3,260
Views
3
CrossRef citations to date
0
Altmetric
Review

The role of Drosophila microbiota in gut homeostasis and immunity

&
Article: 2208503 | Received 26 Nov 2022, Accepted 21 Apr 2023, Published online: 02 May 2023

References

  • Wang NX, Lu XY, Tsang YF, Mao Y, Tsang CW, Yueng VA. A comprehensive review of anaerobic digestion of organic solid wastes in relation to microbial community and enhancement process. J Sci Food Agric. 2019;99(2):507–11. doi:10.1002/jsfa.9315.
  • Jiao S, Xu Y, Zhang J, Hao X, Lu Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 2019;4(2):e00313–18. doi:10.1128/mSystems.00313-18.
  • Suman J, Rakshit A, Ogireddy SD, Singh S, Gupta C, Chandrakala J. Microbiome as a key player in sustainable agriculture and human health. Front Soil Sci. 2022;2:821589. doi:10.3389/fsoil.2022.821589.
  • Netzker T, Flak M, Krespach MK, Stroe MC, Weber J, Schroeckh V, Brakhage AA. Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol. 2018;45:117–123. doi:10.1016/j.mib.2018.04.002.
  • Fronk DC, Sachs JL. Symbiotic organs: the nexus of host-microbe evolution. Trends Ecol Evol. 2022;37(7):599–610. doi:10.1016/j.tree.2022.02.014.
  • Kolodny O, Callahan BJ, Douglas AE. The role of the microbiome in host evolution. Philos Trans R Soc Lond B Biol Sci. 2020;375(1808):20190588. doi:10.1098/rstb.2019.0588.
  • Singh S, Singh A, Baweja V, Roy A, Chakraborty A, Singh IK. Molecular rationale of insect-microbes symbiosis-from insect behaviour to mechanism. Microorganisms. 2021;9(12):2422. doi:10.3390/microorganisms9122422.
  • Hadfield MG. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci. 2011;3(1):453–470. doi:10.1146/annurev-marine-120709-142753.
  • McFall-Ngai MJ. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol. 2014;68(1):177–194. doi:10.1146/annurev-micro-091313-103654.
  • Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science. 2014;343(6170):529–533. doi:10.1126/science.1246794.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. doi:10.1038/s41422-020-0332-7.
  • Akbar S, Gu L, Sun Y, Zhang L, Lyu K, Huang Y, Yang Z. Understanding host-microbiome-environment interactions: insights from Daphnia as a model organism. Sci Total Environ. 2022;808:152093. doi:10.1016/j.scitotenv.2021.152093.
  • Bahrndorff S, Alemu T, Yimanie TA, Nielsen JL. The microbiome of animals: implications for conservation biology. Int J Genomics. 2016;2016:5304028. doi:10.1155/2016/5304028.
  • Awany D, Allali I, Dalvie S, Hemmings S, Mwaikono KS, Thomford NE, Gomez A, Mulder N, Chimusa ER. Host and microbiome genome-wide association studies: current state and challenges. Front Genet. 2019;9:637. doi:10.3389/fgene.2018.00637.
  • Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. doi:10.4161/gmic.19320.
  • Ivanov A II, Manel K, Brodie N, Shima EL, Karaoz T, Wei U, Goldfarb D, Santee KC, Lynch CA, Lynch SV, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–498. doi:10.1016/j.cell.2009.09.033.
  • Wu HJ, Ivanov D II, Hattori J, Shima K, Umesaki T, Y LD, Benoist C, Mathis D, Mathis D. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–827. doi:10.1016/j.immuni.2010.06.001.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi:10.1371/journal.pbio.1002533.
  • Newell PD, Douglas AE. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol. 2014;80(2):788–796. doi:10.1128/AEM.02742-13.
  • Ma D, Storelli G, Mitchell M, Leulier F. Studying host-microbiota mutualism in Drosophila: harnessing the power of gnotobiotic flies. Biomed J. 2015;38(4):285–293. doi:10.4103/2319-4170.158620.
  • Marra A, Hanson MA, Kondo S, Erkosar B, Lemaitre B. Drosophila antimicrobial peptides and lysozymes regulate gut microbiota composition and abundance. mBio. 2021;12(4):e00824. doi:10.1128/mBio.00824-21.
  • Charroux B, Royet J. Gut-microbiota interactions in non-mammals: what can we learn from Drosophila? Semin. Immunol. 2012;24(1):17–24. doi:10.1016/j.smim.2011.11.003.
  • Fan X, Gaur U, Yang M. Intestinal homeostasis and longevity: drosophila gut feeling. Adv Exp Med Biol. 2018;1086:157–168. doi:10.1007/978-981-13-1117-8_10.
