1,779
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Epidemiological and microbiome associations of Clostridioides difficile carriage in infancy and early childhood

, , , , , , , , & show all
Article: 2203969 | Received 26 Oct 2022, Accepted 12 Apr 2023, Published online: 25 Apr 2023

References

  • Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, Goldman S, Wultańska D, Garlicki A, Biesiada G. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis. 2019;38(7):1211–14. doi:10.1007/s10096-019-03539-6.
  • De Roo AC, Regenbogen SE. Clostridium difficile infection: an epidemiology update. Clin Colon Rectal Surg. 2020;33(2):49–57. doi:10.1055/s-0040-1701229.
  • Balsells E, Shi T, Leese C, Lyell I, Burrows J, Wiuff C, Campbell H, Kyaw MH, Nair H. Global burden of clostridium difficile infections: a systematic review and meta-analysis. J Glob Health. 2019;9(1):010407. doi:10.7189/jogh.09.010407.
  • Depestel DD, Aronoff DM. Epidemiology of clostridium difficile infection. J Pharm Pract. 2013;26(5):464–475. doi:10.1177/0897190013499521.
  • Tougas SR, Lodha N, Vandermeer B, Lorenzetti DL, Tarr PI, Tarr GA, Chui L, Vanderkooi OG, Freedman SB. Prevalence of detection of clostridioides difficile among asymptomatic children: a systematic review and meta-analysis. JAMA Pediatr. 2021;175(10):e212328. doi:10.1001/jamapediatrics.2021.2328.
  • Miranda-Katz M, Parmar D, Dang R, Alabaster A, Greenhow TL. Epidemiology and risk factors for community associated clostridioides difficile in children. J Pediatr. 2020;221:99–106. doi:10.1016/j.jpeds.2020.02.005.
  • Stoesser N, Eyre DW, Quan TP, Godwin H, Pill G, Mbuvi E, Vaughan A, Griffiths D, Martin J, Fawley W, et al. Epidemiology of clostridium difficile in infants in oxfordshire, UK: risk sfactors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. Plos One. 2017;12(8):e0182307. doi:10.1371/journal.pone.0182307.
  • Rousseau C, Lemée L, Le Monnier A, Poilane I, Pons JL, Collignon A. Prevalence and diversity of clostridium difficile strains in infants. J Med Microbiol. 2011;60(Pt 8):1112–1118. doi:10.1099/jmm.0.029736-0.
  • Rousseau C, Poilane I, De Pontual L, Maherault AC, Le Monnier A, Collignon A. Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis. 2012;55(9):1209–1215. doi:10.1093/cid/cis637.
  • Collignon A, Ticchi L, Depitre C, Gaudelus J, Delmée M, Corthier G. Heterogeneity of clostridium difficile isolates from infants. Eur J Pediatr. 1993;152(4):319–322. doi:10.1007/BF01956743.
  • Adlerberth I, Huang H, Lindberg E, Åberg N, Hesselmar B, Saalman R, Nord CE, Wold AE, Weintraub A. Toxin-producing clostridium difficile strains as long-term gut colonizers in healthy infants. J Clin Microbiol. 2014;52(1):173–179. doi:10.1128/JCM.01701-13.
  • Cui QQ, Yang J, Sun SJ, Li ZR, Qiang CX, Niu YN, Li RX, Shi DY, Wei HL, Tian TT, et al. Carriage of clostridioides difficile in healthy infants in the community of Handan, China: a 1-year follow-up study. Anaerobe. 2021;67:102295. doi:10.1016/j.anaerobe.2020.102295.
  • Enoch DA, Butler MJ, Pai S, Aliyu SH, Karas JA. Clostridium difficile in children: colonisation and disease. J Infect. 2011;63(2):105–113. doi:10.1016/j.jinf.2011.05.016.
  • Jangi S, Lamont JT. Asymptomatic colonization by clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr. 2010;51(1):2–7. doi:10.1097/MPG.0b013e3181d29767.
  • Sammons JS, Toltzis P, Zaoutis TE. Clostridium difficile infection in children. JAMA Pediatr. 2013;167(6):567–573. doi:10.1001/jamapediatrics.2013.441.
