3,167
Views
8
CrossRef citations to date
0
Altmetric
Review

Gut microbiota in COVID-19: new insights from inside

, , , , & ORCID Icon
Article: 2201157 | Received 30 Jan 2023, Accepted 04 Apr 2023, Published online: 20 Apr 2023

References

  • Coronavirus Resource Center, Johns Hopkins University & Medicine. COVID-19 dashboard by the center for systems science and engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html.
  • Zuo T, Zhang F, Lui G, Yeoh YK, Li A, Zhan H, Wan Y, Chung A, Cheung CP, Chen N, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159:944–955.e8. doi:10.1053/j.gastro.2020.05.048.
  • Albrich WC, Ghosh TS, Ahearn-Ford S, Mikaeloff F, Lunjani N, Forde B, Suh N, Kleger G-R, Pietsch U, Frischknecht M, et al. A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2. Gut Microbes. 2022;14(1):2073131. doi:10.1080/19490976.2022.2073131.
  • Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood D, Gellatly SL, Shukla SD, Wood LG, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11:5886. doi:10.1038/s41467-020-19701-0.
  • Barcik W, Boutin R, Sokolowska M, Finlay BB. The role of lung and gut microbiota in the pathology of Asthma. Immunity. 2020;52:241–26. doi:10.1016/j.immuni.2020.01.007.
  • Wypych TP, Pattaroni C, Perdijk O, Yap C, Trompette A, Anderson D, Creek DJ, Harris NL, Marsland BJ. Microbial metabolism of L-tyrosine protects against allergic airway inflammation. Nat Immunol. 2021;22:279–286. doi:10.1038/s41590-020-00856-3.
  • Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP, Dos SAÁ, Dias G, Vargas JE, Puga R, Mayer FQ, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun. 2019;10:3273. doi:10.1038/s41467-019-11152-6.
  • Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, et al. Cabbage and fermented vegetables: from death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy. 2021;76:735–750. doi:10.1111/all.14549.
  • Gutiérrez-Castrellón P, Gandara-Martí T, Abreu Y, AT A, CD NR, López-Orduña E, Jiménez-Escobar I, Jiménez-Gutiérrez C, López-Velazquez G, Espadaler-Mazo J. Probiotic improves symptomatic and viral clearance in Covid19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes. 2022;14:2018899. doi:10.1080/19490976.2021.2018899.
  • Biliński J, Winter K, Jasiński M, Szczęś A, Bilinska N, Mullish BH, Małecka-Panas E, Basak GW. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut. 2022;71:230–232. doi:10.1136/gutjnl-2021-325010.
  • Chen Z, Lv Y, Xu H, Deng L. Herbal medicine, gut microbiota, and COVID-19. Front Pharmacol. 2021;12:646560. doi:10.3389/fphar.2021.646560.
  • Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, Sugiyama M, Suda W, Nakanishi Y, Terada-Hirashima J, et al. Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications. Gastroenterology. 2022;164:272–288. doi:10.1053/j.gastro.2022.09.024.
  • Tang L, Gu S, Gong Y, Li B, Lu H, Li Q, Zhang R, Gao X, Wu Z, Zhang J, et al. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering (Beijing). 2020;6:1178–1184. doi:10.1016/j.eng.2020.05.013.
  • Zuo T, Zhan H, Zhang F, Liu Q, Tso E, Lui G, Chen N, Li A, Lu W, Chan F, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology. 2020;159:1302–1310.e5. doi:10.1053/j.gastro.2020.06.048.
  • Cao J, Wang C, Zhang Y, Lei G, Xu K, Zhao N, Lu J, Meng F, Yu L, Yan J, et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes. 2021;13:1–21. doi:10.1080/19490976.2021.1887722.
  • Lv L, Gu S, Jiang H, Yan R, Chen Y, Chen Y, Luo R, Huang C, Lu H, Zheng B, et al. Gut mycobiota alterations in patients with COVID-19 and H1N1 infections and their associations with clinical features. Commun Biol. 2021;4:480. doi:10.1038/s42003-021-02036-x.
  • Xu R, Liu P, Zhang T, Wu Q, Zeng M, Ma Y, Jin X, Xu J, Zhang Z, Zhang C. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19. J Genet Genomics. 2021;48:803–814. doi:10.1016/j.jgg.2021.05.004.
  • Wu Y, Cheng X, Jiang G, Tang H, Ming S, Tang L, Lu J, Guo C, Shan H, Huang X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes. 2021;7:61. doi:10.1038/s41522-021-00232-5.
  • He F, Zhang T, Xue K, Fang Z, Jiang G, Huang S, Li K, Gu Z, Shi H, Zhang Z, et al. Fecal multi-omics analysis reveals diverse molecular alterations of gut ecosystem in COVID-19 patients. Anal Chim Acta. 2021;1180:338881. doi:10.1016/j.aca.2021.338881.
  • Zhang F, Wan Y, Zuo T, Yeoh YK, Liu Q, Zhang L, Zhan H, Lu W, Xu W, Lui G, et al. Prolonged impairment of short-chain fatty acid and L-Isoleucine biosynthesis in gut microbiome in patients with COVID-19. Gastroenterology. 2022;162:548–561.e4. doi:10.1053/j.gastro.2021.10.013.
  • Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, Chung AC, Cheung CP, Tso EY, Fung KS, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706. doi:10.1136/gutjnl-2020-323020.
  • Sun Z, Song ZG, Liu C, Tan S, Lin S, Zhu J, Dai FH, Gao J, She JL, Mei Z, et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 2022;20:24. doi:10.1186/s12916-021-02212-0.
  • Reinold J, Farahpour F, Schoerding AK, Fehring C, Dolff S, Konik M, Korth J, van Baal L, Buer J, Witzke O, et al. The fungal gut microbiome exhibits reduced diversity and increased relative abundance of ascomycota in severe COVID-19 illness and distinct interconnected communities in SARS-CoV-2 positive Patients. Front Cell Infect Microbiol. 2022;12:848650. doi:10.3389/fcimb.2022.848650.
  • Shen Y, Yu F, Zhang D, Zou Q, Xie M, Chen X, Yuan L, Lou B, Xie G, Wang R, et al. Dynamic alterations in the respiratory tract microbiota of patients with COVID-19 and its association with microbiota in the gut. Adv Sci (Weinh). 2022;9:e2200956. doi:10.1002/advs.202200956.
  • Nashed L, Mani J, Hazrati S, Stern DB, Subramanian P, Mattei L, Bittinger K, Hu W, Levy S, Maxwell GL, et al. Gut microbiota changes are detected in asymptomatic very young children with SARS-CoV-2 infection. Gut. 2022;71:2371–2373. doi:10.1136/gutjnl-2021-326599.
  • Stutz MR, Dylla NP, Pearson SD, Lecompte-Osorio P, Nayak R, Khalid M, Adler E, Boissiere J, Lin H, Leiter W, et al. Immunomodulatory fecal metabolites are associated with mortality in COVID-19 patients with respiratory failure. Nat Commun. 2022;13:6615. doi:10.1038/s41467-022-34260-2.
  • Moreira-Rosário A, Marques C, Pinheiro H, Araújo JR, Ribeiro P, Rocha R, Mota I, Pestana D, Ribeiro R, Pereira A, et al. Gut microbiota diversity and C-reactive protein are predictors of disease severity in COVID-19 patients. Front Microbiol. 2021;12:705020. doi:10.3389/fmicb.2021.705020.
  • Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, Hussey GA, Casanovas-Massana A, Noval MG, Valero-Jimenez AM, et al. Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun. 2022;13:5926. doi:10.1038/s41467-022-33395-6.
  • Zuo T, Liu Q, Zhang F, Lui GC, Tso EY, Yeoh YK, Chen Z, Boon SS, Chan FK, Chan PK, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70:276–284. doi:10.1136/gutjnl-2020-322294.
  • Parker BJ, Wearsch PA, Veloo A, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. doi:10.3389/fimmu.2020.00906.
  • Schult D, Reitmeier S, Koyumdzhieva P, Lahmer T, Middelhoff M, Erber J, Schneider J, Kager J, Frolova M, Horstmann J, et al. Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes. 2022;14:2031840. doi:10.1080/19490976.2022.2031840.
  • Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 2020;71:2669–2678. doi:10.1093/cid/ciaa709.
  • Xu R, Lu R, Zhang T, Wu Q, Cai W, Han X, Wan Z, Jin X, Zhang Z, Zhang C. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun Biol. 2021;4:240. doi:10.1038/s42003-021-01796-w.
  • Patrier J, Villageois-Tran K, Szychowiak P, Ruckly S, Gschwind R, Wicky PH, Gueye S, Armand-Lefevre L, Marzouk M, Sonneville R, et al. Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults. Crit Care. 2022;26:300. doi:10.1186/s13054-022-04164-0.
  • Chen Y, Gu S, Chen Y, Lu H, Shi D, Guo J, Wu WR, Yang Y, Li Y, Xu KJ, et al. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut. 2022;71:222–225. doi:10.1136/gutjnl-2021-324090.
  • Liu Q, Mak J, Su Q, Yeoh YK, Lui GC, Ng S, Zhang F, Li A, Lu W, Hui DS, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71:544–552. doi:10.1136/gutjnl-2021-325989.
  • Juthi RT, Sazed SA, Sarmin M, Haque R, Alam MS. COVID-19 and diarrhea: putative mechanisms and management. Int J Infect Dis. 2023;126:125–131. doi:10.1016/j.ijid.2022.11.018.
  • Panpetch W, Somboonna N, Bulan DE, Issara-Amphorn J, Worasilchai N, Finkelman M, Chindamporn A, Palaga T, Tumwasorn S, Leelahavanichkul A. Gastrointestinal colonization of candida albicans increases serum (1→3)-β-D-Glucan, without candidemia, and worsens cecal ligation and puncture sepsis in murine model. Shock. 2018;49:62–70. doi:10.1097/SHK.0000000000000896.
  • Peters BM, Noverr MC, Deepe GS. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun. 2013;81:2178–2189. doi:10.1128/IAI.00265-13.
  • Takesako K, Ikai K, Haruna F, Endo M, Shimanaka K, Sono E, Nakamura T, Kato I, Yamaguchi H. Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J Antibiot (Tokyo). 1991;44:919–924. doi:10.7164/antibiotics.44.919.
