doi:10.1111/jgh.14910.
  • Bamba S, Imai T, Sasaki M, Ohno M, Yoshida S, Nishida A, Takahashi K, Inatomi O, Andoh A. Altered gut microbiota in patients with small intestinal bacterial overgrowth. J Gastroenterol Hepatol. 2022 Sep 30;38(1):61–69. doi:10.1111/jgh.16013.
  • Zhong L, Shanahan ER, Raj A, Koloski NA, Fletcher L, Morrison M, Walker MM, Talley NJ, Holtmann G. Dyspepsia and the microbiome: time to focus on the small intestine. Gut. 2017 Jun;66(6):1168–1169. doi:10.1136/gutjnl-2016-312574.
  • Barlow JT, Leite G, Romano AE, Sedighi R, Chang C, Celly S, Rezaie A, Mathur R, Pimentel M, Ismagilov RF Quantitative sequencing clarifies the role of disruptor taxa, oral microbiota, and strict anaerobes in the human small-intestine microbiome. Microbiome 2021 Nov 2;9(1):214–2. 10.1186/s40168-021-01162-2
  • Fukui A, Takagi T, Naito Y, Inoue R, Kashiwagi S, Mizushima K, Inada, Y, Inoue, K, Harusato, A, Dohi, O, et al. Higher levels of streptococcus in upper gastrointestinal Mucosa associated with symptoms in patients with functional Dyspepsia. Digestion. 2020;101(1):38–45. doi:10.1159/000504090.
  • Wauters L, Tito RY, Ceulemans M, Lambaerts M, Accarie A, Rymenans L, Verspecht, C, Toth, J, Mols, R, Augustijns, P, et al. Duodenal Dysbiosis and relation to the efficacy of proton pump inhibitors in functional Dyspepsia. Int J Mol Sci. 2021 Dec 192224:13609.10.3390/ijms222413609.
  • Suárez-Jaramillo A, Baldeón ME, Prado B, Fornasini M, Cohen H, Flores N, Salvador I, Cargua O, Realpe J, Cárdenas PA. Duodenal microbiome in patients with or without Helicobacter pylori infection. Helicobacter. 2020 Dec;25(6):e12753. doi:10.1111/hel.12753.
  • Shanahan ER, Kang S, Staudacher H, Shah A, Do A, Burns G, Chachay, VS, Koloski, NA, Keely, S, Walker, MM, et al. Alterations to the duodenal microbiota are linked to gastric emptying and symptoms in functional dyspepsia. Gut. 2022 Sep 27;72(5):929–938. doi:10.1136/gutjnl-2021-326158.
  • Triantafyllou K, Chang C, Pimentel M. Methanogens, methane and gastrointestinal motility. J Neurogastroenterol Motil. 2014 Jan;20(1):31–40. doi:10.5056/jnm.2014.20.1.31.
  • Jahng J, Jung IS, Choi EJ, Conklin JL, Park H The effects of methane and hydrogen gases produced by enteric bacteria on ileal motility and colonic transit time. Neurogastroenterol Motil 2012 Feb;24(2):185–90, e92. 10.1111/j.1365-2982.2011.01819.x
  • Mitchell S, Roso S, Samuel M, Pladevall-Vila M Unmet need in the hyperlipidaemia population with high risk of cardiovascular disease: a targeted literature review of observational studies. BMC Cardiovasc Disord 2016 Apr 26;16:74–3. 1 10.1186/s12872-016-0241-3
  • Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, Pierre, JF, Miyoshi, J, Sontag, TJ, Cham, CM, et al. SmAll intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host & Microbe. 2018 Apr 11;23(4):458–469.e5. doi:10.1016/j.chom.2018.03.011.
  • Jia X, Xu W, Zhang L, Li X, Wang R, Wu S. Impact of gut microbiota and microbiota-related metabolites on Hyperlipidemia. Front Cell Infect Microbiol. 2021 Aug 19;11:634780. doi:10.3389/fcimb.2021.634780.
  • Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang, Y, Lei, S, Wang, S, Kuang, J, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun 2019 Oct 31;10(1):4971–x.10.1038/s41467-019-12896-x
  • Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 2014 Apr 10;7(1):12–18. doi:10.1016/j.celrep.2014.02.032.
