2,231
Views
1
CrossRef citations to date
0
Altmetric
Review

The infant gut microbiota: in pursuit of non-protein nitrogen

, , &
Article: 2211917 | Received 21 Jun 2022, Accepted 04 May 2023, Published online: 24 May 2023

References

  • Martin R, Nauta A, Ben Amor K, Knippels L, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes. 2010;1(4):367–21. doi:10.3920/BM2010.0027.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe. 2015;17(5):690–703. doi:10.1016/j.chom.2015.04.004.
  • Goldsmith F, O’Sullivan A, Smilowitz JT, Freeman SL. Lactation and intestinal microbiota: how early diet shapes the infant gut. J Mammary Gland Biol Neoplasia. 2015;20(3–4):149–158. doi:10.1007/s10911-015-9335-2.
  • Rinne MM, Gueimonde M, Kalliomäki M, Hoppu U, Salminen SJ, Isolauri E. Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol Med Microbiol. 2005;43(1):59–65. doi:10.1016/j.femsim.2004.07.005.
  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222. doi:10.1038/nature11053.
  • Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015 Nov;91(11):629–635. doi:10.1016/j.earlhumdev.2015.08.013.
  • Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4): e00036-17. doi: 10.1128/MMBR.00036-17.
  • Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10(5):323. doi:10.1038/nrmicro2746.
  • Marcobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;4(18 Suppl):12–15. doi:10.1111/j.1469-0691.2012.03863.x.
  • Sela DA. Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol. 2011;149(1):58–64. doi:10.1016/j.ijfoodmicro.2011.01.025.
  • Adlerberth I, Wold A. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98(2):229–238. doi:10.1111/j.1651-2227.2008.01060.x.
  • Holmes AJ, Chew YV, Colakoglu F, Cliff JB, Klaassens E, Read MN, Solon-Biet SM, McMahon AC, Cogger VC, Ruohonen K, et al. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 2017;25(1):140–151. doi:10.1016/j.cmet.2016.10.021.
  • Reese AT, Pereira FC, Schintlmeister A, Berry D, Wagner M, Hale LP, Wu A, Jiang S, Durand HK, Zhou X, et al. Microbial nitrogen limitation in the mammalian large intestine. Nature Microbiol. 2018 Dec;3(12):1441–1450. doi:10.1038/s41564-018-0267-7.
  • Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatric Clinics. 2013;60(1):49–74. doi:10.1016/j.pcl.2012.10.002.
  • Harzer G, Franzke V, Bindels JG. Human milk nonprotein nitrogen components: changing patterns of free amino acids and urea in the course of early lactation. Am J Clin Nutr. 1984;40(2):303–309. doi:10.1093/ajcn/40.2.303.
  • Carlson SE. Human milk nonprotein nitrogen: occurrence and possible functions. Adv Pediatr. 1985;32:43–70.
  • Carratù B, Boniglia C, Scalise F, Ambruzzi AM, Sanzini E. Nitrogenous components of human milk: non-protein nitrogen, true protein and free amino acids. Food Chem. 2003;81(3):357–362. doi:10.1016/S0308-8146(02)00430-2.
  • Donovan S, Lonnerdal B. Non-protein nitrogen constituents in mature human milk and colostrum. Federation Proceedings. 1985;44(5):7399.
  • Romain N, Dandrifosse G, Jeusette F, Forget P. Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatr Res. 1992;32(1):58. doi:10.1203/00006450-199207000-00011.
  • Sanguansermsri J, György P, Zilliken F. Polyamines in human and cow’s milk. Am J Clin Nutr. 1974;27(8):859–865. doi:10.1093/ajcn/27.8.859.
  • Plaza-Zamora J, Sabater-Molina M, Rodríguez-Palmero M, Rivero M, Bosch V, Nadal JM, Zamora S, Larqué E. Polyamines in human breast milk for preterm and term infants. Br J Nutr. 2013;110(3):524–528. doi:10.1017/s0007114512005284.
  • Neville MC, Keller RP, Seacat J, Casey CE, Allen JC, Archer P. Studies on human lactation. I. Within-feed and between-breast variation in selected components of human milk. Am J Clin Nutr. 1984;40(3):635–646. doi:10.1093/ajcn/40.3.635.
  • Gómez-Gallego C, Morales JM, Monleón D, du Toit E, Kumar H, Linderborg K, Zhang Y, Yang B, Isolauri E, Salminen S, et al. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota. Nutrients. 2018;10(10):1355. doi:10.3390/nu10101355.
  • Wang X, Gibson GR, Costabile A, Sailer M, Theis S, Rastall RA, McBain AJ. Prebiotic supplementation of in vitro fecal fermentations inhibits proteolysis by gut bacteria, and host diet shapes gut bacterial metabolism and response to intervention. Appl Environ Microb. 2019;85(9). e02749–18. doi:10.1128/AEM.02749-18.
  • Herrera A, Flores E, Imperial J. Nitrogen Assimilation in Bacteria. In: Schmidt, Thomas M, editor. Encyclopedia of Microbiology. 4th Ed. Vol. 3, Academic Press; 2019. p. 280–300. doi:10.1016/B978012/809633/820680/8.
  • Carey GB, Quinn TJ, Goodwin SE. Breast milk composition after exercise of different intensities. J Hum Lact. 1997;13(2):115–120. doi:10.1177/089033449701300211.
  • Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017;30(4):996–1005. doi:10.1021/acs.chemrestox.6b00401.
  • Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of human breast milk—A comprehensive review of the composition and role of milk metabolites in child development. J Agr Food Chem. 2018;66(45):11881–11896. doi:10.1021/acs.jafc.8b04031.
  • Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–588. doi:10.1038/s41586-018-0617-x.
  • Xiong W, Brown CT, Morowitz MJ, Banfield JF, Hettich RL. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life. Microbiome. 2017;5(1):72. doi:10.1186/s40168-017-0290-6.
  • Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. PROTEOMICS. 2015;15(20):3424–3438. doi:10.1002/pmic.201400571.
  • Zwittink RD, van Zoeren-Grobben D, Martin R, van Lingen RA, Groot Jebbink LJ, Boeren S, Renes IB, van Elburg RM, Belzer C, Knol J. Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants. Molecular & Cellular Proteomics: MCP. 2017 Sep;16(9):1610–1620. doi:10.1074/mcp.RA117.000102.
  • Cerdo T, Ruiz A, Acuna I, Jáuregui R, Jehmlich N, Haange S-B, von Bergen M, Suárez A, Campoy C. Gut microbial functional maturation and succession during human early life. Environ Microbiol. April 24 2018;20(6):2160–2177. doi:10.1111/1462-2920.14235.
  • Schimmel P, Kleinjans L, Bongers RS, Knol J, Belzer C. Breast milk urea as a nitrogen source for urease positive Bifidobacterium infantis. FEMS Microbiol Ecol. 2021;97(3):fiab019. doi:10.1093/femsec/fiab019.
  • George M, Nord K-E, Ronquist G, Hedenstierna G, Wiklund L. Faecal microflora and urease activity during the first six months of infancy. Ups J Med Sci. 1996 Jan 01;101(3):233–250. doi:10.3109/03009739609178923.
  • Fomon SJ, Matthews DE, Bier DM, Rogers RR, Rebouche CJ, Edwards BB, Nelson SE. Bioavailability of dietary urea nitrogen in the infant. J Pediatr. 1987;111(2):221–224. doi:10.1016/S0022-3476(87)80071-9.
  • Sela D, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. PNAS. 2008;105:18964–18969. doi:10.1073/pnas.0809584105.
  • Sumner J. The isolation and crystallisation of jack bean urease. J Biol Chem. 1926;69(2):435–441. doi:10.1016/S0021-9258(18)84560-4.
  • Lee MH, Pankratz HS, Wang S, Scott RA, Finnegan MG, Johnson MK, Ippolito JA, Christianson DW, Hausinger RP. Purification and characterization of Klebsiella aerogenes UreE protein: a nickel‐binding protein that functions in urease metallocenter assembly. Protein Science. 1993;2(6):1042–1052. doi:10.1002/pro.5560020617.
  • Belzer C, Stoof J, CS B, Kuipers EJ, Kusters JG, Van Vliet AH. Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology. 2005;151(12):3989–3995. doi:10.1099/mic.0.28188-0.
  • Mora D, Arioli S, Miller V, Miller V. Microbial urease in health and disease. PLoS Pathog. 2014;10(12):e1004472. doi:10.1371/journal.ppat.1004472.
  • Caldwell RB, Toque HA, Narayanan SP, Caldwell RW. Arginase: an old enzyme with new tricks. Trends Pharmacol Sci. 2015;36(6):395–405. doi:10.1016/j.tips.2015.03.006.
  • Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology. 1998;114(1):58–70. doi:10.1016/S0016-5085(98)70633-X.
  • Scott DR, Marcus EA, Weeks DL, Sachs G. Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology. 2002;123(1):187–195. doi:10.1053/gast.2002.34218.
  • Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, Kulkarni M, Casadevall A, May RC. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog. 2018;14(6):e1007144. doi:10.1371/journal.ppat.1007144.
  • Duar RM, Kyle D, Casaburi G. Colonization resistance in the infant gut: the role of B. infantis in reducing pH and preventing pathogen growth. High-Throughput. 2020;9(2):7. doi:10.3390/ht9020007.
  • Arant BS Jr. Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr. 1978;92(5):705–712. doi:10.1016/S0022-3476(78)80133-4.
  • Grijalva J, Vakili K. Neonatal liver physiology. Elsevier. 2013;2013(4):185–189. doi:10.1053/j.sempedsurg.2013.10.006.
  • Qin Y, Cabral JM. Review properties and applications of urease. Biocatal Biotransformation. 2002;20(1):1–14. doi:10.1080/10242420210154.
  • Nandi DK, Mandal S, Roy S, Pradhan S, Samanta A, Patra A, Mandal A, Das K, Sinha B. Protective role of selected probiotics on experimentally induced kidney failure in rats. International Research Journal of Basic and Applied Sciences. 2016;1(2):29–36.
  • Millward DJ, Forrester T, Ah-Sing E, Yeboah N, Gibson N, Badaloo A, Boyne M, Reade M, Persaud C, Jackson A. The transfer of 15N from urea to lysine in the human infant. Br J Nutr. 2000;83(5):505–512. doi:10.1017/S0007114500000647.
