2,489
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Fecal virome transfer improves proliferation of commensal gut Akkermansia muciniphila and unexpectedly enhances the fertility rate in laboratory mice

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2208504 | Received 30 Jun 2022, Accepted 21 Apr 2023, Published online: 07 May 2023

References

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nat. 2006;444(7122):1022–21. doi:10.1038/4441022a.
  • Kang D-W, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, Caporaso JG, Krajmalnik-Brown R. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9(1):5821. doi:10.1038/s41598-019-42183-0.
  • Nakatsu G, Zhou H, WKK W, Wong SH, Coker OO, Dai Z, Li X, Szeto CH, Sugimura N, Lam TYT, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterol. 2018;155(2):529–541.e5. doi:10.1053/j.gastro.2018.04.018.
  • Reid JNS, Bisanz JE, Monachese M, Burton JP, Reid G. The rationale for probiotics improving reproductive health and pregnancy outcome. Am J Reprod Immunol. 2013;69:n/a–n/a. doi:10.1111/aji.12086.
  • Valcarce DG, Genovés S, Riesco MF, Martorell P, Herráez MP, Ramón D, Robles V. Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef Microbes. 2017;8(2):193–206. doi:10.3920/BM2016.0122.
  • Martín R, Langella P. Emerging health concepts in the probiotics field: streamlining the definitions. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.01047.
  • Katan MB. Why the European food safety authority was right to reject health claims for probiotics. Benef Microbes. 2012;3(2):85–89. doi:10.3920/BM2012.0008.
  • Zhao S, Liu W, Wang J, Shi J, Sun Y, Wang W, Ning G, Liu R, Hong J. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol. 2017;58(1):1–14. doi:10.1530/JME-16-0054.
  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–9071. doi:10.1073/pnas.1219451110.
  • Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–1103. doi:10.1038/s41591-019-0495-2.
  • Scott CJ, Kardon RH, Lee AG, Frisén L, Wall M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol. 2010;128(6):705–711. doi:10.1001/archophthalmol.2010.94.
  • Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52. doi:10.1186/s13073-016-0300-5.
  • Howe A, Ringus DL, Williams RJ, Choo Z-N, Greenwald SM, Owens SM, Coleman ML, Meyer F, Chang EB. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. Isme J. 2016;10(5):1217–1227. doi:10.1038/ismej.2015.183.
  • Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Digestive and Liver Dis. 2015;47(12):1007–1012. doi:10.1016/j.dld.2015.07.008.
  • Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–338. doi:10.1038/nature09199.
  • Barrangou R, Yoon S-S, Breidt F, Fleming HP, Klaenhammer TR. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Appl Environ Microbiol. 2002;68(11):5452–5458. doi:10.1128/AEM.68.11.5452-5458.2002.
  • Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, Cassidy L, Tholey A, Fickenscher H, Seegert D, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterol. 2017;152(4):799–811.e7. doi:10.1053/j.gastro.2016.11.010.
  • Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann JR, Hansen LH, Vogensen FK, Hansen AK, Nielsen DS. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 2020;69(12):2122–2130. doi:10.1136/gutjnl-2019-320005.
  • Brunse A, Deng L, Pan X, Hui Y, Castro-Mejía JL, Kot W, Nguyen DN, Secher JBM, Nielsen DS, Thymann T. Fecal filtrate transplantation protects against necrotizing enterocolitis. Isme J. 2022;16(3):686–694. doi:10.1038/s41396-021-01107-5.
  • Zuo T, Wong SH, Lam K, Lui R, Cheung K, Tang W, Ching JYL, Chan PKS, Chan MCW, Wu JCY, et al. Bacteriophage transfer during faecal microbiota transplantation in clostridium difficile infection is associated with treatment outcome. Gut. 2018;67(4):634–643. doi:10.1136/gutjnl-2017-313952.
  • Rasmussen TS, Koefoed AK, Jakobsen RR, Deng L, Castro-Mejía JL, Brunse A, Neve H, Vogensen FK, Nielsen DS. Bacteriophage-mediated manipulation of the gut microbiome – promises and presents limitations. FEMS Microbiol Rev. 2020;44(4):507–521. doi:10.1093/femsre/fuaa020.