  • Anjewierden S, Han Z, Foster CB, Pant C, Deshpande A. Risk factors for clostridium difficile infection in pediatric inpatients: a meta-analysis and systematic review. Infect Control Hosp Epidemiol. 2019;40(4):420–426. doi:10.1017/ice.2019.23.
  • Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, KH R, Wang GP. Intestinal dysbiosis and depletion of butyrogenic bacteria in clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51(9):2884–2892. doi:10.1128/JCM.00845-13.
  • Vu K, Lou W, Tun HM, Konya TB, Morales-Lizcano N, Chari RS, Field CJ, Guttman DS, Mandal R, Wishart DS, et al. From birth to overweight and atopic disease: multiple and common pathways of the infant gut microbiome. Gastroenterol. 2021;160(1):128–144.e10. doi:10.1053/j.gastro.2020.08.053.
  • Rousseau C, Levenez F, Fouqueray C, Doré J, Collignon A, Lepage P. Clostridium difficile colonization in early infancy is accompanied by changes in intestinal microbiota composition. J Clin Microbiol. 2011;49(3):858–865. doi:10.1128/JCM.01507-10.
  • Samarkos M, Mastrogianni E, Kampouropoulou O. The role of gut microbiota in clostridium difficile infection. Eur J Intern Med. 2018;50:28–32. doi:10.1016/j.ejim.2018.02.006.
  • Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut dysbiosis and clostridioides difficile infection in neonates and adults. Front Microbiol. 2021;12:651081. doi:10.3389/fmicb.2021.651081.
  • Lees EA, Miyajima F, Pirmohamed M, Carrol ED. The role of clostridium difficile in the paediatric and neonatal gut - a narrative review. Eur J Clin Microbiol Infect Dis. 2016;35(7):1047–1057. doi:10.1007/s10096-016-2639-3.
  • Drall KM, Tun HM, Morales-Lizcano NP, Konya TB, Guttman DS, Field CJ, Mandal R, Wishart DS, Becker AB, Azad MB, et al. Clostridioides difficile colonization is differentially associated with gut microbiome profiles by infant feeding modality at 3–4 months of age. Front Immunol. 2019;10:2866. doi:10.3389/fimmu.2019.02866.
  • Kachrimanidou M, Tsintarakis E. Insights into the role of human gut microbiota in clostridioides difficile infection. Microorganisms. 2020;8(2):200. doi:10.3390/microorganisms8020200.
  • Chen LA, Hourigan SK, Grigoryan Z, Gao Z, Clemente JC, Rideout JR, Chirumamilla S, Rabidazeh S, Saeed S, Elson CO, et al. Decreased fecal bacterial diversity and altered microbiome in children colonized with clostridium difficile. J Pediatr Gastroenterol Nutr. 2019;68(4):502–508. doi:10.1097/MPG.0000000000002210.
  • Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth mode, breastfeeding, pet exposure, and antibiotic use: associations with the gut microbiome and sensitization in children. Curr Allergy Asthma Rep. 2019;19(4):22. doi:10.1007/s11882-019-0851-9.
  • van Nimwegen FA, Penders J, Stobberingh EE, van Nimwegen FA, Postma DS, Koppelman GH, Kerkhof M, Reijmerink NE, Dompeling E, van den Brandt PA, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol. 2011;128(5):948–55.e1. doi:10.1016/j.jaci.2011.07.027.
  • Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study. Gut. 2007;56(5):661–667. doi:10.1136/gut.2006.100164.
  • Nicholson MR, Strickland B, Guiberson ER, Shilts M, Edwards K, Skaar EP, Das S. Mo1604: microbiome and bile acid profiles predict clostridioides difficile colonization versus symptomatic disease in children. Gastroenterol. 2022;162(7): S-833-S-834. doi:10.1016/S0016-5085(22)61965-6.
  • Okanda T, Mitsutake H, Aso R, Sekizawa R, Takemura H, Matsumoto T, Nakamura S. Rapid detection assay of toxigenic clostridioides difficile through PathOC rightgene, a novel high-speed polymerase chain reaction device. Diagn Microbiol Infect Dis. 2021;99(2):115247. doi:10.1016/j.diagmicrobio.2020.115247.
