3,765
Views
10
CrossRef citations to date
0
Altmetric
Review

Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer’s disease progression

& ORCID Icon
Article: 2206504 | Received 20 Oct 2022, Accepted 18 Apr 2023, Published online: 01 May 2023

References

  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32. doi:10.1186/s13024-019-0333-5.
  • Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s & Dementia. 2013;9(1):63. doi:10.1016/j.jalz.2012.11.007.
  • Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2021;17(3):327–19. doi:10.1002/alz.12328.
  • Kanti Das T, Wati MR, Fatima-Shad K. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Arch Neurosci. 2014;2(3). doi:10.5812/archneurosci.20078.
  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi:10.3390/molecules24081583.
  • Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71(2):621S–629S. doi:10.1093/ajcn/71.2.621s.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. doi:10.1038/s41422-020-0332-7.
  • Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C. Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol. 2020;42(5):589–605. doi:10.1007/s00281-020-00814-z.
  • Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241–255. doi:10.1038/s41579-020-00460-0.
  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–270. doi:10.1038/nrg3182.
  • Bonfili L, Cecarini V, Gogoi O, Gong C, Cuccioloni M, Angeletti M, Rossi G, Eleuteri AM. Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease. FEBS J. 2021;288(9):2836–2855. doi:10.1111/febs.15571.
  • Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection. J Adv Res. 2022;38:223–244. doi:10.1016/j.jare.2021.09.005.
  • Ganesh BP, Versalovic J. Luminal conversion and immunoregulation by probiotics. Front Pharmacol. 2015;6. doi:10.3389/fphar.2015.00269.
  • Ganesh BP, Fultz R, Ayyaswamy S, Versalovic J. Microbial interactions with the intestinal epithelium and beyond: focusing on immune cell maturation and homeostasis. Curr Pathobiol Rep. 2018;6(1):47–54. doi:10.1007/s40139-018-0165-y.
  • Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, McDonald D, Dietrich D, Ramadhar TR, Lekbua A, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2018;4(3):396–403. doi:10.1038/s41564-018-0307-3.
  • Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut microbiota and dysbiosis in Alzheimer’s disease: implications for pathogenesis and treatment. Mol Neurobiol. 2020;57(12):5026–5043. doi:10.1007/s12035-020-02073-3.
  • Zhang Y, Geng R, Tu Q. Gut microbial involvement in Alzheimer’s disease pathogenesis. Aging. 2021;13(9):13359–13371. doi:10.18632/aging.202994.
  • Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–68. doi:10.1016/j.neurobiolaging.2016.08.019.
  • Simpson DSA, Oliver PL. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants. 2020;9(8):743. doi:10.3390/antiox9080743.
  • Nagatsu T. Progress in Monoamine Oxidase (MAO) research in relation to genetic engineering. Neurotoxicology. 2004;25(1–2):11–20. doi:10.1016/S0161-813X(03)00085-8.
  • Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. doi:10.1093/eurheartj/ehr304.
  • Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu G-Y, Quinn MT, Klann E. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005;29(1):97–106. doi:10.1016/j.mcn.2005.01.007.
  • Nanda B, Nataraju A, Rajesh R, Rangappa K, Shekar M, Vishwanath B. PLA2 mediated arachidonate free radicals: pLA2 inhibition and neutralization of free radicals by anti-oxidants – a new role as anti-inflammatory molecule. Curr Top Med Chem. 2007;7(8):765–777. doi:10.2174/156802607780487623.
  • Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592(5):692–702. doi:10.1002/1873-3468.12964.
  • Sun Y, Lu Y, Saredy J, Wang X, Drummer IV C, Shao Y, Saaoud F, Xu K, Liu M, Yang WY, et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020;37:101696. doi:10.1016/j.redox.2020.101696.
  • Michalska P, León R. When it comes to an end: oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants. 2020;9(8):740. doi:10.3390/antiox9080740.
  • Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener. 2020;15(1):30. doi:10.1186/s13024-020-00376-6.
  • Ajoolabady A, Lindholm D, Ren J, Pratico D. ER stress and UPR in Alzheimer’s disease: mechanisms, pathogenesis, treatments. Cell Death Dis. 2022;13(8):706. doi:10.1038/s41419-022-05153-5.