  • Draper LA, Ryan FJ, Dalmasso M, Casey PG, McCann A, Velayudhan V, Ross RP, Hill C. Autochthonous faecal viral transfer (FVT) impacts the murine microbiome after antibiotic perturbation. BMC Biol. 2020;18(1):173. doi:10.1186/s12915-020-00906-0.
  • Stone E, Campbell K, Grant I, McAuliffe O. Understanding and exploiting phage–host interactions. Viruses. 2019;11(6):1–26. doi:10.3390/v11060567.
  • de Jonge PA, Wortelboer K, Scheithauer TPM, de Jonge PA, van den Born BJH, Zwinderman AH, Nobrega FL, Dutilh BE, Nieuwdorp M, Herrema H. Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nat Commun. 2022;13(1):1–15. doi:10.1038/s41467-022-31390-5.
  • Zuppi M, Hendrickson HL, O’Sullivan JM, Vatanen T. Phages in the gut ecosystem. Front Cell Infect Microbiol. 2022;11:1–13. doi:10.3389/fcimb.2021.822562.
  • Kieft K, Anantharaman K, Beiko RG. Deciphering active prophages from metagenomes. Ms Syst. 2022;7(2):1–15. doi:10.1128/msystems.00084-22.
  • Kang D, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, McDonough-Means S, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1):1–16. doi:10.1186/s40168-016-0225-7.
  • Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, Moore T, Wu G. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterol. 2015;149(1):223–237. doi:10.1053/j.gastro.2015.05.008.
  • Chehri M, Christensen AH, Halkjær SI, Günther S, Petersen AM, Helms M. Case series of successful treatment with fecal microbiota transplant (FMT) oral capsules mixed from multiple donors even in patients previously treated with FMT enemas for recurrent Clostridium difficile infection. Medi (Baltimore). 2018;97(31):2016–2018. doi:10.1097/MD.0000000000011706.
  • Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8(12):1569–1581. doi:10.1016/j.crohns.2014.08.006.
  • Rasmussen TS, de Vries L, Kot W, Hansen LH, Castro-Mejía JL, Vogensen FK, Hansen AK, Nielsen DS. Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet. Viruses. 2019;11(5):435. doi:10.3390/v11050435.
  • Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–361. doi:10.1038/nrgastro.2013.35.
  • Lynn MA, Eden G, Ryan FJ, Bensalem J, Wang X, Blake SJ, Choo JM, Chern YT, Sribnaia A, James J, et al. The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Rep. 2021;36(8):109564. doi:10.1016/j.celrep.2021.109564.
  • Wang J, Lang T, Shen J, Dai J, Tian L, Wang X. Core gut bacteria analysis of healthy mice. Front Microbiol. 2019;10:887. doi:10.3389/fmicb.2019.00887.
  • Kalia VC, Gong C, Shanmugam R, Lin H, Zhang L, Lee J-K. The emerging biotherapeutic agent: akkermansia. Indian J Microbiol. 2022;62(1):1–10. doi:10.1007/s12088-021-00993-9.
  • Daly C, Rollins BJ. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation. 2003;10(3–4):247–257. doi:10.1038/sj.mn.7800190.
  • Wu Q, Chen J-X, Chen Y, Cai L-L, Wang X-Z, Guo W-H, Zheng J-F. The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation. Cell Death Dis. 2018;9(2):232. doi:10.1038/s41419-018-0267-9.
  • Verhagen J, Sabatos CA, Wraith DC. The role of CTLA-4 in immune regulation. Immunol Lett. 2008;115(1):73–74. doi:10.1016/j.imlet.2007.10.010.
  • Łukaszewicz-Zając M, Pączek S, Mroczko P, Kulczyńska-Przybik A. The Significance of CXCL1 and CXCL8 as well as their specific receptors in colorectal cancer. Immunol Lett. 2020;12:8435–8443. doi:10.2147/CMAR.S267176.
  • Ren K, Torres R. Role of interleukin-1β during pain and inflammation. Brain Res Rev. 2009;60(1):57–64. doi:10.1016/j.brainresrev.2008.12.020.
  • Brown MA, Hural J. Functions of IL-4 and control of its expression. Crit Rev Immunol. 1997;17:1–32. doi:10.1615/critrevimmunol.v17.i1.10.
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295. doi:10.1101/cshperspect.a016295.
  • Pine GM, Batugedara HM, Nair MG. Here, there and everywhere: resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine. 2018;110:442–451. doi:10.1016/j.cyto.2018.05.014.
  • Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, Baumbauer KM. TIMP-1 attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms. Front Mol Neurosci. 2019;12:1–16. doi:10.3389/fnmol.2019.00220.
  • Bartoszek A, Von ME, Binienda A, Fabisiak A, Krajewska JB, Mosińska P, Niewinna K, Tarasiuk A, Martemyanov K, Salaga M, et al. Free fatty acid receptors as new potential therapeutic target in inflammatory bowel diseases. Pharmacol Res. 2020;152:104604. doi:10.1016/j.phrs.2019.104604.
  • Sivaprakasam S, Gurav A, Paschall AV, Coe GL, Chaudhary K, Cai Y, Kolhe R, Martin P, Browning D, Huang L, et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis. 2016;5(6):e238. doi:10.1038/oncsis.2016.38.
  • Rodriguez-Nunez I, Caluag T, Kirby K, Rudick CN, Dziarski R, Gupta D. Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction. Sci Rep. 2017;7(1):548. doi:10.1038/s41598-017-00484-2.
  • Grubb DS, Wrigley SD, Freedman KE, Wei Y, Vazquez AR, Trotter RE, Wallace TC, Johnson SA, Weir TL. PHAGE-2 Study: supplemental bacteriophages extend bifidobacterium animalis subsp. lactis BL04 benefits on gut health and microbiota in healthy adults. Nutrients. 2020;12(8):2474. doi:10.3390/nu12082474.
  • Koren, O, Goodrich, JK, Cullender, TC, Spor, A, Laitinen, K, Bäckhed, HK, Gonzale, Z A, Werner, JJ, Angenent, LT, Knight, R, Bäckhed, F. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–480. doi:10.1016/j.cell.2012.07.008.
  • Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–7218. doi:10.18632/oncotarget.23208.
  • Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9:339. doi:10.3389/fimmu.2018.00339.
  • Dhar P, McAuley J. The role of the cell surface mucin MUC1 as a barrier to infection and regulator of inflammation. Front Cell Infect Microbiol. 2019;9:117. doi:10.3389/fcimb.2019.00117.
  • Trastoy B, Naegeli A, Anso I, Sjögren J, Guerin ME. Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Nat Commun. 2020;11(1):4844. doi:10.1038/s41467-020-18696-y.
  • Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, Peng LL, Yan YJ, Xiao GM, Bi XY, et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut. 2020;69(9):1608–1619. doi:10.1136/gutjnl-2019-319127.
  • Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, Wang L, Zhang Y, Liang X, Wang L, et al. Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25(8):1225–1233. doi:10.1038/s41591-019-0509-0.
  • Davis JS. Connecting female infertility to obesity, inflammation, and maternal gut dysbiosis. Endocrinol. 2016;157(5):1725–1727. doi:10.1210/en.2016-1198.
  • Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37. doi:10.1186/s12958-015-0032-1.
  • Elhussein OG, Ahmed MA, Suliman SO, Yahya LI, Adam I. Epidemiology of infertility and characteristics of infertile couples requesting assisted reproduction in a low-resource setting in Africa, Sudan. Fertil Res Pract. 2019;5(1):7. doi:10.1186/s40738-019-0060-1.
  • Zhang P, Feng Y, Li L, Ge W, Yu S, Hao Y, Shen W, Han X, Ma D, Yin S, et al. Improvement in sperm quality and spermatogenesis following faecal microbiota transplantation from alginate oligosaccharide dosed mice. Gut. 2021;70(1):222–225. doi:10.1136/gutjnl-2020-320992.
  • Zadeh-Tahmasebi M, Duca FA, Rasmussen BA, Bauer PV, Côté CD, Filippi BM, Lam TKT. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J Biol Chem. 2016;291(16):8816–8824. doi:10.1074/jbc.M116.718460.
  • Call L, Molina T, Stoll B, Guthrie G, Chacko S, Plat J, Robinson J, Lin S, Vonderohe C, Mohammad M, et al. Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs. J Lipid Res. 2020;61(7):1038–1051. doi:10.1194/JLR.RA120000652.
  • Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and postbiotics of probiotic lactobacilli, their positive effects on the host and action mechanisms: a review. Front Nutr. 2020;7. doi:10.3389/fnut.2020.570344.
  • Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting listeria monocytogenes. Int J Food Microbiol. 2009;133(3):225–233. doi:10.1016/j.ijfoodmicro.2009.05.005.
  • Rea MC, Dobson A, O’Sullivan O, Crispie F, Fouhy F, Cotter PD, Shanahan F, Kiely B, Hill C, Ross RP. Effect of broad- and narrow-spectrum antimicrobials on clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A. 2011;108(supplement_1):4639–4644. doi:10.1073/pnas.1001224107.
  • Oostindjer M, Pope PB, Umu CO. The potential of class ii bacteriocins to modify gut microbiota to improve host health. 2016, pp. 1–22. doi:10.1371/journal.pone.0164036.
  • Abrahams VM, Straszewski-Chavez SL, Guller S, Mor G. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol Hum Reprod. 2004;10(1):55–63. doi:10.1093/molehr/gah006.
  • Hedlund M, Stenqvist A-C, Nagaeva O, Kjellberg L, Wulff M, Baranov V, Mincheva-Nilsson L. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;183(1):340–351. doi:10.4049/jimmunol.0803477.
  • Andoh A, Tsujikawa T, Hata K, Araki Y, Kitoh K, Sasaki M, Yoshida T, Fujiyama Y. Elevated circulating platelet-derived microparticles in patients with active inflammatory bowel disease. Am J Gastroenterol. 2005;100(9):2042–2048. doi:10.1111/j.1572-0241.2005.50381.x.
  • Leonetti D, Reimund JM, Tesse A, Viennot S, Martinez MC, Bretagne A-L, Andriantsitohaina R. Circulating microparticles from crohn’s disease patients cause endothelial and vascular dysfunctions. PLoS One. 2013;8(9):e73088. doi:10.1371/journal.pone.0073088.
  • Broecker F, Russo G, Klumpp J, Moelling K. Stable core virome despite variable microbiome after fecal transfer. Gut Microbes. 2017;8(3):214–220. doi:10.1080/19490976.2016.1265196.
  • Draper LA, Ryan FJ, Smith MK, Jalanka J, Mattila E, Arkkila PA, Ross RP, Satokari R, Hill C. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome. 2018;6(1):1–9. doi:10.1186/s40168-018-0598-x.
  • Fujimoto K, Kimura Y, Allegretti JR, Yamamoto M, Zhang Y-Z, Katayama K, Tremmel G, Kawaguchi Y, Shimohigoshi M, Hayashi T, et al. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterol. 2021;160(6):2089–2102.e12. doi:10.1053/j.gastro.2021.02.013.
  • Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc Natl Acad Sci. 2013;110(50):20236–20241. doi:10.1073/pnas.1319470110.
  • Kao DH, Roach B, Walter J, Lobenberg R, Wong K. Effect of lyophilized sterile fecal filtrate vs lyophilized donor stool on recurrent Clostridum difficile infection (rCDI): prelimenary results from a randomized, double-blind pilot study. J Can Assoc Gastroenterol. 2019;2(Supplement_2):101–102. doi:10.1093/jcag/gwz006.050.
  • Secombe KR, Al-Qadami GH, Subramaniam CB, Bowen JM, Scott J, Van Sebille YZA, Snelson M, Cowan C, Clarke G, Gheorghe CE, et al. Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols. Gut Microbes. 2021;13(1). doi:10.1080/19490976.2021.1979878.
  • Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus lactobacillus beijerinck 1901, and union of lactobacillaceae and leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782–2858. doi:10.1099/ijsem.0.004107.
  • Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 2017;8:1765. doi:10.3389/fmicb.2017.01765.
  • Rasmussen TS, Streidl T, Hitch TCAA, Wortmann E, Deptula P, Kofoed MVW, Riedel T, Neumann-Schaal M, Hansen M, Nielsen DS, et al. Sporofaciens musculi gen. nov., sp. nov., a novel bacterium isolated from the caecum of an obese mouse. Int J Syst Evol Microbiol. 2021;71(3):004673. doi:10.1099/ijsem.0.004673.
  • Loan T, Nguyen A, Vieira-Silva S, How informative is the mouse for human gut microbiota research? 2015, pp. 1–16. doi:10.1242/dmm.017400.