  • Kubota H, Sakai T, Gawad A, Makino H, Akiyama T, Ishikawa E, Oishi K. Development of TaqMan-based quantitative PCR for sensitive and selective detection of toxigenic clostridium difficile in human stools. Plos One. 2014;9(10):e111684. doi:10.1371/journal.pone.0111684.
  • Kubota H, Makino H, Gawad A, Kushiro A, Ishikawa E, Sakai T, Akiyama T, Matsuda K, Martin R, Knol J, et al. Longitudinal investigation of carriage rates, counts, and genotypes of toxigenic clostridium difficile in early infancy. Appl Environ Microbiol. 2016;82(19):5806–5814. doi:10.1128/AEM.01540-16.
  • Martinez E, Taminiau B, Rodriguez C, Daube G. Gut microbiota composition associated with clostridioides difficile colonization and infection. Pathogens. 2022;11(7):781. doi:10.3390/pathogens11070781.
  • Crobach MJT, Ducarmon QR, Terveer EM, Harmanus C, Sanders IM, Verduin KM, Kuijper EJ, Zwittink RD. The bacterial gut microbiota of adult patients infected, colonized or noncolonized by clostridioides difficile. Microorganisms. 2020;8(5):677. doi:10.3390/microorganisms8050677.
  • Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest. 2014;124(10):4182–4189. doi:10.1172/JCI72336.
  • Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients. 2020;12(4):1039. doi:10.3390/nu12041039.
  • Rousseaux A, Brosseau C, Le Gall S, Piloquet H, Barbarot S, Bodinier M. Human milk oligosaccharides: their effects on the host and their potential as therapeutic agents. Front Immunol. 2021;12:680911. doi:10.3389/fimmu.2021.680911.
  • Lawrence RM, Lawrence RA. Breast milk and infection. Clin Perinatol. 2004;31(3):501–528. doi:10.1016/j.clp.2004.03.019.
  • Leung J, Burke B, Ford D, Garvin G, Korn C, Sulis C, Bhadelia N. Possible association between obesity and clostridium difficile infection. Emerg Infect Dis. 2013;19(11):1791–1798. doi:10.3201/eid1911.130618.
  • Kim K, DuPont HL, Pickering LK. Outbreaks of diarrhea associated with clostridium difficile and its toxin in day-care centers: evidence of person-to-person spread. J Pediatr. 1983;102(3):376–382. doi:10.1016/s0022-3476(83)80652-0.
  • Matsuki S, Ozaki E, Shozu M, Inoue M, Shimizu S, Yamaguchi N, Karasawa T, Yamagishi T, Nakamura S. Colonization by clostridium difficile of neonates in a hospital, and infants and children in three day-care facilities of kanazawa, Japan. Int Microbiol. 2005;8(1):43–48.
  • Eglow R, Pothoulakis C, Itzkowitz S, Israel EJ, O’Keane CJ, Gong DA, Gao NI, Xu YL, Walker WA, LaMont JT, et al. Diminished clostridium difficile toxin a sensitivity in newborn rabbit ileum is associated with decreased toxin a receptor. J Clin Invest. 1992;90(3):822–829. doi:10.1172/JCI115957.
  • Keel MK, Songer JG. The distribution and density of clostridium difficile toxin receptors on the intestinal mucosa of neonatal pigs. Vet Pathol. 2007;44(6):814–822. doi:10.1354/vp.44-6-814.
  • Beller L, Deboutte W, Falony G, Vieira-Silva S, Tito RY, Valles-Colomer M, Rymenans L, Jansen D, Van Espen L, Papadaki MI, et al. Successional stages in infant gut microbiota maturation. MBio. 2021;12(6):e0185721. doi:10.1128/mBio.01857-21.
  • Avershina E, Lundgård K, Sekelja M, Dotterud C, Storrø O, Øien T, Johnsen R, Rudi K. Transition from infant- to adult-like gut microbiota. Environ Microbiol. 2016;18(7):2226–2236. doi:10.1111/1462-2920.13248.
  • Fletcher JR, Erwin S, Lanzas C, Theriot CM, D’Orazio SEF. Shifts in the gut metabolome and clostridium difficile transcriptome throughout colonization and infection in a mouse model. mSphere. 2018;3(2). doi:10.1128/mSphere.00089-18.
  • Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366–384. doi:10.1017/S0954422410000247.
  • Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017;45:86–100. doi:10.1016/j.anaerobe.2017.03.004.
  • Dimitrakopoulou EI, Pouliakis A, Falaina V, Xanthos T, Zoumpoulakis P, Tsiaka T, Sokou R, Iliodromiti Z, Boutsikou T, Iacovidou N. The metagenomic and metabolomic profile of the infantile gut: can they be “predicted” by the feed type? Children (Basel). 2022;9(2):154. doi:10.3390/children9020154.
  • Gupta P, Yakubov S, Tin K, Zea D, Garankina O, Ghitan M, Chapnick EK, Homel P, Lin YS, Koegel MM. Does alkaline colonic pH predispose to clostridium difficile infection? South Med J. 2016;109(2):91–96. doi:10.14423/SMJ.0000000000000414.
  • Tanaka M, Sanefuji M, Morokuma S, Yoden M, Momoda R, Sonomoto K, Ogawa M, Kato K, Nakayama J. The association between gut microbiota development and maturation of intestinal bile acid metabolism in the first 3 y of healthy Japanese infants. Gut Microbes. 2020;11(2):205–216. doi:10.1080/19490976.2019.1650997.
  • Johnson S, Lavergne V, Skinner AM, Gonzales-Luna AJ, Garey KW, Kelly CP, Wilcox MH. Clinical practice guideline by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults. Clin Infect Dis. 2021;73(5):e1029–1044. doi:10.1093/cid/ciab549.
  • Kociolek LK, Espinosa RO, Gerding DN, Hauser AR, Ozer EA, Budz M, Balaji A, Chen X, Tanz RR, Yalcinkaya N, et al. Natural clostridioides difficile toxin immunization in colonized infants. Clin Infect Dis. 2020;70(10):2095–2102. doi:10.1093/cid/ciz582.
  • Fishbein SR, Robinson JI, Hink T, Reske KA, Newcomer EP, Burnham CAD, Henderson JP, Dubberke ER, Dantas G. Multi-omics investigation of clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife. 2022;11:11. doi:10.7554/eLife.72801.
  • Pant C, Deshpande A, Gilroy R, Olyaee M, Donskey CJ. Rising incidence of clostridium difficile related discharges among hospitalized children in the United States. Infect Control Hosp Epidemiol. 2016;37(1):104–106. doi:10.1017/ice.2015.234.
  • Ferraris L, Couturier J, Eckert C, Delannoy J, Barbut F, Butel MJ, Aires J. Carriage and colonization of C. difficile in preterm neonates: a longitudinal prospective study. Plos One. 2019;14(2):e0212568. doi:10.1371/journal.pone.0212568.
  • McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y. American gut: an open platform for citizen science microbiome research. mSystems. 2018;3(3). doi:10.1128/mSystems.00031-18.
  • Nashed L, Mani J, Hazrati S, Stern DB, Subramanian P, Mattei L, Bittinger K, Hu W, Levy S, Maxwell GL, et al. Gut microbiota changes are detected in asymptomatic very young children with SARS-CoV-2 infection. Gut. 2022;71(11):2371–2373. doi:10.1136/gutjnl-2021-326599.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. doi:10.1093/nar/gks1219.
  • Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. Isme J. 2017;11(12):2639–2643. doi:10.1038/ismej.2017.119.
  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinform. 2009;10(1):421. doi:10.1186/1471-2105-10-421.
  • R: the R project for statistical computing; [ Accessed 2022 Sep 28]. https://www.r-project.org/.
  • Rstudio | open source & professional software for data science teams - RStudio; [ Accessed 2022 September 28]. https://www.rstudio.com/.
  • Skytte Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. Ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. 2018 Apr 11. doi:10.1101/299537.
  • Community ecology package [R package vegan version 2.6-2]; 2022 April 17 [accessed 2022 Sep 28]. https://cran.r-project.org/web/packages/vegan/index.html.
  • Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, et al. Welcome to the tidyverse. JOSS. 2019;4(43):1686. doi:10.21105/joss.01686.
  • Bauer DF. Constructing confidence sets using rank statistics. J Am Stat Assoc. 1972;67(339):687–690. doi:10.1080/01621459.1972.10481279.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.