  • Deguchi E, Niiyama M, Kagota K, Namioka S. Role of intestinal flora on incorporation of 15N from dietary, 15N-urea, and 15N-diammonium citrate into tissue proteins in pigs. J Nutr. 1978;108(10):1572–1579. doi:10.1093/jn/108.10.1572.
  • Oliveira MM, Trevilato TMB, Segura-Muñoz SI, Aragon DC, Alves LG, Nadal M, Marquès M, Domingo JL, Sierra J, Camelo JS. Essential and toxic elements in human milk concentrate with human milk lyophilizate: a preclinical study. Environ Res. 2020 09/1/2020;188:109733. doi:10.1016/j.envres.2020.109733.
  • Chen YY, Weaver CA, Burne RA. Dual functions of Streptococcus salivarius urease. J Bacteriol. 2000;182(16):4667–4669. doi:10.1128/JB.182.16.4667-4669.2000.
  • Zotta T, Ricciardi A, Rossano R, Parente E. Urease production by Streptococcus thermophilus. Food Microbiol. 2008;25(1):113–119. doi:10.1016/j.fm.2007.07.001.
  • Crociani F, Matteuzzi D. Urease activity in the genus Bifidobacterium. Annales de Microbiologie. 1982;133(3):417–423.
  • Sedláček I, Holochova P, Mašlaňová I, Kosina M, Spröer C, Bryndová H, Vandamme P, Rudolf I, Hubálek Z, Švec P. Enterococcus ureilyticus sp. nov. and Enterococcus rotai sp. nov., two urease-producing enterococci from the environment. Int J Syst Evol Microbiol. 2013;63(Pt_2):502–510. doi:10.1099/ijs.0.041152-0.
  • D’Orazio S, Collins CM. Characterization of a plasmid-encoded urease gene cluster found in members of the family Enterobacteriaceae. J Bacteriol. 1993;175(6):1860–1864. doi:10.1128/jb.175.6.1860-1864.1993.
  • Collins CM, Falkow S. Genetic analysis of Escherichia coli urease genes: evidence for two distinct loci. J Bacteriol. 1990;172(12):7138–7144. doi:10.1128/jb.172.12.7138-7144.1990.
  • Liu X, Zhang Q, Zhou N, Tian Y. Expression of an acid urease with urethanase activity in E. coli and analysis of urease gene. Mol Biotechnol. 2017;59(2):84–97. doi:10.1007/s12033-017-9994-x.
  • Shin Y, Park S-J, Paek J, Kim J-S, Rhee M-S, Kim H, Kook J-K, Chang Y-H. Bacteroides koreensis sp. nov. and Bacteroides kribbi sp. nov., two new members of the genus Bacteroides. Int J Syst Evol Microbiol. 2017;67(11):4352–4357. doi:10.1099/ijsem.0.002226.
  • Hülsemann J, Manz F, Wember T, Schöch G. Administration of creatine and creatinine with breast milk and infant milk preparations. Klin Padiatr. 1987;199(4):292–295. doi:10.1055/s-2008-1026805.
  • Zuo R, Zhou S, Zuo Y, Deng Y. Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC. Food Chem. 2015;182:242–245. doi:10.1016/j.foodchem.2015.02.142.
  • Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–1213. doi:10.1152/physrev.2000.80.3.1107.
  • Kashani K, Rosner MH, Ostermann M. Creatinine: from physiology to clinical application. Eur J Intern Med. 2020;72:9–14. doi:10.1016/j.ejim.2019.10.025.
  • Heimbürger O, Stenvinkel P, Bárány P. The enigma of decreased creatinine generation in acute kidney injury. Nephrol Dial Transpl. 2012;27(11):3973–3974. doi:10.1093/ndt/gfs459.
  • Walser M. Nutritional management of chronic renal failure. Am J Kidney Dis. 1982;1(5):261–275. doi:10.1016/S0272-6386(82)80024-3.
  • Mitch WE, Collier VU, Walser M. Creatinine metabolism in chronic renal failure. Clin Sci. 1980;58(4):327–335. doi:10.1042/cs0580327.
  • Mussap M, Noto A, Fanos V, Van Den Anker JN. Emerging biomarkers and metabolomics for assessing toxic nephropathy and acute kidney injury (AKI) in neonatology. Biomed Res Int. 2014;2014:1–16. doi:10.1155/2014/602526.
  • Guignard J-P. Renal function in the newborn infant. Pediatr Clin North Am. 1982;29(4):777–790. doi:10.1016/S0031-3955(16)34211-0.
  • Dubos R, Miller BF. The production of bacterial enzymes capable of decomposing creatinine. J Biol Chem. 1937;121(2):429–445. doi:10.1016/S0021-9258(18)74276-2.
  • Seifter JL. Urinary creatinine-splitting bacteria after ileal-loop diversion causing underestimate of glomerular filtration rate. Am J Med. 2014;127(12):e11–12. doi:10.1016/j.amjmed.2014.07.030.
  • Ienaga K, Nakamura K, Ishii A, Taga T, Miwa Y, Yoneda F. The stepwise mammalian oxidation of the hydantoin 1-methylimidazolidine-2, 4-dione into methylimidazolidinetrione via 5-hydroxy-1-methylimidazolidine-2, 4-dione. J Chem Soc Perkin Transac. 1989;1(66):1153–1156. doi:10.1039/p19890001153.
