1,539
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

SaaS sRNA promotes Salmonella intestinal invasion via modulating MAPK inflammatory pathway

ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Article: 2211184 | Received 20 Dec 2022, Accepted 27 Apr 2023, Published online: 09 May 2023

References

  • Eguale T, Gebreyes WA, Asrat D, Alemayehu H, Gunn JS, Engidawork E. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia. BMC Infect Dis. 2015;15:497–21.
  • Sanchez-Vargas FM, Abu-El-Haija MA, Gomez-Duarte OG. Salmonella infections: an update on epidemiology, management, and prevention. Travel Med Infect Dis. 2011;9:263–277. doi:10.1016/j.tmaid.2011.11.001.
  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011;17:7–15. doi:10.3201/eid1701.P11101.
  • Stilz CR, Cavallo S, Garman K, Dunn JR. Salmonella Enteritidis outbreaks associated with egg-producing farms not regulated by food and drug administration’s egg safety rule. Foodborne Pathog Dis. 2022;19:529–534. doi:10.1089/fpd.2022.0025.
  • Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Döpfer D, Fazil A, Fischer-Walker CL, Hald T, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. Plos Med. 2015;12:e1001921. doi:10.1371/journal.pmed.1001921.
  • Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. null. 2010;107:17733–17741. doi:10.1073/pnas.1006098107.
  • Yu HB, Croxen MA, Marchiando AM, Ferreira RBR, Cadwell K, Foster LJ, Finlay BB, Zychlinsky A. Autophagy facilitates Salmonella replication in HeLa cells. mBio. 2014;5:865–879. doi:10.1128/mBio.00865-14.
  • Corr SC, Palsson-McDermott EM, Grishina I, Barry SP, Aviello G, Bernard NJ, Casey PG, Ward JBJ, Keely SJ, Dandekar S, et al. MyD88 adaptor-like (Mal) functions in the epithelial barrier and contributes to intestinal integrity via protein kinase C. Mucosal Immunol. 2014;7:57–67. doi:10.1038/mi.2013.24.
  • Kim M, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Sasakawa C. Bacterial interactions with the host epithelium. Cell Host Microbe. 2010;5:356–362. doi:10.1016/j.chom.2010.06.006.
  • Sun L, Yang S, Deng Q, Dong K, Li Y, Wu S, Huang R. Salmonella effector SpvB disrupts intestinal epithelial barrier integrity for bacterial translocation. Front Cell Infect Microbiol. 2020;17:10–21. doi:10.3389/fcimb.2020.606541.
  • Lim JS, Shin M, Kim H, Kim KS, Choy HE, Cho KA. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization. J Infect Dis. 2014;210:793–802. doi:10.1093/infdis/jiu152.
  • Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity. 2013;38:581–595. doi:10.1016/j.immuni.2013.01.009.
  • Addwebi TM, Call DR, Shah DH. Contribution of Salmonella Enteritidis virulence factors to intestinal colonization and systemic dissemination in 1-day-old chickens. Poultry Sci. 2014;93:871–881. doi:10.3382/ps.2013-03710.
  • Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella Enteritidis effector AvrA stabilizes intestinal tight junctions via the JNK pathway. J Biol Chem. 2016;291:26837–26849. doi:10.1074/jbc.M116.757393.
  • Jiao Y, Zhang Y, Lin Z, Lu R, Xia Y, Meng C, Pan Z, Xu X, Jiao X, Sun J. Salmonella Enteritidis effector AvrA suppresses autophagy by reducing beclin-1 protein. Front Immunol. 2020;11:686–697. doi:10.3389/fimmu.2020.00686.
  • Amin SV, Roberts JT, Patterson DG, Coley AB, Allred JA, Denner JM, Johnson JP, Mullen GE, O’Neal TK, Smith JT, et al. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. Ser Typhi RNA Biol. 2016;13:331–342. doi:10.1080/15476286.2016.1144010.
  • Wang HH, Huang MY, Zeng XM, Peng B, Xu XL, Zhou GH. Resistance profiles of Salmonella isolates exposed to stresses and the expression of small non-coding RNAs. null. 2020;11:130–143. doi:10.3389/fmicb.2020.00130.
  • Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, Altuvia S. Small RNAs encoded within genetic islands of Salmonella Typhimurium show host-induced expression and role in virulence. Nucleic Acids Res. 2008;36:1913–1927. doi:10.1093/nar/gkn050.