  • Duan X, Tan X, Gu L, Liu J, Hao X, Tao L, Feng H, Cao Y, Shi Z, Duan Y, et al. New secondary metabolites with immunosuppressive activity from the phytopathogenic fungus Bipolaris maydis. Bioorg Chem. 2020;99:103816. doi:10.1016/j.bioorg.2020.103816.
  • Bencsik O, Papp T, Berta M, Zana A, Forgó P, Dombi G, Andersson MA, Salkinoja-Salonen M, Vágvölgyi C, Szekeres A. Ophiobolin a from Bipolaris oryzae perturbs motility and membrane integrities of porcine sperm and induces cell death on mammalian somatic cell lines. Toxins (Basel). 2014;6:2857–2871. doi:10.3390/toxins6092857.
  • Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W, Cao H. Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation. Cancer Lett. 2022;526:225–235. doi:10.1016/j.canlet.2021.11.027.
  • Gu C, Mao X, Chen D, Yu B, Yang Q. Isoleucine plays an important role for maintaining immune function. Curr Protein Pept Sci. 2019;20:644–651. doi:10.2174/1389203720666190305163135.
  • Liu Q, Su Q, Zhang F, Tun HM, Mak J, Lui GC, Ng S, Ching J, Li A, Lu W, et al. Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome. Nat Commun. 2022;13:6806. doi:10.1038/s41467-022-34535-8.
  • Qin N, Zheng B, Yao J, Guo L, Zuo J, Wu L, Zhou J, Liu L, Guo J, Ni S, et al. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci Rep. 2015;5:14771. doi:10.1038/srep14771.
  • Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JS. Respiratory disease following viral lung infection alters the murine gut microbiota. Front Immunol. 2018;9:182. doi:10.3389/fimmu.2018.00182.
  • Harding JN, Siefker D, Vu L, You D, DeVincenzo J, Pierre JF, Cormier SA. Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol. 2020;20:140. doi:10.1186/s12866-020-01816-5.
  • Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol. 2018;9:2640. doi:10.3389/fimmu.2018.02640.
  • Sarkar A, Harty S, Moeller AH, Klein SL, Erdman SE, Friston KJ, Carmody RN. The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends Mol Med. 2021;27:1115–1134. doi:10.1016/j.molmed.2021.09.009.
  • Buford TW. (Dis)trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5:80. doi:10.1186/s40168-017-0296-0.
  • Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr. 2022;76:489–501. doi:10.1038/s41430-021-00991-6.
  • Miyoshi J, Rao MC, Chang EB. Navigating the human gut microbiome: pathway to success from lessons learned. Gastroenterology. 2020;159:2019–2024. doi:10.1053/j.gastro.2020.09.002.
  • Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JVWHO clinical case definition working group on post-COVID-19 conditionA clinical case definition of post-COVID-19 condition by a Delphi consensusLancet Infect Dis202222 e102-102e10710.1016/S1473-3099(21)00703-9
  • Zhang X, Wang F, Shen Y, Zhang X, Cen Y, Wang B, Zhao S, Zhou Y, Hu B, Wang M, et al. Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw Open. 2021;4:e2127403. doi:10.1001/jamanetworkopen.2021.27403.
  • Romero-Duarte Á, Rivera-Izquierdo M, Guerrero-Fernández de Alba I, Pérez-Contreras M, Fernández-Martínez NF, Ruiz-Montero R, Serrano-Ortiz Á, González-Serna RO, Salcedo-Leal I, Jiménez-Mejías E, et al. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: the ANCOHVID multicentre 6-month follow-up study. BMC Med. 2021;19:129. doi:10.1186/s12916-021-02003-7.
  • Global Burden of Disease Long COVID CollaboratorsWulf Hanson S, Abbafati C, Aerts JG, Al-Aly Z, Ashbaugh C, Ballouz T, Blyuss O, Bobkova P, Bonsel G, Borzakova S, et al. Estimated global proportions of individuals with persistent fatigue, cognitive, and respiratory symptom clusters following symptomatic COVID-19 in 2020 and 2021. JAMA. 2022;328:1604–1615. doi:10.1001/jama.2022.18931.
  • Meringer H, Mehandru S. Gastrointestinal post-acute COVID-19 syndrome. Nat Rev Gastroenterol Hepatol. 2022;19:345–346. doi:10.1038/s41575-022-00611-z.
  • Huang L, Li X, Gu X, Zhang H, Ren L, Guo L, Liu M, Wang Y, Cui D, Wang Y, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022;10:863–876. doi:10.1016/S2213-2600(22)00126-6.
  • Fernández-de-Las-Peñas C, Rodríguez-Jiménez J, Cancela-Cilleruelo I, Guerrero-Peral A, Martín-Guerrero JD, García-Azorín D, Cornejo-Mazzuchelli A, Hernández-Barrera V, Pellicer-Valero OJ. Post-COVID-19 Symptoms 2 Years After SARS-CoV-2 infection among hospitalized vs nonhospitalized patients. JAMA Netw Open. 2022;5:e2242106. doi:10.1001/jamanetworkopen.2022.42106.
