2,089
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Bacterial and metabolic phenotypes associated with inadequate response to ursodeoxycholic acid treatment in primary biliary cholangitis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, , ORCID Icon, , ORCID Icon & show all
Article: 2208501 | Received 20 Jan 2023, Accepted 21 Apr 2023, Published online: 16 May 2023

References

  • Hirschfield GM, Dyson JK, Alexander GJM, Chapman MH, Collier J, Hübscher S, Patanwala I, Pereira SP, Thain C, Thorburn D, et al. The british society of gastroenterology/UK-PBC primary biliary cholangitis treatment and management guidelines. Gut. 2018;67(9):1568–19. Gut2018. doi:10.1136/gutjnl-2017-315259.
  • Híndi M, Levy C, Couto CA, Bejarano P, Mendes F. Primary biliary cirrhosis is more severe in overweight patients. J Clin Gastroenterol. 2013;47(3):28–32. doi:10.1097/MCG.0b013e318261e659.
  • Sorrentino P, Terracciano L, D’Angelo S, Ferbo U, Bracigliano A, Tarantino L, Perrella A, Perrella O, De Chiara G, Panico L, et al. Oxidative stress and steatosis are cofactors of liver injury in primary biliary cirrhosis. J Gastroenterol. 2010;45(10):1053–1062. doi:10.1007/s00535-010-0249-x.
  • Xu H, Wu Z, Feng F, Li Y, Zhang S. Low vitamin D concentrations and BMI are causal factors for primary biliary cholangitis: a mendelian randomization study. Front Immunol. 2022;13:1–8. doi:10.3389/fimmu.2022.1055953.
  • Goet JC, Harms MH, Carbone M, Hansen BE. Risk stratification and prognostic modelling in primary biliary cholangitis. Best Pract Res Clin Gastroenterol. 2018;34–35:95–106. doi:10.1016/j.bpg.2018.06.006.
  • Murillo Perez CF, Harms MH, Lindor KD, Van Buuren HR, Hirschfield GM, Corpechot C, Van Der Meer AJ, Feld JJ, Gulamhusein A, Lammers WJ, et al. Goals of treatment for improved survival in primary biliary cholangitis: treatment target should be bilirubin within the normal range and normalization of alkaline phosphatase. Am J Gastroenterol. 2020;115(7):1066–1074. doi:10.14309/ajg.0000000000000557.
  • Parés A, Caballería L, Rodés J. Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid. Gastroenterology. 2006;130(3):715–720. doi:10.1053/j.gastro.2005.12.029.
  • Azemoto N, Abe M, Murata Y, Hiasa Y, Hamada M, Matsuura B, Onji M. Early biochemical response to ursodeoxycholic acid predicts symptom development in patients with asymptomatic primary biliary cirrhosis. J Gastroenterol. 2009;44(6):630–634. doi:10.1007/s00535-009-0051-9.
  • Kumagi T, Guindi M, Fischer SE, Arenovich T, Abdalian R, Coltescu C, Heathcote JE, Hirschfield GM. Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Off J Am Coll Gastroenterol ACG. 2010;105(10):2186–2194. doi:10.1038/ajg.2010.216.
  • Jia W, Xie G, Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2017;15(2):111–128. doi:10.1038/nrgastro.2017.119.
  • Martinez-Gili L, McDonald JAK, Liu Z, Kao D, Allegretti JR, Monaghan TM, Barker GF, Miguéns Blanco J, Williams HRT, Holmes E, et al. Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent Clostridioides difficile infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes. 2020;12(1):1–10. doi:10.1080/19490976.2020.1810531.
  • Sabino J, Vieira-Silva S, Machiels K, Joossens M, Falony G, Ballet V, Ferrante M, Van Assche G, Van Der Merwe S, Vermeire S, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 2016;65(10):1681–1689. doi:10.1136/gutjnl-2015-311004.
  • Kitahata S, Yamamoto Y, Yoshida O, Tokumoto Y, Kawamura T, Furukawa S, Kumagi T, Hirooka M, Takeshita E, Abe M, et al. Ileal mucosa-associated microbiota overgrowth associated with pathogenesis of primary biliary cholangitis. Sci Rep. 2021;11(1):1–9. doi:10.1038/s41598-021-99314-9.
  • Huang C-Y, Zhang H-P, Han W-J, Zhao D-T, Liao H-Y, Y-X M, Xu B, L-J L, Han Y, Liu X-H, et al. Disease predisposition of human leukocyte antigen class II genes influences the gut microbiota composition in patients with primary biliary cholangitis. Front Immunol. 2022;13:1–14. doi:10.3389/fimmu.2022.984697.
  • Tang R, Wei Y, Li Y, Chen W, Chen H, Wang Q, Yang F, Miao Q, Xiao X, Zhang H, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018;67(3):534–541. doi:10.1136/gutjnl-2016-313332.