  • Liu F, Zhang Z, Zhang L, Meng R-N, Gao J, Jin M, Li M, Wang X-P. Effect of metal ions on Alzheimer’s disease. Brain Behav. 2022;12(3). doi:10.1002/brb3.2527.
  • Wilkinson BL, Landreth GE. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation. 2006;3(1):30. doi:10.1186/1742-2094-3-30.
  • di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1–44. doi:10.1155/2016/1245049.
  • Abramov AY, Potapova EV, Dremin VV, Dunaev AV. Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration. Life. 2020;10(7):101. doi:10.3390/life10070101.
  • Saint-Georges-Chaumet Y, Edeas M, Carbonetti N. Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Pathog Dis. 2016;74(1):ftv096. doi:10.1093/femspd/ftv096.
  • Wentworth CC, Jones RM, Kwon YM, Nusrat A, Neish AS. Commensal-epithelial signaling mediated via formyl peptide receptors. Am J Pathol. 2010;177(6):2782–2790. doi:10.2353/ajpath.2010.100529.
  • Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol. 2015;185(5):1172–1184. doi:10.1016/j.ajpath.2015.01.020.
  • MIGEOTTE I, COMMUNI D, PARMENTIER M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 2006;17(6):501–519. doi:10.1016/j.cytogfr.2006.09.009.
  • Tiso M, Schechter AN, Jourd’heuil D. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. Plos One. 2015;10(3):e0119712. doi:10.1371/journal.pone.0119712.
  • Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering. 2017;3(1):71–82. doi:10.1016/J.ENG.2017.01.008.
  • Leschelle X, Goubern M, Andriamihaja M, Blottière HM, Couplan E, Gonzalez-Barroso MDM, Petit C, Pagniez A, Chaumontet C, Mignotte B, et al. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochimica Et Biophysica Acta (BBA) - General Subjects. 2005;1725(2):201–212. doi:10.1016/j.bbagen.2005.06.002.
  • Beaumont M, Andriamihaja M, Lan A, Khodorova N, Audebert M, Blouin J-M, Grauso M, Lancha L, Benetti P-H, Benamouzig R, et al. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radical Biol Med. 2016;93:155–164. doi:10.1016/j.freeradbiomed.2016.01.028.
  • He Z, Kwek E, Hao W, Zhu H, Liu J, Ma KY, Chen Z-Y. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutr Metab. 2021;18(1):6. doi:10.1186/s12986-020-00535-y.
  • Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270–1276. doi:10.1016/j.drudis.2020.05.001.
  • Łuc M, Misiak B, Pawłowski M, Stańczykiewicz B, Zabłocka A, Szcześniak D, Pałęga A, Rymaszewska J. Gut microbiota in dementia critical review of novel findings and their potential application. Prog Neuro-Psychopharmacol Biol Psychiatry. 2021;104:110039. doi:10.1016/j.pnpbp.2020.110039.
  • Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10). doi:10.3978/j.issn.2305-5839.2015.03.49.
  • Anderson P. Differential effects of interleukin-1β and S100B on amyloid precursor protein in rat retinal neurons. Clin Ophthalmol. 2009;235:235. doi:10.2147/OPTH.S2684. Published online February.
  • Hesse R, Wahler A, Gummert P, Kirschmer S, Otto M, Tumani H, Lewerenz J, Schnack C, von Arnim CAF. Decreased IL-8 levels in CSF and serum of AD patients and negative correlation of MMSE and IL-1β. BMC Neurol. 2016;16(1):185. doi:10.1186/s12883-016-0707-z.
  • Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O’Banion MK. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci. 2013;33(11):5053–5064. doi:10.1523/JNEUROSCI.4361-12.2013.
  • Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci. 2016;8:8. doi:10.3389/fnagi.2016.00160.
  • Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm. 2010;117(8):949–960. doi:10.1007/s00702-010-0433-4.
  • Lai AY, McLaurin J. Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 2012;7(2):165–176. doi:10.2217/fnl.12.6.
  • Liu W, Taso O, Wang R, Bayram S, Graham AC, Garcia-Reitboeck P, Mallach A, Andrews WD, Piers TM, Botia JA, et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Hum Mol Genet. 2020;29(19):3224–3248. doi:10.1093/hmg/ddaa209.
  • Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, Xu J, Guo G, Tong A, Zhou L. The role of astrocytes in oxidative stress of central nervous system: a mixed blessing. Cell Prolif. 2020;53(3). doi:10.1111/cpr.12781.
  • Lee KH, Cha M, Lee BH. Crosstalk between neuron and glial cells in oxidative injury and neuroprotection. Int J Mol Sci. 2021;22(24):13315. doi:10.3390/ijms222413315.
  • Bylicky MA, Mueller GP, Day RM. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev. 2018;2018:1–16. doi:10.1155/2018/6501031.
  • Yang S, Magnutzki A, Alami NO. IKK2/NF-κB Activation in astrocytes reduces amyloid β deposition: a process associated with specific microglia polarization. Cells. 2021;10(10):2669. doi:10.3390/cells10102669.
  • Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants. 2019;8(5):121. doi:10.3390/antiox8050121.
  • Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:14. doi:10.3389/fncel.2020.00051.
  • Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci. 2021;78(10):4615–4637. doi:10.1007/s00018-021-03802-0.
  • Lloret A, Esteve D, Lloret MA, Monllor P, López B, León JL, Cervera-Ferri A. Is oxidative stress the link between cerebral small vessel disease, sleep disruption, and oligodendrocyte dysfunction in the onset of Alzheimer’s disease? Front Physiol. 2021;12:12. doi:10.3389/fphys.2021.708061.
  • Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89. doi:10.1111/imr.12567.
  • Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol. 2021;11(5):1463–1482. doi:10.1016/j.jcmgh.2021.02.007.
  • Dumitrescu L, Popescu-Olaru I, Cozma L, Tulbă D, Hinescu ME, Ceafalan LC, Gherghiceanu M, Popescu BO. Oxidative stress and the microbiota-gut-brain axis. Oxid Med Cell Longev. 2018;2018:1–12. doi:10.1155/2018/2406594.
  • Jung JH, Kim G, Byun MS, Lee JH, Yi D, Park H, Lee DY. Gut microbiome alterations in preclinical Alzheimer’s disease. Plos One. 2022;17(11):e0278276. doi:10.1371/journal.pone.0278276.
  • Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, Lü Y, Cai M, Zhu C, Tan Y-L, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimer’s Dis. 2018;63(4):1337–1346. doi:10.3233/JAD-180176.
  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7(1):13537. doi:10.1038/s41598-017-13601-y.
  • Loffredo L, Ettorre E, Zicari AM, Inghilleri M, Nocella C, Perri L, Spalice A, Fossati C, De Lucia MC, Pigozzi F, et al. Oxidative stress and gut-derived lipopolysaccharides in neurodegenerative disease: role of NOX2. Oxid Med Cell Longev. 2020;2020:1–7. doi:10.1155/2020/8630275.
  • Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci. 2021;264:118627. doi:10.1016/j.lfs.2020.118627.
  • Wu L, Han Y, Zheng Z, Peng G, Liu P, Yue S, Zhu S, Chen J, Lv H, Shao L, et al. Altered gut microbial metabolites in amnestic mild cognitive impairment and Alzheimer’s disease: signals in host–Microbe interplay. Nutrients. 2021;13(1):228. doi:10.3390/nu13010228.
  • Chen Y, Fang L, Chen S, Zhou H, Fan Y, Lin L, Li J, Xu J, Chen Y, Ma Y, et al. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of Alzheimer’s disease. Biomed Res Int. 2020;2020:1–15. doi:10.1155/2020/8456596.
  • Zhang A, Ma Z, Kong L. High‐throughput lipidomics analysis to discover lipid biomarkers and profiles as potential targets for evaluating efficacy of Kai‐Xin‐San against APP/PS1 transgenic mice based on UPLC–Q/TOF–MS. Biomed Chromatogr. 2020;34(2). doi:10.1002/bmc.4724
  • Saji N, Murotani K, Hisada T, Kunihiro T, Tsuduki T, Sugimoto T, Kimura A, Niida S, Toba K, Sakurai T. Relationship between dementia and gut microbiome-associated metabolites: a cross-sectional study in Japan. Sci Rep. 2020;10(1):8088. doi:10.1038/s41598-020-65196-6.