  • Rubin R. SARS-CoV-2 RNA can persist in stool months after respiratory tract clears virus. JAMA. 2022;327:2175. doi:10.1001/jama.2022.7892.
  • Zollner A, Koch R, Jukic A, Pfister A, Meyer M, Rössler A, Kimpel J, Adolph TE, Tilg H. Postacute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. Gastroenterology. 2022;163:495–506.e8. doi:10.1053/j.gastro.2022.04.037.
  • Su Q, Lau RI, Liu Q, Chan F, Ng SC. Post-acute COVID-19 syndrome and gut dysbiosis linger beyond 1 year after SARS-CoV-2 clearance. Gut. 2022. doi:10.1136/gutjnl-2022-328319.
  • Vestad B, Ueland T, Lerum TV, Dahl TB, Holm K, Barratt-Due A, Kåsine T, Dyrhol-Riise AM, Stiksrud B, Tonby K, et al. Respiratory dysfunction three months after severe COVID-19 is associated with gut microbiota alterations. J Intern Med. 2022;291:801–812. doi:10.1111/joim.13458.
  • Tian Y, Sun KY, Meng TQ, Ye Z, Guo SM, Li ZM, Xiong CL, Yin Y, Li HG, Zhou LQ. Gut microbiota may not be fully restored in recovered COVID-19 patients after 3-month recovery. Front Nutr. 2021;8:638825. doi:10.3389/fnut.2021.638825.
  • Zhou Y, Zhang J, Zhang D, Ma WL, Wang X. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J Microbiol. 2021;59:941–948. doi:10.1007/s12275-021-1206-5.
  • Cui GY, Rao BC, Zeng ZH, Wang XM, Ren T, Wang HY, Luo H, Ren HY, Liu C, Ding SY, et al. Characterization of oral and gut microbiome and plasma metabolomics in COVID-19 patients after 1-year follow-up. Mil Med Res. 2022;9:32. doi:10.1186/s40779-022-00387-y.
  • Penninger JM, Grant MB, Sung J. The role of angiotensin converting enzyme 2 in modulating gut microbiota, intestinal inflammation, and coronavirus infection. Gastroenterology. 2021;160:39–46. doi:10.1053/j.gastro.2020.07.067.
  • Du M, Cai G, Chen F, Christiani DC, Zhang Z, Wang M. Multiomics Evaluation of gastrointestinal and other clinical characteristics of COVID-19. Gastroenterology. 2020;158:2298–2301.e7. doi:10.1053/j.gastro.2020.03.045.
  • Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli R, Paul van Schayck J, Mykytyn AZ, Duimel HQ, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369:50–54. doi:10.1126/science.abc1669.
  • Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020:5. doi:10.1126/sciimmunol.abc3582
  • Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. doi:10.1016/j.ejim.2020.04.037.
  • Camargo S, Vuille-Dit-Bille RN, Meier CF, Verrey F. ACE2 and gut amino acid transport. Clin Sci (Lond). 2020;134:2823–2833. doi:10.1042/CS20200477.
  • Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487:477–481. doi:10.1038/nature11228.
  • Platten M, Nollen E, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019;18:379–401. doi:10.1038/s41573-019-0016-5.
  • Qin WH, Liu CL, Jiang YH, Hu B, Wang HY, Fu J. Gut ACE2 expression, tryptophan deficiency, and inflammatory responses the potential connection that should not be ignored during SARS-CoV-2 infection. Cell Mol Gastroenterol Hepatol. 2021;12:1514–1516.e4. doi:10.1016/j.jcmgh.2021.06.014.
  • Edwinson A, Yang L, Chen J, Grover M. Colonic expression of Ace2, the SARS-CoV-2 entry receptor, is suppressed by commensal human microbiota. Gut Microbes. 2021;13:1984105. doi:10.1080/19490976.2021.1984105.
  • Brown JA, Sanidad KZ, Lucotti S, Lieber CM, Cox RM, Ananthanarayanan A, Basu S, Chen J, Shan M, Amir M, et al. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection. Gut Microbes. 2022;14:2105609. doi:10.1080/19490976.2022.2105609.
  • Li J, Richards EM, Handberg EM, Pepine CJ, Raizada MK. Butyrate regulates COVID-19-relevant genes in gut epithelial organoids from normotensive rats. Hypertension. 2021;77:e13–13e16. doi:10.1161/HYPERTENSIONAHA.120.16647.
  • Osman IO, Garrec C, de Souza G, Zarubica A, Belhaouari DB, Baudoin JP, Lepidi H, Mege JL, Malissen B, Scola B, et al. Control of CDH1/E-Cadherin gene expression and release of a soluble form of E-Cadherin in SARS-CoV-2 infected Caco-2 intestinal cells: physiopathological consequences for the intestinal forms of COVID-19. Front Cell Infect Microbiol. 2022;12:798767. doi:10.3389/fcimb.2022.798767.
  • Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S, Mukenhirn M, Kraeusslich HG, Alexandrov T, Bartenschlager R, Boulant S. Critical role of Type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep. 2020;32:107863. doi:10.1016/j.celrep.2020.107863.