  • Peñaloza D, Acuña LG, Barros MJ, Núñez P, Montt F, Gil F, Fuentes JA, Calderón IL. The small RNA RyhB homologs from Salmonella Typhimurium restrain the intracellular growth and modulate the SPI-1 gene expression within RAW264.7 macrophages. Microorganisms. 2021;9:635–645. doi:10.3390/microorganisms9030635.
  • Meng X, Meng X, Wang J, Wang H, Zhu C, Ni J, Zhu G. Small non-coding RNA STnc640 regulates expression of fimA fimbrial gene and virulence of Salmonella enterica Serovar Enteritidis. BMC Vet Res. 2019;15:319–331. doi:10.1186/s12917-019-2066-7.
  • Cai LL, Xie YT, Hu HJ, Xu XL, Wang HH, Zhou GH, Oglesby AG. A small RNA, SaaS, promotes Salmonella pathogenicity by regulating invasion, intracellular growth, and virulence factors. Microbiol Spectr. 2023;11:e0293822. doi:10.1128/spectrum.02938-22.
  • Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–153. doi:10.1038/nri3608.
  • Hu G, Yang Y, Qin X, Qi S, Zhang J, Yu S-X, Du C-T, Chen W. Salmonella outer protein B suppresses colitis development via protecting cell from necroptosis. Front Cell Infect Microbiol. 2019;9:87–99. doi:10.3389/fcimb.2019.00087.
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9:356–368. doi:10.1038/nrmicro2546.
  • Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol. 2004;4:953–964. doi:10.1038/nri1499.
  • Wang H, Kim JJ, Denou E, Gallagher A, Thornton DJ, Shajib MS, Xia L, Schertzer JD, Grencis RK, Philpott DJ, et al. New role of nod proteins in regulation of intestinal goblet cell response in the context of innate host defense in an enteric parasite infection. Infect Immun. 2016;84:275–285. doi:10.1128/IAI.01187-15.
  • Das P, Goswami P, Das TK, Nag T, Sreenivas V, Ahuja V, Panda SK, Gupta SD, Makharia GK. Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch. 2012;460(3):261–270. doi:10.1007/s00428-012-1195-1.
  • Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the intestinal microbiota. null. 2011;2:101–110. doi:10.3389/fmicb.2011.00101.
  • Chao A, Yang MCK. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika. 1993;80:193–201. doi:10.1093/biomet/80.1.193.
  • Chao A. Nonparametric estimation of the number of classes in a population. Scand Stat Theory Appl. 1984;11:265–270.
  • Soetaert K, Heip C. Sample-size dependence of diversity indices and the determination of sufficient sample size in a high-diversity deep-sea environment. Mar Ecol Prog Ser. 1990;59:305–307.
  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. Isme J. 2011;5:169–172. doi:10.1038/ismej.2010.133.
  • Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13:679–692. doi:10.1038/nri3495.
  • Bierschenk D, Boucher D, Schroder K. Salmonella-induced inflammasome activation in humans. Mol Immunol. 2017;86:38–43. doi:10.1016/j.molimm.2016.11.009.
  • Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, Balakrishnan A, Malireddi RKS, Geiger R, Zhu Q, et al. IRF8 regulates transcription of NAIPs for NLRC4 inflammasome activation. Cell. 2018;173:920–933. doi:10.1016/j.cell.2018.02.055.
  • Zuo L, Zhou L, Wu C, Wang Y, Li Y, Huang R, Wu S. Salmonella spvC gene inhibits pyroptosis and intestinal inflammation to aggravate systemic infection in mice. null. 2020;11:562491. doi:10.3389/fmicb.2020.562491.
  • Haschka D, Ymoszuk P, Petzer V, Hilbe R, Heeke S, Dichtl S, Skvortsov S, Demetz E, Berger S, Seifert M, et al. Ferritin H deficiency deteriorates cellular iron handling and worsens Salmonella Typhimurium infection by triggering hyperinflammation. JCI Insight. 2021;6:141760. doi:10.1172/jci.insight.141760.
  • Zhan R, Han Q, Zhang C, Tian Z, Zhang J, McCormick BA. Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica Serovar Typhimurium infection. Infect Immun. 2015;83:1641–1649. doi:10.1128/IAI.02870-14.