  • Chiang MH, Ho SM, Wu HY, Lin YC, Tsai WH, Wu T, Lai CH, Wu CL. Drosophila model for studying gut microbiota in behaviors and neurodegenerative diseases. Biomedicines. 2022;10(3):596. doi:10.3390/biomedicines10030596.
  • Ludington WB, Ja WW. Drosophila as a model for the gut microbiome. PLoS Pathog. 2020;16(4):e1008398. doi:10.1371/journal.ppat.1008398.
  • Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech. 2011;4(1):21–30. doi:10.1242/dmm.003970.
  • Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B, Lemaitre B. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep. 2013;3(5):1725–1738. doi:10.1016/j.celrep.2013.04.001.
  • Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics. 2018;210(2):357–396. doi:10.1534/genetics.118.300224.
  • Cohen E, Sawyer JK, Peterson NG, Dow JA, DT F. Physiology, development, and disease modeling in the drosophila excretory system. Genetics. 2020;214(2):235–264. doi:10.1534/genetics.119.302289.
  • Liu Q, Jin LH. Tissue-resident stem cell activity: a view from the adult Drosophila gastrointestinal tract. Cell Commun Signal. 2017;15(1):33. doi:10.1186/s12964-017-0184-z.
  • Zeng X, Hou SX. Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development. 2015;142(4):644–653. doi:10.1242/dev.113357.
  • Marianes A, Spradling AC. Physiological and stem cell compartmentalization within the Drosophila midgut. Elife. 2013;2:e00886. doi:10.7554/eLife.00886.
  • Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Sui AH, et al. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A. 2020;117(3):1514–1523. doi:10.1073/pnas.1916820117.
  • Douglas AE. Drosophila and its gut microbes: a model for drug-microbiome interactions. Drug Discov Today Dis Models. 2018;28:43–49. doi:10.1016/j.ddmod.2019.08.004.
  • Landmann F. The Wolbachia Endosymbionts. Microbiol Spectr. 2019;7(2). doi:10.1128/microbiolspec.BAI-0018-2019.
  • Masson F, Rommelaere S, Schüpfer F, Boquete JP, Lemaitre B. Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of Spiroplasma insect endosymbionts. Proc Natl Acad Sci U S A. 2022;119(30):e2208461119. doi:10.1073/pnas.2208461119.
  • Wong AC, Luo Y, Jing X, Franzenburg S, Bost A, Douglas AE. The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl Environ Microbiol. 2015;81(18):6232–6240. doi:10.1128/AEM.01442-15.
  • Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes. 2012;3(4):307–321. doi:10.4161/gmic.19896.
  • Sommer AJ, Newell PD. Metabolic basis for mutualism between gut bacteria and its impact on the Drosophila melanogaster. Host Appl Environ Microbiol. 2019;85(2):e01882. doi:10.1128/AEM.01882-18.
  • Wong AC, Chaston JM, Douglas AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. Isme J. 2013;7(10):1922–1932. doi:10.1038/ismej.2013.86.
  • Hoang D, Kopp A, Chandler JA. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ. 2015;3:e1116. doi:10.7717/peerj.1116.
  • Qiao H, Keesey IW, Hansson BS, Knaden M. Gut microbiota affects development and olfactory behavior in Drosophila melanogaster. J Exp Biol. 2019;222(5):jeb192500. doi:10.1242/jeb.192500.
  • Broderick NA, Buchon N, Lemaitre B. Microbiota-induced changes in Drosophila melanogaster host gene expression and gut morphology. mBio. 2014;5(3):e01117. doi:10.1128/mBio.01117-14.
  • Lee HY, Lee SH, Lee JH, Lee WJ, Min KJ. The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging. 2019;11(13):4611–4640. doi:10.18632/aging.102073.
  • Blum JE, Fischer CN, Miles J, Handelsman J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio. 2013;4(6):e00860. doi:10.1128/mBio.00860-13.
  • Shukla AK, Johnson K, Giniger E. Common features of aging fail to occur in Drosophila raised without a bacterial microbiome. iScience. 2021;24(7):102703. doi:10.1016/j.isci.2021.102703.
  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-Dependent nutrient sensing. Cell Metab. 2011;14(3):403–414. doi:10.1016/j.cmet.2011.07.012.
  • Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. Elife. 2017;6:e18855. doi:10.7554/eLife.18855.
  • Huang JH, Douglas AE. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol Lett. 2015;11(9):20150469. doi:10.1098/rsbl.2015.0469.
  • Wong AC, Dobson AJ, Douglas AE. Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol. 2014;217(11):1894–1901. doi:10.1242/jeb.101725.
  • Yamauchi T, Oi A, Kosakamoto H, Akuzawa-Tokita Y, Murakami T, Mori H, Miura M, Obata F. Gut bacterial species distinctively impact host purine metabolites during aging in Drosophila. iScience. 2020;23(9):101477. doi:10.1016/j.isci.2020.101477.