  • Guo Y, Luo R, Wang Y, Deng P, Song T, Zhang M, Wang P, Zhang X, Cui K, Tao T, et al. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci Bull (Beijing). 2021;66:783–793. doi:10.1016/j.scib.2020.11.015.
  • Sencio V, Machelart A, Robil C, Benech N, Hoffmann E, Galbert C, Deryuter L, Heumel S, Hantute-Ghesquier A, Flourens A, et al. Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes. 2022;14:2018900. doi:10.1080/19490976.2021.2018900.
  • Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W, et al. The gastrointestinal tract is an alternative route for SARS-CoV-2 infection in a nonhuman primate model. Gastroenterology. 2021;160:1647–1661. doi:10.1053/j.gastro.2020.12.001.
  • Hoel H, Heggelund L, Reikvam DH, Stiksrud B, Ueland T, Michelsen AE, Otterdal K, Muller KE, Lind A, Muller F, et al. Elevated markers of gut leakage and inflammasome activation in COVID-19 patients with cardiac involvement. J Intern Med. 2021;289:523–531. doi:10.1111/joim.13178.
  • Yonker LM, Gilboa T, Ogata AF, Senussi Y, Lazarovits R, Boribong BP, Bartsch YC, Loiselle M, Rivas MN, Porritt RA, et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest. 2021:131. doi:10.1172/JCI149633
  • Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Alimentary Pharmacology & Therapeutics. 2020;51:843–851. doi:10.1111/apt.15731.
  • Camilleri M, Vella A. What to do about the leaky gut. Gut. 2022;71:424–435. doi:10.1136/gutjnl-2021-325428.
  • Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020;38:23–48. doi:10.1146/annurev-immunol-070119-115104.
  • Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut. 2019;68:1516–1526. doi:10.1136/gutjnl-2019-318427.
  • Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19. Science. 2020;369:510–511. doi:10.1126/science.abc6156.
  • Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019;20:1279–1290. doi:10.1038/s41590-019-0451-9.
  • Zhang F, Lau RI, Liu Q, Su Q, Chan F, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2022:1–15. doi:10.1038/s41575-022-00698-4.
  • Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F, Zhang L. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7:143. doi:10.1038/s41392-022-00986-0.
  • Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res Rev. 2020;62:101123. doi:10.1016/j.arr.2020.101123.
  • Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc Natl Acad Sci U S A. 2011;108:5354–5359. doi:10.1073/pnas.1019378108.
  • Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. 2020;17:263–278. doi:10.1038/s41575-019-0261-4.
  • Monguió-Tortajada M, Franquesa M, Sarrias MR, Borràs FE. Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death Dis. 2018;9:499. doi:10.1038/s41419-018-0520-2.
  • Grabauskas G, Gao J, Wu X, Zhou SY, Turgeon DK, Owyang C. Gut microbiota alter visceral pain sensation and inflammation via modulation of synthesis of resolvin D1 in colonic tuft cells. Gastroenterology. 2022. doi:10.1053/j.gastro.2022.07.053.
  • Legoux F, Salou M, Lantz O. MAIT cell development and functions: the microbial connection. Immunity. 2020;53:710–723. doi:10.1016/j.immuni.2020.09.009.
  • Parrot T, Gorin JB, Ponzetta A, Maleki KT, Kammann T, Emgård J, Perez-Potti A, Sekine T, Rivera-Ballesteros OKarolinska COVID-19 Study Groupet al.MAIT cell activation and dynamics associated with COVID-19 disease severitySci Immunol. 2020;5. doi:10.1126/sciimmunol.abe1670.
  • Liu S, Zhao Y, Feng X, Xu H. SARS-CoV-2 infection threatening intestinal health: a review of potential mechanisms and treatment strategies. Crit Rev Food Sci Nutr. 2022:1–19. doi:10.1080/10408398.2022.2103090.
  • Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, Zhou Z, Yang J, Zhong J, Yang D, et al. Genomic diversity of severe acute respiratory syndrome–coronavirus 2 in patients with coronavirus disease 2019. Clin Infect Dis. 2020;71:713–720. doi:10.1093/cid/ciaa203.
  • Pascoal LB, Rodrigues PB, Genaro LM, Gomes A, Toledo-Teixeira DA, Parise PL, Bispo-Dos-Santos K, Simeoni CL, Guimarães PV, Buscaratti LI, et al. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes. 2021;13:1–9. doi:10.1080/19490976.2021.1874740.
  • Chen J, Hall S, Vitetta L. Altered gut microbial metabolites could mediate the effects of risk factors in Covid-19. Rev Med Virol. 2021;31:1–13. doi:10.1002/rmv.2211.
  • Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165:105420. doi:10.1016/j.phrs.2021.105420.
  • Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, Queiroz-Junior CM, Noordine ML, Salomé-Desnoulez S, Deryuter L, et al. Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Rep. 2020;30:2934–2947.e6. doi:10.1016/j.celrep.2020.02.013.
  • Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022;34:1700–1718. doi:10.1016/j.cmet.2022.09.017.
  • Escarcega RD, Honarpisheh P, Colpo GD, Ahnstedt HW, Couture L, Juneja S, Torres G, Ortiz GJ, Sollome J, Tabor N, et al. Sex differences in global metabolomic profiles of COVID-19 patients. Cell Death Dis. 2022;13:461. doi:10.1038/s41419-022-04861-2.
  • Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, WE S 3rd, et al. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature. 2022. 10.1038/s41586-022-05594-0.
  • Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–1929. doi:10.1038/s41591-018-0222-4.
  • Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B, et al. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: an old story, yet mesmerizing. Int J Cancer. 2020;146:1780–1790. doi:10.1002/ijc.32563.
  • Thuy PX, Bao T, Moon EY. Ursodeoxycholic acid ameliorates cell migration retarded by the SARS-CoV-2 spike protein in BEAS-2B human bronchial epithelial cells. Biomed Pharmacother. 2022;150:113021. doi:10.1016/j.biopha.2022.113021.
  • Chen F, Stappenbeck TS. Microbiome control of innate reactivity. Curr Opin Immunol. 2019;56:107–113. doi:10.1016/j.coi.2018.12.003.
  • Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475–479. doi:10.1038/s41586-020-2193-0.
  • Ma Y, Luo M, Deng Y, Yang X, Wang X, Chen G, Qin Z, Deng Y, Nan M, Chen Y, et al. Antibiotic-induced primary biles inhibit SARS-CoV-2 endoribonuclease Nsp15 activity in mouse gut. Front Cell Infect Microbiol. 2022;12:896504. doi:10.3389/fcimb.2022.896504.
  • Fu L, Shao S, Feng Y, Ye F, Sun X, Wang Q, Yu F, Wang Q, Huang B, Niu P, et al. Mechanism of microbial metabolite leupeptin in the treatment of COVID-19 by traditional chinese medicine herbs. mBio. 2021;12:e0222021. doi:10.1128/mBio.02220-21.
  • Wei Y, Gao J, Kou Y, Liu M, Meng L, Zheng X, Xu S, Liang M, Sun H, Liu Z, et al. The intestinal microbial metabolite desaminotyrosine is an anti-inflammatory molecule that modulates local and systemic immune homeostasis. Faseb J. 2020;34:16117–16128. doi:10.1096/fj.201902900RR.
  • Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, Esaulova E, Artyomov MN, Morales DJ, Holtzman MJ, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357:498–502. doi:10.1126/science.aam5336.
  • Brogna C, Brogna B, Bisaccia DR, Lauritano F, Marino G, Montano L, Cristoni S, Prisco M, Piscopo M. Could SARS-CoV-2 have bacteriophage behavior or induce the activity of other bacteriophages. Vaccines (Basel). 2022;10:708. doi:10.3390/vaccines10050708.
  • Petrillo M, Brogna C, Cristoni S, Querci M, Piazza O, Van den Eede G. Increase of SARS-CoV-2 RNA load in faecal samples prompts for rethinking of SARS-CoV-2 biology and COVID-19 epidemiology. F1000Res. 2021;10:370. doi:10.12688/f1000research.52540.1.
  • Petrillo M, Querci M, Brogna C, Ponti J, Cristoni S, Markov PV, Valsesia A, Leoni G, Benedetti A, Wiss T, et al. Evidence of SARS-CoV-2 bacteriophage potential in human gut microbiota. F1000Research. 2022;11:292. doi:10.12688/f1000research.109236.1. version 1; peer review: 1 approved with reservations.
  • Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: an overview. Nutrition. 2021;81:111016. doi:10.1016/j.nut.2020.111016.
  • Conte L, Toraldo DM. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther Adv Respir Dis. 2020;14:1753466620937170. doi:10.1177/1753466620937170.
  • Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019;66:1–12. doi:10.18388/abp.2018_2648.
  • Merino J, Joshi AD, Nguyen LH, Leeming ER, Mazidi M, Drew DA, Gibson R, Graham MS, Lo CH, Capdevila J, et al. Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut. 2021;70:2096–2104. doi:10.1136/gutjnl-2021-325353.
  • Scarpellini E, Fagoonee S, Rinninella E, Rasetti C, Aquila I, Larussa T, Ricci P, Luzza F, Abenavoli L. Gut microbiota and liver interaction through immune system cross-talk: a comprehensive review at the time of the SARS-CoV-2 pandemic. J Clin Med. 2020;9:2488. doi:10.3390/jcm9082488.
  • He P, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Dietary patterns and gut microbiota: the crucial actors in inflammatory bowel disease. Adv Nutr. 2022;13:1628–1651. doi:10.1093/advances/nmac029.
  • Port JR, Adney DR, Schwarz B, Schulz JE, Sturdevant DE, Smith BJ, Avanzato VA, Holbrook MG, Purushotham JN, Stromberg KA, et al. High-fat high-sugar diet-induced changes in the lipid metabolism are associated with mildly increased COVID-19 severity and delayed recovery in the syrian hamster. Viruses. 2021;13. doi:10.3390/v13122506.
  • Gangitano E, Tozzi R, Gandini O, Watanabe M, Basciani S, Mariani S, Lenzi A, Gnessi L, Lubrano C. Ketogenic diet as a preventive and supportive care for COVID-19 patients. Nutrients. 2021;13:1004. doi:10.3390/nu13031004.