  • Carbone M, Mells GF, Pells G, Dawwas MF, Newton JL, Heneghan MA, Neuberger JM, Day DB, Ducker SJ, Consortium UP, et al. Sex and age are determinants of the clinical phenotype of primary biliary cirrhosis and response to ursodeoxycholic acid. Gastroenterology. 2013;144(3):560–569.E7. doi:10.1053/j.gastro.2012.12.005.
  • Mells GF, Floyd JAB, Morley KI, Cordell HJ, Franklin CS, Shin S-Y, Heneghan MA, Neuberger JM, Donaldson PT, Day DB, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet. 2011;43(4):329–332. doi:10.1038/ng.789.
  • Barron-Millar B, Ogle L, Mells G, Flack S, Badrock J, Sandford R, Kirby J, Palmer J, Jopson L, Brain J, et al. The serum proteome and ursodeoxycholic acid response in primary biliary cholangitis. Hepatology. 2021;74(6):3269–3283. doi:10.1002/hep.32011.
  • Li Y, Tang R, Leung PSC, Gershwin ME, Ma X. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun Rev. 2017;16(9):885–896. doi:10.1016/j.autrev.2017.07.002.
  • Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11(1):1–11. doi:10.1038/s41467-020-17041-7.
  • Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020;587(7834):448–454. doi:10.1038/s41586-020-2881-9.
  • Martínez L, Torres S, Baulies A, Alarcón-Vila C, Elena M, Fabriàs G, Casas J, Caballeria J, Fernandez-Checa JC, García-Ruiz C. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaining de novo ceramide synthesis. Oncotarget. 2015;6(39):41479–41496. doi:10.18632/oncotarget.6286.
  • Poupon R. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin Res Hepatol Gastroenterol. 2012;36:S3–12. doi:10.1016/S2210-7401(12)70015-3.
  • Fujino C, Sanoh S, Katsura T. Variation in expression of cytochrome P450 3A Isoforms and toxicological effects: endo- and exogenous substances as regulatory factors and substrates. Biol Pharm Bull. 2021;44(11):1617–1634. doi:10.1248/bpb.b21-00332.
  • Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, Dumas M-E. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol. 2019;56(5):493–500. doi:10.1007/s00592-019-01312-x.
  • Lammert C, Shin AS, Xu H, Hemmerich C, O’Connell T M, Chalasani N. Short-chain fatty acid and fecal microbiota profiles are linked to fibrosis in primary biliary cholangitis. FEMS Microbiol Lett. 2021;368(6):1–6. doi:10.1093/femsle/fnab038.
  • Dawson PA, Hubbert ML, Rao A. Getting the mOST from OST: role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2010;1801(9):994–1004. doi:10.1016/j.bbalip.2010.06.002.
  • Trottier J, Białek A, Caron P, Straka RJ, Milkiewicz P, Barbier O, Gasset M. Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. Plos One. 2011;6(7):1–8. doi:10.1371/journal.pone.0022094.
  • Poupon R, RenéeE P, Calmus Y, Chrétien Y, Ballet F, Darnis F. Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet. 1987;329(8537):834–836. doi:10.1016/S0140-6736(87)91610-2.
  • Oka H, Toda G, Ikeda Y, Hashimoto N, Hasumura Y, Kamimura T, Ohta Y, Tsuji T, Hattori N, Namihisa T, et al. A multi-center double-blind controlled trial of ursodeoxycholic acid for primary biliary cirrhosis. Gastroenterol Jpn. 1990;25(6):774–780. doi:10.1007/BF02779195.
  • Ferraris R, Colombatti G, Fiorentini MT, Carosso R, Arossa W, De La Pierre M. Diagnostic value of serum bile acids and routine liver function tests in hepatobiliary diseases: sensitivity, specificity, and predictive value. Dig Dis Sci. 1983;28(2):129–136. doi:10.1007/BF01315142.
  • Invernizzi P, Setchell KD, Crosignani A, Battezzati PM, Larghi A, O’Connell NC, Podda M. Differences in the metabolism and disposition of ursodeoxycholic acid and of its taurine-conjugated species in patients with primary biliary cirrhosis. Hepatology. 1999;29(2):320–327. doi:10.1002/hep.510290220.
  • Mythen SM, Devendran S, Méndez-García C, Cann I, Ridlon JM, Vieille C. Targeted synthesis and characterization of a gene cluster encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-hydroxysteroid dehydrogenases from Eggerthella CAG: 298, a gut metagenomic sequence. Appl Environ Microbiol. 2018;84(7):1–13. doi:10.1128/AEM.02475-17.
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. doi:10.1194/jlr.R500013-JLR200.
  • Chanussot F, Lafont H, Hauton J, Tuchweber B, Yousef I. Studies on the origin of biliary phospholipid. Effect of dehydrocholic acid and cholic acid infusions on hepatic and biliary phospholipids. Biochem J. 1990;270(3):691–695. doi:10.1042/bj2700691.