  • Lin Y, Tang G, Jiao Y, Yuan Y, Zheng Y, Chen Y, Xiao J, Li C, Chen Z, Cao P. Propionibacterium acnes induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway. Oxid Med Cell Longev. 2018;2018:1–12. doi:10.1155/2018/3692752.
  • Zachary RS, Naatz A, Corbett JA. CCR5-dependent activation of mTORC1 regulates translation of inducible NO synthase and COX-2 during encephalomyocarditis virus infection. J Immunol. 2015;195:4406–4414. doi:10.4049/jimmunol.1500704.
  • Hu G, Song P, Li N, Chen W, Lei Q, Yu S, Zhang X, Du C, Deng X, Han W, et al. AIM2 contributes to the maintenance of intestinal integrity via Akt and protects against Salmonella mucosal infection. Mucosal Immunol. 2016;9:1330–1339. doi:10.1038/mi.2015.142.
  • McGuckin MA, Hasnain SZ. Goblet cells as mucosal sentinels for immunity. Mucosal Immunol. 2017;10:1118–1121. doi:10.1038/mi.2016.132.
  • Furter M, Sellin ME, Hansson GC, Hardt W. Mucus architecture and near-surface swimming affect distinct Salmonella Typhimurium infection patterns along the murine intestinal tract. Cell Rep. 2019;27:2665–2678. doi:10.1016/j.celrep.2019.04.106.
  • Hering NA, Fromm A, Kikhney J, Lee IM, Moter A, Schulzke JD, Bücker R. Yersinia enterocolitica affects intestinal barrier function in the colon. J Infect Dis. 2016;213:1157–1162. doi:10.1093/infdis/jiv571.
  • Hu G, Song P, Chen W, Qi S, Yu SX, Du CT, Deng XM, Ouyang HS, Yang YJ. Cirtical role for Salmonella effector SopB in regulating inflammasome activation. Mol Immunol. 2017;90:280–286. doi:10.1016/j.molimm.2017.07.011.
  • Luis L, Ana GT, Carlos GT, Abraham GG, Iris EG, Martha ML, Vianney ON. Salmonella promotes its own survival in B cells by inhibiting autophagy. Cells. 2022;11(13):2061–2077. doi:10.3390/cells11132061.
  • Zhao SS, Xu QP, Cui YQ, Yao S, Jin S, Zhang Q, Wen Z, Ruan H, Liang X, Chao Y, et al. Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection. Nat Commun. 2023;14(1):478–496. doi:10.1038/s41467-023-36123-w.
  • Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. 2012;3:310–321. doi:10.3389/fimmu.2012.00310.
  • Zheng XS, Liu L, Meng GX, Zhu S, Zhou RB, Jiang W. IL-18 maintains the homeostasis of mucosal immune system via inflammasome-independent but microbiota-dependent manner. Science Bulletin. 2021;66:2115–2123. doi:10.1016/j.scib.2021.01.025.
  • Steinbrecher KA, Harmel-Laws E, Sitcheran R, Baldwin AS. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation.J. J Immunol. 2008;180:2588–2599. doi:10.4049/jimmunol.180.4.2588.
  • Godinez I, Raffatellu M, Chu H, Paixão TA, Haneda T, Santos RL, Bevins CL, Tsolis RM, Bäumler AJ. Interleukin-23 orchestrates mucosal responses to Salmonella enterica Serotype Typhimurium in the intestine. Infect Immun. 2009;77:387–398. doi:10.1128/IAI.00933-08.
  • Garcia-Hernandez V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 2017;1397:66–79. doi:10.1111/nyas.13360.
  • Splichalova A, Splichalova Z, Karasova D, Rychlik I, Trevisi P, Sinkora M, Splichal I. Impact of the lipopolysaccharide chemotype of Salmonella enterica Serovar Typhimurium on virulence in gnotobiotic piglets. Toxins (Basel). 2019;11:534–543. doi:10.3390/toxins11090534.
  • Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, Beauchamp RD, Singh AB, Dhawan P. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 2014;63:622–634. doi:10.1136/gutjnl-2012-304241.
  • Köhler H, Sakaguchi T, Hurley BP, Kase BJ, Reinecker H, McCormick BA. Salmonella enterica Serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am J Physiol-Gastr L. 2007;293:178–187. doi:10.1152/ajpgi.00535.2006.