  • Rani RP, Anandharaj M, Ravindran AD. Characterization of bile salt Hydrolase from Lactobacillus gasseri FR4 anD demonstration of its substrate specificity and inhibitory mechanism using molecular docking analysis. Front Microbiol. 2017 May 31;8:1004. doi:10.3389/fmicb.2017.01004.
  • Chen RY, Kung VL, Das S, Hossain MS, Hibberd MC, Guruge J, Mahfuz, M, Begum, SKN, Rahman, MM, Fahim, SM, et al. Duodenal Microbiota in stunted undernourished children with Enteropathy. N Engl J Med. 2020 Jul 23;383(4):321–333. doi:10.1056/NEJMoa1916004.
  • Rabiee A, Ximenes RO, Nikayin S, Hickner A, Juthani P, Rosen RH, Garcia‐tsao G. Factors associated with health-related quality of life in patients with cirrhosis: a systematic review. Liver Int. 2021 Jan;41(1):6–15. doi:10.1111/liv.14680.
  • D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006 Jan;44(1):217–231. doi:10.1016/j.jhep.2005.10.013.
  • Du Plessis J, Vanheel H, Janssen CEI, Roos L, Slavik T, Stivaktas PI, Nieuwoudt, M, van Wyk, SG, Vieira, W, Pretorius, E, et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol. 2013 Jun;58(6):1125–1132. doi:10.1016/j.jhep.2013.01.038.
  • Bloom PP, Rao K, Bassis CM, Zhou SY, Nojkov B, Owyang C, Young VB, Lok AS. DuodeNal permeability is associated with mucosal microbiota in compensated Cirrhosis. Clin Transl Gastroenterol. 2022 Oct 1;13(10):e00522. doi:10.14309/ctg.0000000000000522.
  • Hou Q, Huang Y, Wang Y, Liao L, Zhu Z, Zhang W, Liu Y, Li P, Chen X, Liu F. Lactobacillus casei LC01 regulates intestinal Epithelial permeability through miR-144 targeting of OCLN and ZO1. J Microbiol Biotechnol. 2020 Oct 28;30(10):1480–1487. doi:10.4014/jmb.2002.02059.
  • Zhang W, Li H, Zhao N, Luo X, Liu S, Bao A, Chen Y, Wang H, Wang J, Wang J. Lactobacillus johnsonii BS15 combined with abdominal massage on intestinal permeability in rats with nonalcoholic fatty liver and cell biofilm repair. Bioengineered. 2021 Dec;12(1):6354–6363. doi:10.1080/21655979.2021.1954134.
  • Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017 Oct;14(10):573–584. doi:10.1038/nrgastro.2017.88.
  • Kojima A, Nakano K, Wada K, Takahashi H, Katayama K, Yoneda M, Higurashi, T, Nomura, R, Hokamura, K, Muranaka, Y, et al. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis. Sci Rep. 2012;2(1):332. doi:10.1038/srep00332.
  • Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen, T, Hall, AB, Mallick, H, McIver, LJ, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019 Feb;4(2):293–305. doi:10.1038/s41564-018-0306-4.
  • Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov, A, Bonder, MJ, Jiang, X, Tigchelaar, EF, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med. 2018 Dec 1910472:eaap8914.10.1126/scitranslmed.aap8914.
  • Seishima J, Iida N, Kitamura K, Yutani M, Wang Z, Seki A, Yamashita, T, Sakai, Y, Honda, M, Yamashita, T, et al. Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biol. 2019 Nov 25;20(1):252–259. doi:10.1186/s13059-019-1879-9.
  • Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 2002 Jun;160(6):2253–2257. doi:10.1016/S0002-9440(10)61172-8.
  • Schmidt TS, Hayward MR, Coelho LP, Li SS, Costea PI, Voigt AY, Wirbel, J, Maistrenko, OM, Alves, RJ, Bergsten, E, et al. Extensive transmission of microbes along the gastrointestinal tract. Elife. 2019 Feb 12;8 10.7554/eLife.42693.
  • Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, Kiguchi, Y, Yasuma, K, Watanabe, E, Tanoue, T, et al. Ectopic colonization of oral bacteria in the intestine drives T(H)1 cell induction and inflammation. Science. 2017 Oct 20;358(6361):359–365. doi:10.1126/science.aan4526.
  • Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, Baldassano, RN, Noe, JD, Rosh, J, Markowitz, J, et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest. 2014 Aug;124(8):3617–3633. doi:10.1172/JCI75436.
  • Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: a critical regulator of Ileal Microbiota and Crohn’s disease. Front Immunol. 2016 Sep 20;7:367. doi:10.3389/fimmu.2016.00367.
  • Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, Corthésy B, Paul S NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn’s disease. Nat Commun 2021 Jan 11;12(1):261–0. 10.1038/s41467-020-20348-0
  • Dragasevic S, Stankovic B, Milosavljevic T, Sokic-Milutinovic A, Lukic S, Alempijevic T, Zukic, B, Kotur, N, Nikcevic, G, Pavlovic, S, et al. Genetic and environmental factors significant for the presentation and development of inflammatory bowel disease. European Journal of Gastroenterology & Hepatology. 2017 Aug;29(8):909–915. doi:10.1097/MEG.0000000000000877.
  • Goethel A, Turpin W, Rouquier S, Zanello G, Robertson SJ, Streutker CJ, Philpott DJ, Croitoru K. Nod2 influences microbial resilience and susceptibility to colitis following antibiotic exposure. Mucosal Immunol. 2019 May;12(3):720–732. doi:10.1038/s41385-018-0128-y.
  • Ramanan D, Tang MS, Bowcutt R, Loke P, Cadwell K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity. 2014 Aug 21;41(2):311–324. doi:10.1016/j.immuni.2014.06.015.
  • Roberts CL, Rushworth SL, Richman E, Rhodes JM. Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease. J Crohns Colitis. 2013 May;7(4):338–341. doi:10.1016/j.crohns.2013.01.004.
  • Furuhashi H, Higashiyama M, Okada Y, Kurihara C, Wada A, Horiuchi K, Hanawa, Y, Mizoguchi, A, Nishii, S, Inaba, K, et al. Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to indomethacin-induced lesions via dysbiosis. J Gastroenterol Hepatol. 2020 Jan;35(1):110–117. doi:10.1111/jgh.14808.
  • CWY H, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, Humphrey, G, Sanders, K, Ratnayake, Y, Chan, KS, et al. Translocation of viable gut microbiota to Mesenteric AdiPose drives formation of creeping fat in humans. Cell. 2020 Oct 29;183(3):666–683.e17. doi:10.1016/j.cell.2020.09.009.
  • Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol. 2017 Dec;67(6):1298–1323. doi:10.1016/j.jhep.2017.07.022.
  • Liwinski T, Zenouzi R, John C, Ehlken H, Rühlemann MC, Bang C, Groth, S, Lieb, W, Kantowski, M, Andersen, N, et al. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut. 2020 Apr;69(4):665–672. doi:10.1136/gutjnl-2019-318416.
  • Half E, Bercovich D, Rozen P Familial adenomatous polyposis. Orphanet J Rare Dis 2009 Oct 12;4:22–22. 1 10.1186/1750-1172-4-22
  • Zella GC, Hait EJ, Glavan T, Gevers D, Ward DV, Kitts CL, Korzenik JR. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflamm Bowel Dis. 2011 May;17(5):1092–1100. doi:10.1002/ibd.21460.
  • Coffey JC, Rowan F, Burke J, Dochery NG, Kirwan WO, O’Connell PR. Pathogenesis of and unifying hypothesis for idiopathic pouchitis. Am J Gastroenterol. 2009 Apr;104(4):1013–1023. doi:10.1038/ajg.2008.127.
  • Turpin W, Kelly O, Borowski K, Boland K, Tyler A, Cohen Z, Croitoru K, Silverberg MS. Mucosa-associated microbiota in IleoaNal pouches may contribute to clinical symptoms, particularly stool frequency, independent of endoscopic disease activity. Clin Transl Gastroenterol. 2019 May 22;10(5):1–7. doi:10.14309/ctg.0000000000000038.
  • Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim, D, Jarr, K, Spear, ET, Singh, G, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host & Microbe. 2020 Apr 8;27(4):659–670.e5. doi:10.1016/j.chom.2020.01.021.
  • Navaneethan U, Shen B. Pros and cons of antibiotic therapy for pouchitis. Expert Rev Gastroenterol Hepatol. 2009 Oct;3(5):547–559. doi:10.1586/egh.09.37.