  • Ienaga K, Nakamura K, Yamakawa M, Toyomaki Y, Matsuura H, Yokozawa T, Oura H, Nakano K. The use of 13 C-labelling to prove that creatinine is oxidized by mammals into creatol and 5-hydroxy-1-methylhydantoin. J Chem Soc Chem Commun. 1991;7:509–510. doi:10.1039/c39910000509.
  • Del Chierico F, Vernocchi P, Petrucca A, Paci P, Fuentes S, Praticò G, Capuani G, Masotti A, Reddel S, Russo A, et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLos One. 2015;10(9):e0137347. doi:10.1371/journal.pone.0137347.
  • Suprataman H, Ismiraj RM, Mayasari N. Effects of probiotic supplementation to diets on blood urea nitrogen and plasma creatinine in broiler chicken. Lucrări Științifice - Universitatea de Științe Agricole şi Medicină Veterinară, Seria Zootehnie. 2020;73:23–27.
  • Biswas A, Junaid N, Kumawat M, Qureshi S, Mandal A. Influence of dietary supplementation of probiotics on intestinal histo-morphometry, blood chemistry and gut health status of broiler chickens. S Afr J Anim Sci. 2018;48(5):968–976. doi:10.4314/sajas.v48i5.17.
  • Edison EE, Brosnan ME, Aziz K, Brosnan JT. Creatine and guanidinoacetate content of human milk and infant formulas: implications for creatine deficiency syndromes and amino acid metabolism. Br J Nutr. 2013;110(6):1075–1078. doi:10.1017/S000711451300010X.
  • Brosnan JT, da Silva RP, Brosnan ME. The metabolic burden of creatine synthesis. Amino Acids. 2011;40(5):1325–1331. doi:10.1007/s00726-011-0853-y.
  • Wyss M, Braissant O, Pischel I, Salomons GS, Schulze A, Stockler S, Walliman T. Creatine and Creatine Kinasxe in Health and Disease-a bright future ahead? Vol. 46. Creatine and Creatine Kinase in Health and Disease. 2007. p. 309–334.
  • Lee H, Slupsky CM, Heckmann AB, Christensen B, Peng Y, Li X, Hernell O, Lönnerdal B, Li Z. Milk fat globule membrane as a modulator of infant metabolism and gut microbiota: a formula supplement narrowing the metabolic differences between breastfed and formula‐fed infants. Mol Nutr Food Res. 2021;65(3):2000603. doi:10.1002/mnfr.202000603.
  • He X, Parenti M, Grip T, Domellöf M, Lönnerdal B, Hernell O, Timby N, Slupsky CM. Publisher correction: metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine MFGM supplemented formula: a randomized controlled trial. null. 2019;9(1):1–13. doi:10.1038/s41598-019-48858-y.
  • Ten Krooden E, Owens C Creatinine metabolism byClostridium welchii isolated from human faeces. Experientia. 1975;31(11):1270. 10.1007/BF01945773
  • Jain A, Li XH, Chen WN. An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. null. 2019 June 24;9(1):9191. doi:10.1038/s41598-019-45640-y.
  • Li N, Yan F, Wang N, Song Y, Yue Y, Guan J, Li B, Huo G. Distinct gut microbiota and metabolite profiles induced by different feeding methods in healthy Chinese infants. Front Microbiol. 2020 May 6;11. doi:10.3389/fmicb.2020.00714.
  • Wang M, Chen Y, Wang Y, Li Y, Zhang X, Zheng H, Ma F, Ma C, Lu B, Xie Z, et al. Beneficial changes of gut microbiota and metabolism in weaned rats with Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 supplementation. J Funct Foods. 2018;48:252–265. Sep 1. doi:10.1016/j.jff.2018.07.008.
  • Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG. Microbial shifts in the aging mouse gut. Microbiome. 2014;2(1):1–12. doi:10.1186/s40168-014-0050-9.
  • Bardócz S, Duguid TJ, Brown DS, Grant G, Pusztai A, White A, Ralph A. The importance of dietary polyamines in cell regeneration and growth. Br J Nutr. 1995;73(6):819–828. doi:10.1079/bjn19950087.
  • Loser C, Eisel A, Harms D, Folsch UR. Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut. 1999 Jan;44(1):12–16. doi:10.1136/gut.44.1.12.
  • Ter Steege JC, Buurman WA, Forget PP. Spermine induces maturation of the immature intestinal immune system in neonatal mice. J Pediatr Gastroenterol Nutr. 1997 Sep;25(3):332–340. doi:10.1097/00005176-199709000-00017.
  • Larque E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. null. 2007 Jan;23(1):87–95. doi:10.1016/j.nut.2006.09.006.
  • Ferioli ME, Pirona L, Pinotti O. Prolactin and polyamine catabolism: specific effect on polyamine oxidase activity in rat thymus. Mol Cell Endocrinol. 2000 Jul 25;165(1–2):51–56. doi:10.1016/s0303-7207(00)00264-1.
  • Dandrifosse G, Peulen O, Khefif NE, Deloyer P, Dandrifosse AC, Grandfils C. Are milk polyamines preventive agents against food allergy? Proc Nutr Soc. 2000;59(1):81–86. doi:10.1017/s0029665100000100.