  • Zhou Y, Wang Y, Quan M, Zhao H, Jia J. Gut microbiota changes and their correlation with cognitive and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimer’s Dis. 2021;81(2):583–595. doi:10.3233/JAD-201497.
  • Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529–542. doi:10.1016/j.ebiom.2019.08.032.
  • Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame? Nutrients. 2020;13(1):37. doi:10.3390/nu13010037.
  • Nagpal R, Neth BJ, Wang S, Mishra SP, Craft S, Yadav H. Gut microbiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine. 2020;59:102950. doi:10.1016/j.ebiom.2020.102950.
  • Janeiro M, Ramírez M, Milagro F, Martínez J, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10(10):1398. doi:10.3390/nu10101398.
  • Vogt NM, Romano KA, Darst BF, Engelman CD, Johnson SC, Carlsson CM, Asthana S, Blennow K, Zetterberg H, Bendlin BB, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):124. doi:10.1186/s13195-018-0451-2.
  • Shabbir U, Tyagi A, Elahi F, Aloo SO, Oh DH. The potential role of polyphenols in oxidative stress and inflammation induced by gut microbiota in Alzheimer’s disease. Antioxidants. 2021;10(9):1370. doi:10.3390/antiox10091370.
  • Moresco EMY, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011;21(13):R488–493. doi:10.1016/j.cub.2011.05.039.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. doi:10.1038/nri1391.
  • Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32. doi:10.1016/j.smim.2006.12.004.
  • Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395(2):203–230. doi:10.1515/hsz-2013-0241.
  • Jana M, Palencia CA, Pahan K. Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol. 2008;181(10):7254–7262. doi:10.4049/jimmunol.181.10.7254.
  • Lin W, Ding M, Xue J, Leng W. The role of TLR2/JNK/NF-κB pathway in amyloid β peptide-induced inflammatory response in mouse NG108-15 neural cells. Int Immunopharmacol. 2013;17(3):880–884. doi:10.1016/j.intimp.2013.09.016.
  • Richard KL, Filali M, Préfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci. 2008;28(22):5784–5793. doi:10.1523/JNEUROSCI.1146-08.2008.
  • Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM. Activation of toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid β peptide. J Biol Chem. 2006;281(6):3651–3659. doi:10.1074/jbc.M508125200.
  • Das TK, Blasco-Conesa MP, Korf J, Honarpisheh P, Chapman MR, Ganesh BP. Bacterial amyloid curli associated gut epithelial neuroendocrine activation predominantly observed in Alzheimer’s disease mice with central amyloid-β pathology. J Alzheimer’s Dis. 2022;88(1):191–205. doi:10.3233/JAD-220106.
  • Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K. Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging. 2009;30(5):759–768. doi:10.1016/j.neurobiolaging.2007.08.018.
  • Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J, Heneka MT, Hartmann T, et al. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol. 2012;188(3):1098–1107. doi:10.4049/jimmunol.1101121.
  • McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, Reilly M, Lynch MA. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer’s disease. Brain Behav Immun. 2016;58:191–200. doi:10.1016/j.bbi.2016.07.143.
  • Costello DA, Carney DG, Lynch MA. α-TLR2 antibody attenuates the Aβ-mediated inflammatory response in microglia through enhanced expression of SIGIRR. Brain Behav Immun. 2015;46:70–79. doi:10.1016/j.bbi.2015.01.005.
  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schüffer W, et al. Role of the Toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007;20(6):947–956. doi:10.1159/000110455.
  • Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi KI. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation. 2008;5(1):23. doi:10.1186/1742-2094-5-23.
  • Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, Kim H-D, Tahara K, Lalonde R, Fukuchi K-I. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2011;8(1):92. doi:10.1186/1742-2094-8-92.
  • Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger MD, Liu C, Fassbender K. Stimulation of TLR4 attenuates Alzheimer’s disease–related symptoms and pathology in tau-transgenic mice. J Immunol. 2016;197(8):3281–3292. doi:10.4049/jimmunol.1600873.
  • Go M, Kou J, Lim JE, Yang J, Fukuchi KI. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: implication of TLR4 signaling in disease progression. Biochem Biophys Res Commun. 2016;479(2):331–337. doi:10.1016/j.bbrc.2016.09.073.