  • Zhang X, Xin G, Li S, Wei Z, Ming Y, Yuan J, Wen E, Xing Z, Yu K, Li Y, et al. Dehydrocholic acid ameliorates sodium taurocholate-induced acute biliary pancreatitis in mice. Biol Pharm Bull. 2020;43(6):985–993. doi:10.1248/bpb.b20-00021.
  • Khanna A, Leighton J, Lee Wong L, Jones DE. Symptoms of PBC – Pathophysiology and management. Best Pract Res Clin Gastroenterol. 2018;34–35:41–47. doi:10.1016/j.bpg.2018.06.007.
  • Li B, Zhang J, Chen Y, Wang Q, Yan L, Wang R, Wei Y, You Z, Li Y, Miao Q, et al. Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary Cholangitis. Gut Microbes. 2021;13(1):1–15. doi:10.1080/19490976.2021.1946366.
  • Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 2020;10:1–10. doi:10.3389/fcimb.2020.572912.
  • Anthony WE, Wang B, Sukhum KV, D’Souza AW, Hink T, Cass C, Seiler S, Reske KA, Coon C, Dubberke ER, et al. Acute and persistent effects of commonly used antibiotics on the gut microbiome and resistome in healthy adults. Cell Rep Available from. 2022;39(2):110649. [cited 2023 Mar 1]. https://www.cell.com/cell-reports/abstract/S2211-12472200401-6.
  • Corpechot C, Carrat F, Poujol-Robert A, Gaouar F, Wendum D, Chazouillères O, Poupon R. Noninvasive elastography-based assessment of liver fibrosis progression and prognosis in primary biliary cirrhosis. Hepatology. 2012;56(1):198–208. doi:10.1002/hep.25599.
  • Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579(7797):123–129. doi:10.1038/s41586-020-2047-9.
  • Chen W, Wei Y, Xiong A, Li Y, Guan H, Wang Q, Miao Q, Bian Z, Xiao X, Lian M, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis. Clin Rev Allergy Immunol. 2020;58(1):25–38. doi:10.1007/s12016-019-08731-2.
  • Sarafian MH, Lewis MR, Pechlivanis A, Ralphs S, McPhail MJW, Patel VC, Dumas M-E, Holmes E, Nicholson JK. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal Chem. 2015;87(19):9662–9670. doi:10.1021/acs.analchem.5b01556.
  • Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918–920. doi:10.1038/nbt.2377.
  • Wolfer AM, Correia G DS, Sands CJ, Camuzeaux S, Yuen AHY, Chekmeneva E, Takáts Z, Pearce JTM, Lewis MR, Martelli PL. peakPanther, an R package for large-scale targeted extraction and integration of annotated metabolic features in LC–MS profiling datasets. Bioinformatics. 2021;37(24):4886–4888. doi:10.1093/bioinformatics/btab433.
  • Dona AC, Jiménez B, Schäfer H, Humpfer E, Spraul M, Lewis MR, Pearce JTM, Holmes E, Lindon JC, Nicholson JK. Precision high-throughput proton nmr spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem. 2014;86(19):9887–9894. doi:10.1021/ac5025039.
  • Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1 H NMR metabonomics. Anal Chem. 2006;78(13):4281–4290. doi:10.1021/ac051632c.
  • Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, et al. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem. 2005;77(5):1282–1289. doi:10.1021/ac048630x.
  • Mullish BH, Pechlivanis A, Barker GF, Thursz MR, Marchesi JR, McDonald JAK. Functional microbiomics: evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods. 2018;149:49–58. doi:10.1016/j.ymeth.2018.04.028.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E, Seo J-S. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. Plos One. 2020;15(1):1–19. doi:10.1371/journal.pone.0227434.
  • Murali A, Bhargava A, ES W. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6(1):1–14. doi:10.1186/s40168-018-0521-5.
  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1):1–14. doi:10.1186/s40168-018-0605-2.
  • Palarea-Albaladejo J, Martín-Fernández JA. zCompositions - R package for multivariate imputation of left-censored data under a compositional approach. Chemom Intell Lab Syst. 2015;143:85–96. doi:10.1016/j.chemolab.2015.02.019.
  • Martín-Fernández JA, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat Model. 2015;15(2):134–158. doi:10.1177/1471082X14535524.
  • Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–3335. doi:10.1021/acs.jproteome.5b00354.
  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:1–6. doi:10.3389/fmicb.2017.02224.
  • Kaul A, Mandal S, Davidov O, Peddada SD. Analysis of microbiome data in the presence of excess zeros. Front Microbiol. 2017;8:1–10. doi:10.3389/fmicb.2017.02114.
  • Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–51. doi:10.18637/jss.v067.i01.
  • Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1–6. doi:10.21105/joss.01686.