2,171
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

The propionate-GPR41 axis in infancy protects from subsequent bronchial asthma onset

, , , , , , , , , , , & ORCID Icon show all
Article: 2206507 | Received 01 Jul 2022, Accepted 14 Apr 2023, Published online: 02 May 2023

References

  • Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16:45–17. PMID:25521684. doi:10.1038/ni.3049.
  • Fernando DM, Donata V. Asthma Lancet. 2013;382:1360–1372. PMID: 24041942. doi:10.1016/S0140-6736(13)61536-6
  • Conrad LA, Cabana MD, Rastogi D. Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatr Res. 2021;90:45–51. PMID:33173175. doi:10.1038/s41390-020-01231-6.
  • Lambrecht BN, Hammad H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol. 2017;18:1076–1083. PMID: 28926539. doi:10.1038/ni.3829.
  • Loss G, Depner M, Ulfman LH, van Neerven RJ, Hose AJ, Genuneit J, Karvonen AM, Hyvärinen A, Kaulek V, Roduit C, et al. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. J Allergy Clin Immunol. 2015;135:56–62. PMID: 25442645. doi:10.1016/j.jaci.2014.08.044.
  • Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E, Kubota H, Swinkels S, Sakai T, Oishi K, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. Plos One. 2016;11:e0158498. PMID: 27362264. doi:10.1371/journal.pone.0158498.
  • Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, Guttman DS, Becker AB, Mandhane PJ, Turvey SE, et al. Exposure to household furry pets influences the gut microbiota of infants at 3–4 months following various birth scenarios. Microbiome. 2017;5:40. PMID: 28381231. doi:10.1186/s40168-017-0254-x.
  • Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7:307ra152. PMID: 26424567. doi:10.1126/scitranslmed.aab2271.
  • Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128:646–652. PMID: 21782228. doi:10.1016/j.jaci.2011.04.060.
  • Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–352. PMID 27231050. doi:10.1038/nri.2016.42.
  • Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev. 2011;69:245–258. PMID: 21521227. doi:10.1111/j.1753-4887.2011.00388.x.
  • Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EG, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019;139:1407–1421. PMID 30586752. doi:10.1161/CIRCULATIONAHA.118.036652.
  • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. The microbial metabolites, SCFAs, regulate colonic cc cell homeostasis. Science. 2013;341:569–573. PMID: 23828891. doi:10.1126/science.1241165.
  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–11319. PMID: 12496283. doi:10.1074/jbc.M211609200.
  • Nakano T, Ochiai S, Suzuki S, Yamaide F, Morita Y, Inoue Y, Arima T, Kojima H, Suzuki H, Nagai K, et al. Breastfeeding promote egg white sensitization in early infancy. Pediatr Allergy Immunol. 2020;31:315–318. PMID:31925979. doi:10.1111/pai.13208.
  • Biagini Myers JM, Schauberger E, He H, Martin LJ, Kroner J, Hill GM, Ryan PH, LeMasters GK, Bernstein DI, Lockey JE, et al. A pediatric asthma risk score to better predict asthma development in young children. J Allergy Clin Immunol. 2019;143:1803–1810 e2. PMID: 30554722. doi:10.1016/j.jaci.2018.09.037.
  • Teague WG, Phillips BR, Fahy JV, Wenzel SE, Fitzpatrick AM, Moore WC, Hastie AT, Bleecker ER, Meyers DA, Peters SP, et al. Baseline features of the Severe Asthma Research Program (SARP III) cohort: differences with age. J Allergy Clin Immunol Pract. 2018;6:545–554.e4. PMID: 28866107. doi:10.1016/j.jaip.2017.05.032.
  • McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, Avol E, Margolis HG, Peters JM. Asthma in exercising children exposed to ozone: a cohort study. Lancet. 2002;359:386–391. PMID: 11844508. doi:10.1016/S0140-6736(02)07597-9.
  • Stinson LF, Gay MCL, Koleva PT, Eggesbø M, Johnson CC, Wegienka G, du Toit E, Shimojo N, Munblit D, Campbell DE, et al. Human milk from atopic mothers has lower levels of short chain fatty acids. Front Immunol. 2020;111427. doi: 10.3389/fimmu.2020.01427. PMID: 32903327.
  • Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18:101–116. PMID: 33208922. doi:10.1038/s41575-020-00375-4.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345. PMID: 27259147. doi:10.1016/j.cell.2016.05.041.
  • Luu M, Monning H, Visekruna A Exploring the molecular mechanisms underlying the protective effects of microbial SCFAs on intestinal tolerance and food allergy. Front Immunol. 2020;111225. doi:10.3389/fimmu.2020.01225. PMID: 32612610.
  • Depner M, Taft DH, Kirjavainen PV, Kalanetra KM, Karvonen AM, Peschel S, Schmausser-Hechfellner E, Roduit C, Frei R, Lauener R, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med. 2020;26:1766–1775. PMID: 33139948. doi:10.1038/s41591-020-1095-x.
  • Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes. 2013;4:158–164. PMID: 23333861. doi:10.4161/gmic.23567.
  • Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–493. PMID: 22442383. doi:10.1126/science.1219328.
  • Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–166. doi:10.1038/nm.3444. PMID: 24390308.
  • Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, Biagi E, Andersen MH, Brigidi P, Ødum N, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:16148. PMID: 26541096. doi:10.1038/srep16148.
  • Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108:8030–8035. PMID: 21518883. doi:10.1073/pnas.1016088108.
  • D’Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M, Maxwell JR, Rottman JB, Labitzke K, Willee A, Beckmann H, et al. Differing roles for SCFAs and GPR43 agonism in the regulation of intestinal barrier function and immune responses. Plos One. 2017;12:e0180190. PMID: 28727837. doi:10.1371/journal.pone.0180190.
  • Ang Z, Ding JL. GPR41 and GPR43 in obesity and inflammation - protective or causative? Front Immunol. 2016;7:28. PMID: 26870043. doi:10.3389/fimmu.2016.00028.
  • Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145:396-406.e1–10. PMID: 23665276. doi:10.1053/j.gastro.2013.04.056.
  • Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics. 2016;48:826–834. PMID: 27664183. doi:10.1152/physiolgenomics.00089.2016.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511. PMID: 15229469. doi:10.1038/nri1391.
  • Zakeri A, Russo M Dual role of toll-like receptors in human and experimental asthma models. Front Immunol. 2018;9, 1027. doi:10.3389/fimmu.2018.01027. PMID: 29867994.
  • Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S, Tashiro M, Sata T, Hasegawa H, Nagata N, et al. Effects of toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-Inactivated severe acute respiratory syndrome-related coronavirus vaccine. J Virol. 2014;88:8597–8614. doi:10.1128/JVI.00983-14. PMID: 24850731.
  • Chow J, Panasevich MR, Alexander D, Vester Boler BM, Rossoni Serao MC, Faber TA, Bauer LL, Fahey GC. Fecal metabolomics of healthy breast-fed versus formula-fed infants before and during in vitro batch culture fermentation. J Proteome Res. 2014;13:2534–2542. PMID: 24628373. doi:10.1021/pr500011w.
  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the SCFA receptor GPR43. Nat Commun. 2013;4, 1829. doi:10.1038/ncomms2852. PMID: 23652017.
  • Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, et al. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38:322–335. PMID: 23352232. doi:10.1016/j.immuni.2012.10.016.
  • Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15:410–416. PMID: 19330007. doi:10.1038/nm.1946.
  • Ito T, Hirose K, Norimoto A, Tamachi T, Yokota M, Saku A, Takatori H, Saijo S, Iwakura Y, Nakajima H. Dectin-1 plays an important role in house dust mite-induced allergic airway inflammation through the activation of CD11b+ dendritic cells. J Immunol. 2017;198:61–70. PMID: 27852745. doi:10.4049/jimmunol.1502393.
  • Ito T, Hirose K, Saku A, Kono K, Takatori H, Tamachi T, Goto Y, Renauld JC, Kiyono H, Nakajima H. IL-22 induces Reg3gamma and inhibits allergic inflammation in house dust mite-induced asthma models. J Exp Med. 2017;214:3037–3050. PMID: 28811323. doi:10.1084/jem.20162108.
  • Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, Piersigilli A, Menin L, Walker AW, Rougemont J, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43:998–1010. PMID: 26522986. doi:10.1016/j.immuni.2015.09.012.
  • Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform. 2018;19:534. PMID: 30567491. doi:10.1186/s12859-018-2486-6.
  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013;14:128. PMID: 23586463. doi:10.1186/1471-2105-14-128.
  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7. PMID: 27141961. doi:10.1093/nar/gkw377.
  • Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1:e90. PMID: 33780170. doi:10.1002/cpz1.90.
  • Hamasaki Y, Kohno Y, Ebisawa M, Kondo N, Nishima S, Nishimuta T, Morikawa A. Japanese society of allergology; Japanese society of pediatric allergy and clinical immunology. Japanese guideline for childhood asthma 2014. Allergol Int. 2014;63:335–356. PMID: 25178176. doi:10.2332/allergolint.14-RAI-0767.
  • Sato Y, Sakurai K, Tanabe H, Kato T, Nakanishi Y, Ohno H, Mori C. Maternal gut microbiota is associated with newborn anthropometrics in a sex-specific manner. J Dev Orig Health Dis. 2019;10:659–666. PMID: 31106719. doi:10.1017/S2040174419000138.
  • Kato T, Fukuda S, Fujiwara A, Suda W, Hattori M, Kikuchi J, Ohno H. Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res. 2014;21:469–480. PMID: 24848698. doi:10.1093/dnares/dsu013.
  • Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, Morita H, Hattori M. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res. 2013;20:241–253. PMID: 23571675. doi:10.1093/dnares/dst006.
  • Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, Kimura R, Iraha A, Ishida H, Fujita J, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21:15–25. PMID: 24013298. doi:10.1093/dnares/dst037.