  • Shintani Y, Drexler HC, Kioka H, Terracciano CMN, Coppen SR, Imamura H, Akao M, Nakai J, Wheeler AP, Higo S, et al. Toll-like receptor 9 protects non-immune cells from stress by modulating mitochondrial ATP synthesis through the inhibition of SERCA2. EMBO Rep. 2014;15(4):438–445. doi:10.1002/embr.201337945.
  • Wang YL, Tan MS, Yu JT, Zhang W, Hu N, Wang H-F, Jiang T, Tan L. Toll-like receptor 9 promoter polymorphism is associated with decreased risk of Alzheimer’s disease in han Chinese. J Neuroinflammation. 2013;10(1):886. doi:10.1186/1742-2094-10-101.
  • Scholtzova H, Do E, Dhakal S, Sun Y, Liu S, Mehta PD, Wisniewski T. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J Neurosci. 2017;37(4):936–959. doi:10.1523/JNEUROSCI.1967-16.2016.
  • Scholtzova H, Chianchiano P, Pan J, Sun Y, Goñi F, Mehta PD, Wisniewski T. Amyloid ß and Tau Alzheimer¿s disease related pathology is reduced by toll-like receptor 9 stimulation. Acta Neuropathol Commun. 2014;2(1):101. doi:10.1186/s40478-014-0101-2.
  • Lin C, Zhao S, Zhu Y, Fan Z, Wang J, Zhang B, Chen Y. Microbiota-gut-brain axis and toll-like receptors in Alzheimer’s disease. Comput Struct Biotechnol J. 2019;17:1309–1317. doi:10.1016/j.csbj.2019.09.008.
  • Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther. 2014;142(2):244–257. doi:10.1016/j.pharmthera.2013.12.009.
  • Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and parkinson’s diseases. Ageing Res Rev. 2019;54:100942. doi:10.1016/j.arr.2019.100942.
  • Saha S, Buttari B, Profumo E, Tucci P, Saso L. A perspective on Nrf2 signaling pathway for neuroinflammation: a potential therapeutic target in Alzheimer’s and parkinson’s diseases. Front Cell Neurosci. 2022;15:15. doi:10.3389/fncel.2021.787258.
  • Kim S, Indu Viswanath AN, Park JH, Lee HE, Park AY, Choi JW, Kim HJ, Londhe AM, Jang BK, Lee J, et al. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model. Neuropharmacology. 2020;167:107989. doi:10.1016/j.neuropharm.2020.107989.
  • Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer’s diseases: crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev. 2021;65:101207. doi:10.1016/j.arr.2020.101207.
  • Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radical Biol Med. 2015;88:314–336. doi:10.1016/j.freeradbiomed.2015.05.036.
  • Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL. Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol. 2007;66(1):75–85. doi:10.1097/nen.0b013e31802d6da9.
  • Rojo AI, Pajares M, Rada P, Nuñez A, Nevado-Holgado AJ, Killik R, Van Leuven F, Ribe E, Lovestone S, Yamamoto M, et al. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol. 2017;13:444–451. doi:10.1016/j.redox.2017.07.006.
  • Alam A, Leoni G, Wentworth CC, Kwal JM, Wu H, Ardita CS, Swanson PA, Lambeth JD, Jones RM, Nusrat A, et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol. 2014;7(3):645–655. doi:10.1038/mi.2013.84.
  • Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. Embo J. 2013;32(23):3017–3028. doi:10.1038/emboj.2013.224.
  • Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol Mech Dis. 2014;9(1):119–145. doi:10.1146/annurev-pathol-012513-104651.
  • Wentworth CC, Alam A, Jones RM, Nusrat A, Neish AS. Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3. J Biol Chem. 2011;286(44):38448–38455. doi:10.1074/jbc.M111.268938.
  • Swanson PA, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, Murthy N, Hansen J, Nusrat A, Neish AS. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci. 2011;108(21):8803–8808. doi:10.1073/pnas.1010042108.
  • Kumar A, Wu H, Collier-Hyams LS, Hansen JM, Li T, Yamoah K, Pan Z-Q, Jones DP, Neish AS. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. Embo J. 2007;26(21):4457–4466. doi:10.1038/sj.emboj.7601867.
  • Jones RM, Desai C, Darby TM, Luo L, Wolfarth A, Scharer C, Ardita C, Reedy A, Keebaugh E, Neish A. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep. 2015;12(8):1217–1225. doi:10.1016/j.celrep.2015.07.042.