  • Liu X, Hodgson JJ, Buchon N. Drosophila as a model for homeostatic, antibacterial, and antiviral mechanisms in the gut. PLoS Pathog. 2017;13(5):e1006277. doi:10.1371/journal.ppat.1006277.
  • Limmer S, Quintin J, Hetru C, Ferrandon D. Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions. Curr Drug Targets. 2011;12(7):978–999. doi:10.2174/138945011795677818.
  • Fauvarque MO. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms using Drosophila melanogaster. Cell Microbiol. 2014;16(6):824–833. doi:10.1111/cmi.12292.
  • Erkosar B, Leulier F. Transient adult microbiota, gut homeostasis and longevity: novel insights from the Drosophila model. FEBS Lett. 2014;588(22):4250–4257. doi:10.1016/j.febslet.2014.06.041.
  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Gen Devel. 2009;23(19):2333–2344. doi:10.1101/gad.1827009.
  • Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development. 2019;146(2):dev167643. doi:10.1242/dev.167643.
  • Zhai Z, Boquete JP, Lemaitre B. Cell-specific imd-NF-κB responses enable simultaneous antibacterial immunity and intestinal epithelial cell shedding upon bacterial infection. Immunity. 2018;48(5):897–910.e7. doi:10.1016/j.immuni.2018.04.010.
  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, RdeM S, Gruber S, Pu U, et al. Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science. 2009;325(5938):340–343. doi:10.1126/science.1173164.
  • Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell. 2009;137(7):1343–1355. doi:10.1016/j.cell.2009.05.014.
  • Herrera SC, Bach EA. The emerging roles of JNK signaling in Drosophila stem cell homeostasis. Int J Mol Sci. 2021;22(11):5519. doi:10.3390/ijms22115519.
  • Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host & Microbe. 2012;12(2):153–165. doi:10.1016/j.chom.2012.06.002.
  • Cammarata-Mouchtouris A, Acker A, Goto A, Chen D, Matt N, Leclerc V. Dynamic regulation of NF-κB response in innate immunity: the case of the IMD pathway in Drosophila. Biomedicines. 2022;10(9):2304. doi:10.3390/biomedicines10092304.
  • Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S. Microbiota-dependent priming of antiviral intestinal immunity in Drosophila. Cell Host & Microbe. 2015;18(5):571–581. doi:10.1016/j.chom.2015.10.010.
  • Ratsika A, Codagnone MC, O’Mahony S, Stanton C, Cryan JF. Priming for life: early life nutrition and the microbiota-gut-brain axis. Nutrients. 2021;13(2):423. doi:10.3390/nu13020423.
  • Guo L, Karpac J, Tran SL, Jasper H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell. 2014;156(1–2):109–122. doi:10.1016/j.cell.2013.12.018.
  • Luo H, Li M, Wang F, Yang Y, Wang Q, Zhao Y, Du F, Chen Y, Shen J, Zhao Q, et al. The role of intestinal stem cell within gut homeostasis: focusing on its interplay with gut microbiota and the regulating pathways. Int J Biol Sci. 2022;18(13):5185–5206. doi:10.7150/ijbs.72600.
  • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol. 2003;4(5):478–484. doi:10.1038/ni922.
  • Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14(12):796–810. doi:10.1038/nri3763.
  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host & Microbe. 2009;5(2):200–211. doi:10.1016/j.chom.2009.01.003.
  • Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. Embo J. 2013;32(23):3017–3028. doi:10.1038/emboj.2013.224.
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241. doi:10.1016/j.cell.2004.07.002.
  • Iatsenko I, Boquete JP, Lemaitre B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens Drosophila lifespan. Immunity. 2018;49(5):929–942.e5. doi:10.1016/j.immuni.2018.09.017.
  • Patel PH, Pénalva C, Kardorff M, Roca M, Pavlović B, Thiel A, Teleman AA, Edgar BA. Damage sensing by a Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the adult Drosophila midgut. Nat Commun. 2019;10(1):4365. doi:10.1038/s41467-019-12336-w.
  • Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell. 2013;153(4):797–811. doi:10.1016/j.cell.2013.04.009.
  • Lee WJ. Bacterial-modulated host immunity and stem cell activation for gut homeostasis. Gen Devel. 2009;23(19):2260–2265. doi:10.1101/gad.1858709.
  • Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang D, Lee WJ. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity. Dev Cell. 2009;16(3):386–397. doi:10.1016/j.devcel.2008.12.015.
  • Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nat Immunol. 2009;10(9):949–957. doi:10.1038/ni.1765.
  • Roh SW, Nam YD, Chang HW, Kim KH, Kim MS, Ryu JH, Kim SH, Lee WJ, Bae JW. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol. 2008;74(20):6171–6177. doi:10.1128/AEM.00301-08.
  • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science. 2008;319(5864):777–782. doi:10.1126/science.1149357.