  • Borton MA, Sabag-Daigle A, Wu J, Solden LM, O Banion BS, Daly RA, Wolfe RA, Gonzalez JF, Wysocki VH, Ahmer BMM, et al. Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome. 2017;5:47–53. doi:10.1186/s40168-017-0264-8.
  • Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep-Uk. 2015;5:8096–8107. doi:10.1038/srep08096.
  • Wu H, Ye L, Lu X, Xie S, Yang Q, Yu Q. Lactobacillus acidophilus alleviated Salmonella-induced goblet cells loss and colitis by Notch pathway. Mol Nutr Food Res. 2018;62:1800552. doi:10.1002/mnfr.201800552.
  • Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, Miller AD, Westmoreland SV, Mansfield KG, Vallender EJ, et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host & Microbe. 2015;17:385–391. doi:10.1016/j.chom.2015.01.015.
  • Li Z, Zhang C, Li B, Zhang S, Haj FG, Zhang G, Lee Y. The modulatory effects of alfalfa polysaccharide on intestinal microbiota and systemic health of Salmonella serotype (ser.) Enteritidis-challenged broilers. Sci Rep. 2021;11:10910. doi:10.1038/s41598-021-90060-6.
  • Yuan X, Xue H, Xu X, Jiao X, Pan Z, Zhang Y. Closely related Salmonella Derby strains triggered distinct gut microbiota alteration. Gut Pathog. 2022;14:6–18. doi:10.1186/s13099-022-00480-6.
  • Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. null. 2016;7:185–194. doi:10.3389/fmicb.2016.00185.
  • Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, von Mering C, et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. Plos Pathog. 2010;6:e1000711. doi:10.1371/journal.ppat.1000711.
  • Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nature Microbio. 2019;4:35–45. doi:10.1038/s41564-018-0278-4.
  • Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8:46–54. doi:10.1186/s13073-016-0296-x.
  • Do M, Lee E, Oh M, Kim Y, Park H. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients. 2018;10:761–777. doi:10.3390/nu10060761.
  • Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep. 2019;8:317–332. doi:10.1007/s13679-019-00352-2.
  • Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WIREs Systems Bio and Medi. 2016;8:227–241. doi:10.1002/wsbm.1331.
  • Leemans JC, Kors L, Anders H, Florquin S. Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol. 2014;10:398–414. doi:10.1038/nrneph.2014.91.
  • Xiong D, Song L, Geng SZ, Jiao Y, Zhou XH, Song HQ, Kang XL, Zhou Y, Xu XL, Sun J, et al. Salmonella coiled-coil- and TIR-containing TcpS evades the innate immune system and subdues inflammation. Cell Rep. 2019;28:804–818. doi:10.1016/j.celrep.2019.06.048.
  • Duncan JA, Canna SW. The NLRC4 inflammasome. Immunol Rev. 2018;281:115–123. doi:10.1111/imr.12607.
  • Yang J, Zhao Y, Shi J, Shao F. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci. 2013;110:14408–14413. doi:10.1073/pnas.1306376110.
  • Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD, Manin GZ, Cunha LD, Zamboni DS, Seifert HS. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. Plos Pathog. 2017;13:e1006502. doi:10.1371/journal.ppat.1006502.
  • Zhang P, Liu Y, Hu L, Huang K, Hong M, Wang Y, Fan X, Ulevitch RJ, Han J. NLRC4 inflammasome–dependent cell death occurs by a complementary series of three death pathways and determines lethality in mice. Sci Adv. 2021;7:9471–9484. doi:10.1126/sciadv.abi9471.
  • Wu H, Jones RM, Neish AS. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo. Cell Microbiol. 2012;14(1):28–39. doi:10.1111/j.1462-5822.2011.01694.x.
  • M JR, Wu H, Wentworth C, Luo L, Collier-Hyams L, Neish AS. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host & Microbe. 2008;3(4):233–244. doi:10.1016/j.chom.2008.02.016.
  • Wang HH, Cai LL, Hu HJ, Xu XL, Zhou GH, Baltrus DA. Complete genome sequence of Salmonella enterica serovar Enteritidis NCM 61, with high potential for biofilm formation, isolated from meat-related sources. Microbio Res Announce. 2019;8:01434–01452. doi:10.1128/MRA.01434-18.
  • Keen NT, Tamaki S, Kobayashi D, Troilinger D. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene. 1988;70:191–198. doi:10.1016/0378-1119(88)90117-5.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:34–46. doi:10.1186/gb-2002-3-7-research0034.