  • Gómez-Gallego C, Kumar H, García-Mantrana I, du Toit E, Suomela J-P, Linderborg KM, Zhang Y, Isolauri E, Yang B, Salminen S, et al. Breast milk polyamines and microbiota interactions: impact of mode of delivery and geographical location. Ann Nutr Metab. 2017;70(3):184–190. doi:10.1159/000457134.
  • Dorhout B, van Beusekom CM, Huisman M, Kingma AW, de Hoog E, Rudy Boersma E, Muskiet FAJ. Estimation of 24-hour polyamine intake from mature human milk. J Pediatr Gastroenterol Nutr. 1996;23(3):298–302. doi:10.1097/00005176-199610000-00015.
  • Pollack PF, Koldovskỳ O, Nishioka K. Polyamines in human and rat milk and in infant formulas. Am J Clin Nutr. 1992;56(2):371–375. doi:10.1093/ajcn/56.2.371.
  • Buts J-P, De NK, De LR, Collette E, Sokal EM. Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. J Pediatr Gastr Nutr. 1995;21(1):44–49. doi:10.1097/00005176-199507000-00007.
  • Milovic V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol. 2001;13(9):1021–1025. doi:10.1097/00042737-200109000-00004.
  • Matsumoto M, Benno Y. The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol Immunol. 2007;51(1):25–35. doi:10.1111/j.1348-0421.2007.tb03887.x.
  • Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E, Muramatsu K, Nakamura A, Yamashita A, Kitada Y, et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. null. 2014;4(1):4548. doi:10.1038/srep04548.
  • Tofalo R, Cocchi S, Suzzi GP, Microbiota G. Opinion. Front Nutr. 2019 Feb 25;6(16). doi:10.3389/fnut.2019.00016.
  • Hamana K, Matsuzaki S. Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol. 1992;18(4):261–283. doi:10.3109/10408419209113518.
  • Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–21. doi:10.1152/ajpcell.1982.243.5.C212.
  • Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M, Hellings P, Akdis CA, O’Mahony L. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb Ecol Health Dis. 2017;28(1):1353881. doi:10.1080/16512235.2017.1353881.
  • Allison C, Macfarlane GT. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl Environ Microb. 1989;55(11):2894–2898. doi:10.1128/aem.55.11.2894-2898.1989.
  • Snezhkina AV, Krasnov GS, Lipatova AV, Sadritdinova AF, Kardymon OL, Fedorova MS, Melnikova NV, Stepanov OA, Zaretsky AR, Kaprin AD, et al. The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPβ rather than enterotoxigenic Bacteroides fragilis infection. Oxid Med Cell Longev. 2016;2016:1–11. doi:10.1155/2016/2353560.
  • Sakanaka M, Sugiyama Y, Kitakata A, Katayama T, Kurihara S. Carboxyspermidine decarboxylase of the prominent intestinal microbiota species Bacteroides thetaiotaomicron is required for spermidine biosynthesis and contributes to normal growth. Amino Acids. 2016 Oct;48(10):2443–2451. doi:10.1007/s00726-016-2233-0.
  • Gómez-Gallego C, Collado MC, Ilo T, Jaakkola U-M, Bernal MJ, Periago MJ, Salminen S, Ros G, Frias R. Infant formula supplemented with polyamines alters the intestinal microbiota in neonatal BALB/cOlahsd mice. J Nutr Biochem. Nov 1 2012;23(11):1508–1513. doi:10.1016/j.jnutbio.2011.10.003.
  • Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun. 2021;12(1):1–15. doi:10.1038/s41467-021-24007-w.
  • Rao JN, Xiao L, Wang J-Y. Polyamines in gut epithelial renewal and barrier function. Physiology. 2020;35(5):328–337. doi:10.1152/physiol.00011.2020.
  • Sugiyama Y, Nara M, Sakanaka M, Kitakata A, Okuda S, Kurihara S. Analysis of polyamine biosynthetic- and transport ability of human indigenous Bifidobacterium. Biosci Biotechnol Biochem. 2018 Sep 02;82(9):1606–1614. doi:10.1080/09168451.2018.1475211.
  • Yao X, Lu CD. Functional characterization of the potRABCD operon for spermine and spermidine uptake and regulation in Staphylococcus aureus. Curr Microbiol. 2014 Jul;69(1):75–81. doi:10.1007/s00284-014-0556-1.
  • Allison J, Kaliszewska A, Uceda S, Reiriz M, Arias N. Targeting DNA Methylation in the Adult Brain through Diet. Nutrients. 2021;13(11):3979. doi:10.3390/nu13113979.
  • Otaru N, Ye K, Mujezinovic D, Berchtold L, Constancias F, Cornejo FA, Krzystek A, de Wouters T, Braegger C, Lacroix C, et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front Microbiol. 2021;12:860. doi:10.3389/fmicb.2021.656895.
  • Dallas DC, German JB. Enzymes in human milk. Intestinal Microbiome: Functional Aspects in Health and Disease. 2017;88:129–136.
  • Davila A-M, Blachier F, Gotteland M, Andriamihaja M, Benetti P-H, Sanz Y, Tomé D. Reprint of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host”. Pharmacol Res. 2013;69(1):114–126. doi:10.1016/j.phrs.2013.01.003.
  • Reeds PJ, Burrin DG, Stoll B, Jahoor F. Intestinal glutamate metabolism. J Nutr. 2000 Apr;130(4S Suppl):978s–982s. doi:10.1093/jn/130.4.978S.
  • Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol. 2013;114(1):11–24. doi:10.1111/j.1365-2672.2012.05434.x.
  • van Sadelhoff JHJ, van de Heijning BJM, Stahl B, Amodio S, Rings E, Mearin M, Garssen J, Hartog A. Longitudinal variation of amino acid levels in human milk and their associations with infant gender. Nutrients. Sep 5 2018;10(9):1233. doi:10.3390/nu10091233.
  • Koletzko B. Glutamate supply and metabolism in infants. Ann Nutr Metab. 2018;73(suppl 55):29–35. doi:10.1159/000494780.
  • Van Sadelhoff JH, Wiertsema SP, Garssen J, Hogenkamp A. Free amino acids in human milk: a potential role for glutamine and glutamate in the protection against neonatal allergies and infections. Front Immunol. 2020;11:1007. doi:10.3389/fimmu.2020.01007.
  • Lonnerdal B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr. 2014 Mar;99(3):712s–717s. doi:10.3945/ajcn.113.071993.
  • Woods DR, Reid SJ. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev. 1993;11(4):273–283. doi:10.1111/j.1574-6976.1993.tb00001.x.
  • Petroff OA. GABA and glutamate in the human brain. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. 2002 Dec 8(6):562–573. doi:10.1177/1073858402238515
  • Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Mini Review. Front Psychol. 2015 Oct 06;6(1520). doi:10.3389/fpsyg.2015.01520.
  • Mazzoli R, Pessione E. The Neuro-endocrinological role of microbial glutamate and GABA signaling. Frontiers Microbiol. 2016;7:1934. doi:10.3389/fmicb.2016.01934.
  • Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, Liu Y, Cheng K, Zhou C, Wang H, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5(2):eaau8317. doi:10.1126/sciadv.aau8317.
  • van den Heuvel RH, Svergun DI, Petoukhov MV, Coda A, Curti B, Ravasio S, Vanoni MA, Mattevi A. The active conformation of glutamate synthase and its binding to ferredoxin. J Mol Biol. 2003;330(1):113–128. doi:10.1016/S0022-2836(03)00522-9.
  • Watford M, Reeds PJ. Glutamate metabolism in the gut. Forum Nutr. 2003;56:81–82.
  • Hatanaka M, Tachiki T, Kumagai H, Tochikura T. Distribution and some properties of glutamine synthetase and glutamate dehydrogenase in bifidobacteria. Agric Biol Chem. 1987;51(1):251–252. doi:10.1080/00021369.1987.10868009.
  • Hatanaka M, Tachiki T, Furukawa R, Tochikura T. Purification and some properties of glutamine synthetases from bifidobacteria. Agric Biol Chem. 1987;51(2):425–433. doi:10.1080/00021369.1987.10868070.
  • Bortoluzzi C, Rochell S, Applegate T. Threonine, arginine, and glutamine: influences on intestinal physiology, immunology, and microbiology in broilers. Poult Sci. 2018;97(3):937–945. doi:10.3382/ps/pex394.
  • Mamuad LL, Lee SS. The role of glutamic acid-producing microorganisms in rumen microbial ecosystems. Journal of Life Science. 2021;31:520–526.
  • Camperchioli DW, Bush SP, Slonczewski J. GABA production through acid resistance mechanisms in Escherichia coli. Kenyon Summer Science Scholars Program. 2015. Paper 5.
  • Kim ES, Kim JS, Cho KH, Lee KH, Tamari Y. 1998. Quantitation of taurine and selenium levels in human milk and estimated intake of taurine by breast-fed infants during the early periods of lactation. Vol. 3pp. 477–486. Adv Exp Med Biol.
  • Agostoni C, Carratu B, Boniglia C, Riva E, Sanzini E. Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr. 2000;19(4):434–438. doi:10.1080/07315724.2000.10718943.
  • Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7(3):201–215. doi:10.1080/19490976.2016.1150414.
  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332. doi:10.1097/MOG.0000000000000057.
  • Ridlon JM, Kang D-J, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. doi:10.1194/jlr.R500013-JLR200.
  • Xing M, Wei Y, Hua G, Li M, Nanjaraj Urs AN, Wang F, Hu Y, Zhai W, Liu Y, Ang EL, et al. A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacterium. Biochem J. 2019;476(15):2271–2279. doi:10.1042/BCJ20190486.
  • van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol. 2001;176(1–2):1–8. doi:10.1007/s002030100298.
  • Uria-Nickelsen MR, Leadbetter ER, Godchaux W III. Sulphonate utilization by enteric bacteria. Microbiology. 1993;139(2):203–208. doi:10.1099/00221287-139-2-203.
  • Xing M, Wei Y, Zhou Y, Zhang J, Lin L, Hu Y, Hua G, Nanjaraj Urs AN, Liu D, Wang F, et al. Radical-mediated CS bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat Commun. 2019;10(1):1–11. doi:10.1038/s41467-019-09618-8.
  • Collard J-M, Sansonetti P, Papon N. Taurine makes our microbiota stronger. Trends in Endocrinol Metabolism. 2021;32(5):259–261. doi:10.1016/j.tem.2021.02.006.