  • Fritsch J, Garces L, Quintero MA, Pignac-Kobinger J, Santander AM, Fernández I, Ban YJ, Kwon D, Phillips MC, Knight K, et al. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2021;19:1189–1199.e30. doi:10.1016/j.cgh.2020.05.026.
  • Darand M, Hassanizadeh S, Marzban A, Mirzaei M, Hosseinzadeh M. The association between dairy products and the risk of COVID-19. Eur J Clin Nutr. 2022;76:1583–1589. doi:10.1038/s41430-022-01149-8.
  • Blachier F, Beaumont M, Portune KJ, Steuer N, Lan A, Audebert M, Khodorova N, Andriamihaja M, Airinei G, Benamouzig R, et al. High-protein diets for weight management: interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clin Nutr. 2019;38:1012–1022. doi:10.1016/j.clnu.2018.09.016.
  • Kim H, Rebholz CM, Hegde S, LaFiura C, Raghavan M, Lloyd JF, Cheng S, Seidelmann SB. Plant-based diets, pescatarian diets and COVID-19 severity: a population-based case-control study in six countries. BMJ Nutr Prev Health. 2021;4:257–266. doi:10.1136/bmjnph-2021-000272.
  • Bell MG, Ganesh R, Bonnes SL. COVID-19, thegut, and nutritional implications. Curr Nutr Rep. 2023:1–7. doi:10.1007/s13668-023-00465-0.
  • Perez-Araluce R, Martinez-Gonzalez MA, Fernández-Lázaro CI, Bes-Rastrollo M, Gea A, Carlos S. Mediterranean diet and the risk of COVID-19 in the ‘Seguimiento Universidad de Navarra’ cohort. Clin Nutr. 2022;41:3061–3068. doi:10.1016/j.clnu.2021.04.001.
  • Xiang Q, Cheng L, Zhang R, Liu Y, Wu Z, Zhang X. Tea polyphenols prevent and intervene in COVID-19 through intestinal microbiota. Foods. 2022:11. doi:10.3390/foods11040506.
  • Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol. 2021;114:11–24. doi:10.1016/j.tifs.2021.05.023.
  • Deschasaux-Tanguy M, Srour B, Bourhis L, Arnault N, Druesne-Pecollo N, Esseddik Y, de Edelenyi FS, Allègre J, Allès B, Andreeva VA, et al. Nutritional risk factors for SARS-CoV-2 infection: a prospective study within the NutriNet-Santé cohort. BMC Med. 2021;19(1):290. doi:10.1186/s12916-021-02168-1.
  • Ma W, Nguyen LH, Yue Y, Ding M, Drew DA, Wang K, Merino J, Rich-Edwards JW, Sun Q, Camargo CA, et al. Associations between predicted vitamin D status, vitamin D intake, and risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) severity. Am J Clin Nutr. 2022;115:1123–1133. doi:10.1093/ajcn/nqab389.
  • Annweiler C, Beaudenon M, Gautier J, Gonsard J, Boucher S, Chapelet G, Darsonval A, Fougère B, Guérin O, Houvet M, et al. High-dose versus standard-dose vitamin D supplementation in older adults with COVID-19 (COVIT-TRIAL): a multicenter, open-label, randomized controlled superiority trial. PLoS Med. 2022;19:e1003999. doi:10.1371/journal.pmed.1003999.
  • Jolliffe DA, Holt H, Greenig M, Talaei M, Perdek N, Pfeffer P, Vivaldi G, Maltby S, Symons J, Barlow NL, et al. Effect of a test-and-treat approach to vitamin D supplementation on risk of all cause acute respiratory tract infection and covid-19: phase 3 randomised controlled trial (CORONAVIT). BMJ. 2022;378:e071230. doi:10.1136/bmj-2022-071230.
  • Murai IH, Fernandes AL, Sales LP, Pinto AJ, Goessler KF, Duran C, Silva C, Franco AS, Macedo MB, Dalmolin H, et al. Effect of a single high dose of vitamin D 3 on hospital length of stay in patients with moderate to severe COVID-19. JAMA. 2021;325:1053–1060. doi:10.1001/jama.2020.26848.
  • Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S, Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2014;133:405–413. doi:10.1016/j.jaci.2013.08.020.
  • Groeger D, Schiavi E, Grant R, Kurnik-Łucka M, Michalovich D, Williamson R, Beinke S, Kiely B, Akdis CA, Hessel EM, et al. Intranasal Bifidobacterium longum protects against viral-induced lung inflammation and injury in a murine model of lethal influenza infection. EBioMedicine. 2020;60:102981. doi:10.1016/j.ebiom.2020.102981.
  • Ji JJ, Sun QM, Nie DY, Wang Q, Zhang H, Qin FF, Wang QS, Lu SF, Pang GM, Lu ZG. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol Sin. 2021;42:1630–1641. doi:10.1038/s41401-020-00573-5.
  • Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 2020;54:1–7. doi:10.1016/j.mito.2020.06.008.
  • D’Amico F, Baumgart DC, Danese S, Peyrin-Biroulet L. Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention, and management. Clin Gastroenterol Hepatol. 2020;18:1663–1672. doi:10.1016/j.cgh.2020.04.001.
  • Bozkurt HS, Ö B. Oral booster probiotic bifidobacteria in SARS-COV-2 patients. Int J Immunopathol Pharmacol. 2021;35:20587384211059677. doi:10.1177/20587384211059677.