  • Jones RM, Neish AS. Redox signaling mediated by the gut microbiota. Free Radical Biol Med. 2017;105:41–47. doi:10.1016/j.freeradbiomed.2016.10.495.
  • Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy. 2010;6(5):614–621. doi:10.4161/auto.6.5.12189.
  • Shah SZA, Zhao D, Hussain T, Sabir N, Mangi MH, Yang L. P62-Keap1-NRF2-ARE pathway: a contentious player for selective targeting of autophagy, oxidative stress and mitochondrial dysfunction in prion diseases. Front Mol Neurosci. 2018;11:11. doi:10.3389/fnmol.2018.00310.
  • Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer’s disease–like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36(2):664–679. doi:10.1016/j.neurobiolaging.2014.09.004.
  • Pajares M, Jiménez-Moreno N, García-Yagüe ÁJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M, Rojo AI, Cuadrado A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12(10):1902–1916. doi:10.1080/15548627.2016.1208889.
  • Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct Interaction between Keap1 and p62. Mol Cell Biol. 2010;30(13):3275–3285. doi:10.1128/MCB.00248-10.
  • Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog Neurobiol. 2012;96(1):87–95. doi:10.1016/j.pneurobio.2011.11.005.
  • Gureev AP, Sadovnikova IS, Starkov NN, Starkov AA, Popov VN. p62-Nrf2–p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sci. 2020;10(11):847. doi:10.3390/brainsci10110847.
  • Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, Fiorini D, Boarelli MC, Rossi G, Eleuteri AM. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep. 2017;7(1):2426. doi:10.1038/s41598-017-02587-2.
  • Téglás T, Ábrahám D, Jókai M, Kondo S, Mohammadi R, Fehér J, Szabó D, Wilhelm M, Radák Z. Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology. 2020;21(6):807–815. doi:10.1007/s10522-020-09895-7.
  • Li Z, Zhu H, Zhang L, Qin C. The intestinal microbiome and Alzheimer’s disease: a review. Animal Model Exp Med. 2018;1(3):180–188. doi:10.1002/ame2.12033.
  • Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–417. doi:10.1111/j.1365-2672.2012.05344.x.
  • Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, Matsunami RK, Lugo M, Major A, Mori-Akiyama Y, et al. GABA-producing bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology & Motility. 2017;29(1):e12904. doi:10.1111/nmo.12904.
  • Siragusa S, de Angelis M, di Cagno R, Rizzello CG, Coda R, Gobbetti M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol. 2007;73(22):7283–7290. doi:10.1128/AEM.01064-07.
  • Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV. Oleskin a v. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Microbiol. 2009;45(5):494–497. doi:10.1134/S0003683809050068.
  • Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines. 2022;10(2):436. doi:10.3390/biomedicines10020436.
  • Stanaszek PM, Snell JF, O’Neill JJ. Isolation, extraction, and measurement of acetylcholine from lactobacillus plantarum. Appl Environ Microbiol. 1977;34(2):237–239. doi:10.1128/aem.34.2.237-239.1977.
  • Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K. Evolutional study on acetylcholine expression. Life Sci. 2003;72(15):1745–1756. doi:10.1016/S0024-3205(02)02478-5.
  • Russell WR, Hoyles L, Flint HJ, Dumas ME. Colonic bacterial metabolites and human health. Curr Opin Microbiol. 2013;16(3):246–254. doi:10.1016/j.mib.2013.07.002.
  • Özoğul F. Production of biogenic amines by morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur Food Res Technol. 2004;219(5):465–469. doi:10.1007/s00217-004-0988-0.
  • Ganesh BP, Hall A, Ayyaswamy S, Nelson JW, Fultz R, Major A, Haag A, Esparza M, Lugo M, Venable S, et al. Diacylglycerol kinase synthesized by commensal lactobacillus reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Mucosal Immunol. 2018;11(2):380–393. doi:10.1038/mi.2017.58.
  • Landete JM, Ferrer S, Pardo I. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control. 2007;18(12):1569–1574. doi:10.1016/j.foodcont.2006.12.008.
  • LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–168. doi:10.1016/j.copbio.2012.08.005.