  • Stacy A, Andrade-Oliveira V, McCulloch JA, Hild B, Oh JH, Perez-Chaparro PJ, Sim CK, Lim AI, Link VM, Enamorado M, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021;184(3):615–627. e17. doi:10.1016/j.cell.2020.12.011.
  • Cook AM, Denger K. Metabolism of Taurine in Microorganisms. Adv Exp Med Biol.; 2006. pp. 3–13.
  • Yao L, Seaton SC, Ndousse-Fetter S, Adhikari AA, DiBenedetto N, Mina AI, Banks AS, Bry L, Devlin AS. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife. 2018;7:e37182. doi:10.7554/eLife.37182.
  • Arrieta M-C, Arévalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, Vaca M, Boutin RCT, Morien E, Jin M, et al., Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting, J Allergy Clin Immunol. 2018;142(2):424–434.e10. 2019 Sep 6. doi:10.1016/j.jaci.2017.08.041.
  • Shoveller AK, Stoll B, Ball RO, Burrin DG. Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr. 2005;135(7):1609–1612. doi:10.1093/jn/135.7.1609.
  • Mihara H, Esaki N. Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol. 2002 Oct;60(1–2):12–23. doi:10.1007/s00253-002-1107-4.
  • Ferrario C, Duranti S, Milani C, Mancabelli L, Lugli GA, Turroni F, Mangifesta M, Viappiani A, Ossiprandi MC, van Sinderen D, et al. Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010. Front Microbiol. 2015;6:1331. doi:10.3389/fmicb.2015.01331.
  • Ferrario C, Duranti S, Milani C, Mancabelli L, Lugli GA, Turroni F, Mangifesta M, Viappiani A, Ossiprandi MC, van Sinderen D, et al. Exploring amino acid auxotrophy in Bifidobacterium bifidum PRL2010. Front Microbiol. 2015;6:1331. doi:10.3389/fmicb.2015.01331.
  • Circu ML, Aw TY. Intestinal redox biology and oxidative stress. Elsevier. 2012;2012(7):729–737. doi:10.1016/j.semcdb.2012.03.014.
  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol. 2003;54(1):109–136. doi:10.1146/annurev.arplant.54.031902.134752.
  • Sobko T, Reinders CI, Jansson E, Norin E, Midtvedt T, Lundberg JO. Gastrointestinal bacteria generate nitric oxide from nitrate and nitrite. Nitric Oxide: Biol & Chem. 2005 Dec;13(4):272–278. doi:10.1016/j.niox.2005.08.002.
  • Iizuka T, Sasaki M, Oishi K, Uemura S, Koike M, Minatogawa Y. Nitric oxide may trigger lactation in humans. J Pediatr. 12/1/1997 1997;131(6):839–843. doi:10.1016/S0022-3476(97)70030-1.
  • Ohta N, Tsukahara H, Ohshima Y, Nishii M, Ogawa Y, Sekine K, Kasuga K, Mayumi M. Nitric oxide metabolites and adrenomedullin in human breast milk. Early Hum Dev. 06/1/2004 2004;78(1):61–65. doi:10.1016/j.earlhumdev.2004.04.002.
  • Yuksel S, Yigit AA, Cinar M, Atmaca N, Onaran Y. Oxidant and antioxidant status of human breast milk during lactation period. Dairy Sci Technol. 2015;95(3):295–302. doi:10.1007/s13594-015-0211-z.
  • Stevens CR, Millar TM, Clinch JG, Kanczler JM, Bodamyali T, Blake DR. Antibacterial properties of xanthine oxidase in human milk. Lancet. 09/2/2000 2000;356(9232):829–830. doi:10.1016/S0140-6736(00)02660-X.
  • Fang FC, Vázquez-Torres A. Reactive nitrogen species in host–bacterial interactions. Curr Opin Immunol. 2019 10/1/2019;60:96–102. doi:10.1016/j.coi.2019.05.008.
  • Bartholomew B, Hill MJ. The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem Toxicol. 1984 Oct;22(10):789–795. doi:10.1016/0278-6915(84)90116-9.
  • Tiso M, Schechter AN. Nitrate reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions. PLos One. 2015;10(3):e0119712. doi:10.1371/journal.pone.0119712.
  • Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 07/4/1997 1997;1320(3):217–234. doi:10.1016/S0005-2728(97)00034-0.
  • Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastr Nutr. 2015;60(3):294–307. doi:10.1097/MPG.0000000000000597.
  • Jost T, Lacroix C, Braegger CP, Chassard C, Ravel J. New insights in gut microbiota establishment in healthy breast fed neonates. PLos One. 2012;7(8):e44595. doi:10.1371/journal.pone.0044595.
  • Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev. Jan 21 2014;43(2):676–706. doi:10.1039/c3cs60249d.
  • James K, Motherway MOC, Bottacini F, van Sinderen D. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. null. 2016;6(1):1–16. doi:10.1038/srep38560.
  • Petschow BW, Talbott RD. Response of Bifidobacterium species to growth promoters in human and cow milk. Pediatr Res. 1991;29(2):208–213. doi:10.1203/00006450-199102000-00021.
  • Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71(6):1589–1596. doi:10.1093/ajcn/71.6.1589.
  • Jantscher-Krenn E, Bode L. Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr. 2012;64:83–99.
  • Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010;18(7):298–307. doi:10.1016/j.tim.2010.03.008.
  • Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagström H, Sanchez Luna M, Migacheva N, Mosselmans J-M, Picaud J-C, Possner M, et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients. 2018;10(9):1161. doi:10.3390/nu10091161.
  • Le Parc A, Dallas DC, Duaut S, Leonil J, Martin P, Barile D. Characterization of goat milk lactoferrin N‐glycans and comparison with the N‐glycomes of human and bovine milk. Electrophoresis. 2014;35(11):1560–1570. doi:10.1002/elps.201300619.
  • Bahr U, Karas M. Differentiation of ‘isobaric’peptides and human milk oligosaccharides by exact mass measurements using electrospray ionization orthogonal time‐of‐flight analysis. Rapid Commun Mass Sp. 1999;13(11):1052–1058. doi:10.1002/(SICI)1097-0231(19990615)13:11<1052:AID-RCM604>3.0.CO;2-Y.
  • Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162. doi:10.1093/glycob/cws074.
  • Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011;10(2):856–868. doi:10.1021/pr101006u.
  • Stahl B, Thurl S, Zeng J, Karas M, Hillenkamp F, Steup M, Sawatzki G. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem. 1994;223(2):218–226. doi:10.1006/abio.1994.1577.
  • Finke B, Stahl B, Pfenninger A, Karas M, Daniel H, Sawatzki G. Analysis of high-molecular-weight oligosaccharides from human milk by liquid chromatography and MALDI-MS. Anal Chem. 1999;71(17):3755–3762. doi:10.1021/ac990094z.
  • Ruhaak LR, Lebrilla CB. Advances in analysis of human milk oligosaccharides. Advances in Nutrition. 2012;3(3):406S–414S. doi:10.3945/an.112.001883.
  • van der Ark KC, Aalvink S, Suarez‐diez M, Schaap PJ, de Vos WM, Belzer C. Model‐driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb Biotechnol. 2018;11(3):476–485. doi:10.1111/1751-7915.13033.
  • Dallas DC, Martin WF, Strum JS, Zivkovic AM, Smilowitz JT, Underwood MA, Affolter M, Lebrilla CB, German JB. N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J Agr Food Chem. 2011;59(8):4255–4263. doi:10.1021/jf104681p.
  • Georgi G, Bartke N, Wiens F, Stahl B. Functional glycans and glycoconjugates in human milk. Am J Clin Nutr. 2013;98(2):578S–585S. doi:10.3945/ajcn.112.039065.
  • Zhu J, Lin Y-H, Dingess KA, Mank M, Stahl B, Heck AJ. Quantitative longitudinal inventory of the N-glycoproteome of human milk from a single donor reveals the highly variable repertoire and dynamic site-specific changes. J Proteome Res. 2020;19(5):1941–1952. doi:10.1021/acs.jproteome.9b00753.
  • Dingess KA, Li C, Zhu J. Human milk proteome: what’s new? Current Opinion in Clinical Nutrition & Metabolic Care. 2021;24(3):252–258. doi:10.1097/MCO.0000000000000742.
  • Hoeflinger JL, Davis SR, Chow J, Miller MJ. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth. J Agr Food Chem. 2015;63(12):3295–3302. doi:10.1021/jf505721p.
  • Kostopoulos I, Elzinga J, Ottman N, Klievink JT, Blijenberg B, Aalvink S, Boeren S, Mank M, Knol J, de Vos WM, et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. null. 2020;10(1):1–17. doi:10.1038/s41598-020-71113-8.
  • Chia LW, Mank M, Blijenberg B, Aalvink S, Bongers RS, Stahl B, Knol J, Belzer C. Bacteroides thetaiotaomicron fosters the growth of butyrate-producing Anaerostipes caccae in the presence of lactose and total human milk carbohydrates. Microorganisms. 2020;8(10):1513. doi:10.3390/microorganisms8101513.
  • Klaassens ES, De Vos WM, Vaughan EE. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microb. 2007;73(4):1388–1392. doi:10.1128/AEM.01921-06.
  • Young JC, Pan C, Adams RM, Brooks B, Banfield JF, Morowitz MJ, Hettich RL. Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case. PROTEOMICS. 2015;15(20):3463–3473. doi:10.1002/pmic.201400563.
  • Villavicencio A, Rueda MS, Turin CG, Ochoa TJ. Factors affecting lactoferrin concentration in human milk: how much do we know? Biochemistry and cell biology = Biochimie et biologie cellulaire. 2017;95(1):12–21. doi:10.1139/bcb-2016-0060.
  • Gu Q, Li P, Probiotics and Prebiotics in Human Nutrition and Health. Biosynthesis of Vitamins by Probiotic Bacteria. 2016. doi:10.5772/63117.
  • González R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microb. 2008;74(15):4686–4694. doi:10.1128/aem.00122-08.
  • Thurl S, Munzert M, Henker J, Boehm G, Müller-Werner B, Jelinek J, Stahl B. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr. 2010;104(9):1261–1271. doi:10.1017/S0007114510002072.
  • Italianer MF, Naninck EF, Roelants JA, van der Horst GTJ, Reiss IKM, Goudoever JBV, Joosten KFM, Chaves I, Vermeulen MJ. Circadian variation in human milk composition, a systematic review. Nutrients. 2020;12(8):2328. doi:10.3390/nu12082328.