  • Rasmussen TS, Jakobsen RR, Castro-Mejía JL, Kot W, Thomsen AR, Vogensen FK, Nielsen DS, Hansen AK. Inter-vendor variance of enteric eukaryotic DNA viruses in specific pathogen free C57BL/6N mice. Res Vet Sci. 2021;136:1–5. doi:10.1016/j.rvsc.2021.01.022.
  • Mähler CM, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, Raspa M. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014;48(3):178–192. doi:10.1177/0023677213516312.
  • Mentzel CMJ, Cardoso TF, Pipper CB, Jacobsen MJ, Jørgensen CB, Cirera S, Fredholm M. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs. Mol Genet Genomics. 2018;293(1):129–136. doi:10.1007/s00438-017-1369-2.
  • Laurell H, Iacovoni JS, Abot A, Svec D, Maoret J-J, Arnal J-F, Kubista M. Correction of RT–qPCR data for genomic DNA-derived signals with ValidPrime. Nucleic Acids Res. 2012;40(7):e51. doi:10.1093/nar/gkr1259.
  • Lindenberg FCB, Ellekilde M, Thörn AC, Kihl P, Larsen CS, Hansen CHF, Metzdorff SB, Aalbæk B, Hansen AK. Dietary LPS traces influences disease expression of the diet-induced obese mouse. Res Vet Sci. 2019;123:195–203. doi:10.1016/j.rvsc.2019.01.005.
  • Greer RL, Dong X, Moraes ACF, Zielke RA, Fernandes GR, Peremyslova E, Vasquez-Perez S, Schoenborn AA, Gomes EP, Pereira AC, et al. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun. 2016;7(1):13329. doi:10.1038/ncomms13329.
  • Kim E, Yang S-M, Lim B, Park SH, Rackerby B, Kim H-Y. Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiol. 2020;20(1):96. doi:10.1186/s12866-020-01781-z.
  • Ellekilde M, Krych L, Hansen CHF, Hufeldt MR, Dahl K, Hansen LH, Sørensen SJ, Vogensen FK, Nielsen DS, Hansen AK. Characterization of the gut microbiota in leptin deficient obese mice – Correlation to inflammatory and diabetic parameters. Res Vet Sci. 2014;96(2):241–250. doi:10.1016/j.rvsc.2014.01.007.
  • Edgar RC, Valencia A. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34(14):2371–2375. doi:10.1093/bioinformatics/bty113.
  • Edgar R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv. 2016:074161. doi:10.1101/074161.
  • Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62(Pt_3):716–721. doi:10.1099/ijs.0.038075-0.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinf. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J Computl Biol. 2012;19(5):455–477. doi:10.1089/cmb.2012.0021.
  • Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitúa MC, Vik D, Sullivan MB, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9(1):37. doi:10.1186/s40168-020-00990-y.
  • Kieft K, Zhou Z, Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8(1):90. doi:10.1186/s40168-020-00867-0.
  • Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39(5):578–585. doi:10.1038/s41587-020-00774-7.
  • Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176(3):649–662.e20. doi:10.1016/j.cell.2019.01.001.
  • Castro-Mejía JL, Khakimov B, Lind MV, Lind, MV, Garne e, Paulová, P, Tavakkoli, E, Hansen, LH, Smilde, AK, Holm, L, Engelsen, SB. Gut microbiome and its cofactors are linked to lipoprotein distribution profiles. bioRxiv. 2021:2021.09.01.458531. doi:10.1101/2021.09.01.458531.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923.
  • Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10(12):1200–1202. doi:10.1038/nmeth.2658.
  • Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5(1):27. doi:10.1186/s40168-017-0237-y.
  • Paulson J. metagenomeSeq: statistical analysis for sparse high-throughput sequencing. BioconductorJp. 2014:1–20.
  • Team RC. R: a language and environment for statistical title.
  • McMurdie PJ, Holmes S, Watson M. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi:10.1371/journal.pone.0061217.
  • Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927–930. doi:10.1111/j.1654-1103.2003.tb02228.x.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Andersen KS, Kirkegaard RH, Karst SM. Ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. Published Online First: April 2018; 10.1101/299537.
  • Kassambara A. Ggpubr: ‘ggplot2’ based publication ready plots. 2020 [accessed 2022 Jun 30].https://rpkgs.datanovia.com/ggpubr/.
  • Wickham H. Wiley Interdiscip. Rev Comput Stat. 2011 2;3(2):180–185. doi: 10.1002/wics.147. ggplo.