  • d’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, Ruberto F, Rossi G, Celani L, Scagnolari C, et al. Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med (Lausanne). 2020;7:389. doi:10.3389/fmed.2020.00389.
  • Ivashkin V, Fomin V, Moiseev S, Brovko M, Maslennikov R, Ulyanin A, Sholomova V, Vasilyeva M, Trush E, Shifrin O, et al. Efficacy of a probiotic consisting of Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium bifidum PDV 0903, Bifidobacterium longum subsp. infantis PDV 1911, and Bifidobacterium longum subsp. longum PDV 2301 in the treatment of hospitalized patients with COVID-19: a randomized controlled trial. Probiotics Antimicrob Proteins. 2021:1–9. doi:10.1007/s12602-021-09858-5
  • Dauby N. Risks of Saccharomyces boulardii-containing probiotics for the prevention of clostridium difficile infection in the elderly. Gastroenterology. 2017;153:1450–1451. doi:10.1053/j.gastro.2017.04.054.
  • Yelin I, Flett KB, Merakou C, Mehrotra P, Stam J, Snesrud E, Hinkle M, Lesho E, McGann P, McAdam AJ, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med. 2019;25:1728–1732. doi:10.1038/s41591-019-0626-9.
  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502. doi:10.1038/nrgastro.2017.75.
  • Chen D, Wu J, Jin D, Wang B, Cao H. Fecal microbiota transplantation in cancer management: current status and perspectives. Int J Cancer. 2019;145:2021–2031. doi:10.1002/ijc.32003.
  • Wang H, Wang H, Sun Y, Ren Z, Zhu W, Li A, Cui G. Potential associations between microbiome and COVID-19. Front Med (Lausanne). 2021;8:785496. doi:10.3389/fmed.2021.785496.
  • Nejadghaderi SA, Nazemalhosseini-Mojarad E, Asadzadeh Aghdaei H. Fecal microbiota transplantation for COVID-19; a potential emerging treatment strategy. Med Hypotheses. 2021;147:110476. doi:10.1016/j.mehy.2020.110476.
  • Ianiro G, Mullish BH, Kelly CR, Kassam Z, Kuijper EJ, Ng SC, Iqbal TH, Allegretti JR, Bibbò S, Sokol H, et al. Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut. 2020;69:1555–1563. doi:10.1136/gutjnl-2020-321829.
  • Khanna S, Pardi D. Fecal microbiota transplantation for recurrent clostridioides difficile infection: the COVID-19 Era. Am J Gastroenterol. 2020;115:971–974. doi:10.14309/ajg.0000000000000689.
  • Khanna S, Tande A, Rubin DT, Khoruts A, Kahn SA, Pardi DS. Fecal microbiota transplantation for recurrent c difficile infection during the COVID-19 pandemic: experience and recommendations. Mayo Clin Proc. 2021;96:1418–1425. doi:10.1016/j.mayocp.2021.04.005.
  • An X, Zhang Y, Duan L, Jin D, Zhao S, Zhou R, Duan Y, Lian F, Tong X. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomed Pharmacother. 2021;137:111267. doi:10.1016/j.biopha.2021.111267.
  • Gajewski A, Kośmider A, Nowacka A, Puk O, Wiciński M. Potential of herbal products in prevention and treatment of COVID-19. Literature review. Biomed Pharmacother. 2021;143:112150. doi:10.1016/j.biopha.2021.112150.
  • Huang F, Li Y, Leung EL, Liu X, Liu K, Wang Q, Lan Y, Li X, Yu H, Cui L, et al. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol Res. 2020;158:104929. doi:10.1016/j.phrs.2020.104929.
  • Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 2020;156:104761. doi:10.1016/j.phrs.2020.104761.
  • Li LC, Zhang ZH, Zhou WC, Chen J, Jin HQ, Fang HM, Chen Q, Jin YC, Qu J, Kan LD. Lianhua Qingwen prescription for Coronavirus disease 2019 (COVID-19) treatment: advances and prospects. Biomed Pharmacother. 2020;130:110641. doi:10.1016/j.biopha.2020.110641.
  • Jan JT, Cheng TR, Juang YP, Ma HH, Wu YT, Yang WB, Cheng CW, Chen X, Chou TH, Shie JJ, et al. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2021:118. doi:10.1073/pnas.2021579118
  • Sun Y, Zeng X, Liu Y, Zhan S, Wu Z, Zheng X, Zhang X. Dendrobium officinale polysaccharide attenuates cognitive impairment in circadian rhythm disruption mice model by modulating gut microbiota. Int J Biol Macromol. 2022;217:677–688. doi:10.1016/j.ijbiomac.2022.07.090.
  • Lee D, Li QY, Liu J, Efferth T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: clinical experience and scientific basis. Phytomedicine. 2021;80:153337. doi:10.1016/j.phymed.2020.153337.
  • Hu K, Guan WJ, Bi Y, Zhang W, Li L, Zhang B, Liu Q, Song Y, Li X, Duan Z, et al. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. Phytomedicine. 2021;85:153242. doi:10.1016/j.phymed.2020.153242.