  • Roche HM, Terres AM, Black IB, Gibney MJ, Kelleher D. Fatty acids and epithelial permeability: effect of conjugated linoleic acid in Caco-2 cells. Gut. 2001;48(6):797–802. doi:10.1136/gut.48.6.797.
  • Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H, Chen W. Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem. 2019;67(48):13282–13298. doi:10.1021/acs.jafc.9b05744.
  • Ren Q, Yang B, Zhang H, Ross RP, Stanton C, Chen H, Chen W. C9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 ameliorate dextran sodium sulfate-induced colitis in mice. J Agric Food Chem. 2020;68(12):3758–3769. doi:10.1021/acs.jafc.0c00573.
  • Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–385. doi:10.1016/j.immuni.2013.08.003.
  • Maqsood R, Stone TW. The Gut-Brain Axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41(11):2819–2835. doi:10.1007/s11064-016-2039-1.
  • Alisi L, Cao R, de Angelis C, Cafolla A, Caramia F, Cartocci G, Librando A, Fiorelli M. The relationships between vitamin k and cognition: a review of current evidence. Front Neurol. 2019;10:10. doi:10.3389/fneur.2019.00239.
  • Xia YY, Pei LY, Gao F, Hu Q-S, Zhang Y, Chen D, Wang G-H. Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol Sin. 2016;37(9):1178–1189. doi:10.1038/aps.2016.68.
  • Dodd D, Spitzer MH, van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–652. doi:10.1038/nature24661.
  • Jaglin M, Rhimi M, Philippe C, Pons N, Bruneau A, Goustard B, Daugé V, Maguin E, Naudon L, Rabot S. Indole, a signaling molecule produced by the gut microbiota, negatively impacts emotional behaviors in rats. Front Neurosci. 2018;12(APR). doi:10.3389/fnins.2018.00216.
  • Yanovsky I, Finkin-Groner E, Zaikin A, Lerman L, Shalom H, Zeeli S, Weill T, Ginsburg I, Nudelman A, Weinstock M. Carbamate derivatives of indolines as cholinesterase inhibitors and antioxidants for the treatment of Alzheimer’s disease. J Med Chem. 2012;55(23):10700–10715. doi:10.1021/jm301411g.
  • Chai J, Luo L, Hou F, Fan X, Yu J, Ma W, Tang W, Yang X, Zhu J, Kang W, et al. Agmatine Reduces lipopolysaccharide-mediated oxidant response via activating PI3K/Akt pathway and up-regulating Nrf2 and HO-1 expression in macrophages. Plos One. 2016;11(9):e0163634. doi:10.1371/journal.pone.0163634.
  • Ahn SK, Hong S, Park YM, Lee WT, Park KA, Lee JE. Effects of agmatine on hypoxic microglia and activity of nitric oxide synthase. Brain Res. 2011;1373:48–54. doi:10.1016/j.brainres.2010.12.002.
  • Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–977. doi:10.1038/nn.4030.
  • Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018;18(1):83–90. doi:10.1080/14737175.2018.1400909.
  • Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol. 2010;16(27):3394–3401. doi:10.3748/wjg.v16.i27.3394.
  • Bo TB, Wen J, Zhao YC, Tian SJ, Zhang XY, Wang DH. Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. J Steroid Biochem Mol Biol. 2020;198:105602. doi:10.1016/j.jsbmb.2020.105602.
  • Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN. GABA production and structure of gadB/gadC genes in lactobacillus and bifidobacterium strains from human microbiota. Anaerobe. 2016;42:197–204. doi:10.1016/j.anaerobe.2016.10.011.
  • Tiwari V, Patel AB. Impaired glutamatergic and gabaergic function at early age in aβppswe-ps1de9 mice: implications for Alzheimer’s disease. J Alzheimer’s Dis. 2012;28(4):765–769. doi:10.3233/JAD-2011-111502.
  • Patterson E, Ryan PM, Wiley N, Carafa I, Sherwin E, Moloney G, Franciosi E, Mandal R, Wishart DS, Tuohy K, et al. Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome. Sci Rep. 2019;9(1):16323. doi:10.1038/s41598-019-51781-x.
  • Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial neurotoxins: their occurrence and mechanisms of toxicity. Neurotox Res. 2018;33(1):168–177. doi:10.1007/s12640-017-9757-2.