  • AJ K, Terry NA, Wu GD, Albenberg LG. THe structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol. 2020;9(1):33–45. doi:10.1016/j.jcmgh.2019.07.006.
  • Pellegrini S, Sordi V, Bolla AM, Saita D, Ferrarese R, Canducci F, Clementi, M, Invernizzi, F, Mariani, A, Bonfanti, R, et al. Duodenal Mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J Clin Endocrinol Metab. 2017 May 1;102(5):1468–1477. doi:10.1210/jc.2016-3222.
  • Wirth R, Bódi N, Maróti G, Bagyánszki M, Talapka P, Fekete É, Bagi Z, Kovács KL. Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes. PLoS One. 2014 Dec 3;9(12):e110440. doi:10.1371/journal.pone.0110440.
  • Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella, G, Drew, JC, Ilonen, J, Knip, M, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6(10):e25792. doi:10.1371/journal.pone.0025792.
  • Dedrick S, Sundaresh B, Huang Q, Brady C, Yoo T, Cronin C, Rudnicki, C, Flood, M, Momeni, B, Ludvigsson, J, et al. The role of gut microbiota and environmental factors in type 1 diabetes Pathogenesis. Front Endocrinol (Lausanne). 2020 Feb 26;11:78. 10.3389/fendo.2020.00078.
  • Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11548–11553. doi:10.1073/pnas.1108924108.
  • de Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, Hanssen, N, Attaye, I, Bakker, G, Duinkerken, G, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021 Jan;70(1):92–105. doi:10.1136/gutjnl-2020-322630.
  • Kivelä L, Caminero A, Leffler DA, Pinto-Sanchez MI, Tye-Din JA, Lindfors K. Current and emerging therapies for coeliac disease. Nat Rev Gastroenterol Hepatol. 2021 Mar;18(3):181–195. doi:10.1038/s41575-020-00378-1.
  • Di Biase AR, Marasco G, Ravaioli F, Dajti E, Colecchia L, Righi B, D’Amico V, Festi D, Iughetti L, Colecchia A. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: a pilot study. J Gastroenterol Hepatol. 2021 Feb;36(2):446–454. doi:10.1111/jgh.15183.
  • Arcila-Galvis JE, Loria-Kohen V, Ramírez de Molina A, Carrillo de Santa Pau E, Marcos-Zambrano LJ. A comprehensive map of microbial biomarkers along the gastrointestinal tract for celiac disease patients. Front Microbiol. 2022 Sep 13;13:956119. doi:10.3389/fmicb.2022.956119.
  • Caminero A, McCarville JL, Galipeau HJ, Deraison C, Bernier SP, Constante M, Rolland, C, Meisel, M, Murray, JA, Yu, XB, et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat Commun. 2019 Mar 13;10(1):1198–1199. doi:10.1038/s41467-019-09037-9.
  • Wacklin P, Laurikka P, Lindfors K, Collin P, Salmi T, Lähdeaho ML, Saavalainen, P, Mäki, M, Mättö, J, Kurppa, K, et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol. 2014 Dec;109(12):1933–1941. doi:10.1038/ajg.2014.355.
  • Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012 Nov;10(11):735–742. doi:10.1038/nrmicro2876.
  • Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, Longman, RS, Honda, K, Littman, DR, Choi, GB, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 2017 Sep 28;549(7673):528–532. doi:10.1038/nature23910.
  • Shaler CR, Parco AA, Elhenawy W, Dourka J, Jury J, Verdu EF, Coombes BK Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nat Commun 2021 Nov 18;12(1):6664–4. 10.1038/s41467-021-26992-4
  • Chervy M, Barnich N, Denizot J, Adherent-Invasive E. Coli: updAte on the lifestyle of a troublemaker in Crohn’s Disease. Int J Mol Sci. 2020 May 25;21(10):3734. doi:10.3390/ijms21103734.
  • Miyauchi E, Kim SW, Suda W, Kawasumi M, Onawa S, Taguchi-Atarashi N, Morita H, Taylor TD, Hattori M, Ohno H, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020 Sep;585(7823):102–106. doi:10.1038/s41586-020-2634-9.
  • Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, Radice, E, Mariani, A, Testoni, PA, Canducci, F, et al. High frequency of intestinal T(H)17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017 Jul 12;3(7):e1700492. doi:10.1126/sciadv.1700492.