1,999
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Gut microbiota dysbiosis promotes the development of epithelial ovarian cancer via regulating Hedgehog signaling pathway

, , , , , , , , , ORCID Icon & show all
Article: 2221093 | Received 09 Dec 2022, Accepted 30 May 2023, Published online: 06 Jun 2023

References

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–21. doi:10.3322/caac.21708.
  • Labidi-Galy SI, Papp E, Hallberg D, Niknafs N, Adleff V, Noe M, Bhattacharya R, Novak M, Jones S, Phallen J, et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun. 2017;8(1):1093. doi:10.1038/s41467-017-00962-1.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660.
  • Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393(10177):1240–1253. doi:10.1016/s0140-6736(18)32552-2.
  • Lapke N, Chen CH, Chang TC, Chao A, Lu YJ, Lai CH, Tan KT, Chen HC, Lu HY, Chen SJ. Genetic alterations and their therapeutic implications in epithelial ovarian cancer. Bmc Cancer. 2021;21(1):499. doi:10.1186/s12885-021-08233-5.
  • Savant SS, Sriramkumar S, O’Hagan HM. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers (Basel). 2018;10(8):251. doi:10.3390/cancers10080251.
  • Sneha S, Nagare RP, Sidhanth C, Krishnapriya S, Garg M, Ramachandran B, Murhekar K, Sundersingh S, Ganesan TS. The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. Cell Oncol (Dordr). 2020;43(4):601–616. doi:10.1007/s13402-020-00504-w.
  • Walton KD, Gumucio DL. Hedgehog signaling in intestinal development and homeostasis. Annu Rev Physiol. 2021;83(1):359–380. doi:10.1146/annurev-physiol-031620-094324.
  • Pan Y, Zhou J, Zhang W, Yan L, Lu M, Dai Y, Zhou H, Zhang S, Yang J. The sonic hedgehog signaling pathway regulates autophagy and migration in ovarian cancer. Cancer Med. 2021;10(13):4510–4521. doi:10.1002/cam4.4018.
  • Chen Q, Xu R, Zeng C, Lu Q, Huang D, Shi C, Zhang W, Deng L, Yan R, Rao H, et al. Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin beta4-mediated FAK signaling. PLos One. 2014;9(2):e88386. doi:10.1371/journal.pone.0088386.
  • Zeng C, Chen T, Zhang Y, Chen Q. Hedgehog signaling pathway regulates ovarian cancer invasion and migration via adhesion molecule CD24. J Cancer. 2017;8(5):786–792. doi:10.7150/jca.17712.
  • Zhang H, Wang Y, Chen T, Zhang Y, Xu R, Wang W, Cheng M, Chen Q. Aberrant activation of hedgehog signalling promotes cell migration and invasion via matrix metalloproteinase-7 in ovarian cancer cells. J Cancer. 2019;10(4):990–1003. doi:10.7150/jca.26478.
  • Zhang J, Fan J, Zeng X, Nie M, Luan J, Wang Y, Ju D, Yin K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm Sin B. 2021;11(3):609–620. doi:10.1016/j.apsb.2020.10.022.
  • Ferreira Mendes JM, de Faro Valverde L, Torres Andion Vidal M, Paredes BD, Coelho P, Allahdadi KJ, Coletta RD, Souza BSF, Rocha CAG. Effects of IGF-1 on proliferation, angiogenesis, tumor stem cell populations and activation of AKT and hedgehog pathways in oral squamous cell carcinoma. Int J Mol Sci. 2020;21(18):6487. doi:10.3390/ijms21186487.
  • Wang F, Dan Z, Luo H, Huang J, Cui Y, Ding H, Xu J, Lin Z, Gao Y, Zhai X, et al. ALCAM regulates multiple myeloma chemoresistant side population. Cell Death Disease. 2022;13(2):136. doi:10.1038/s41419-022-04556-8.
  • de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–1032. doi:10.1136/gutjnl-2021-326789.
  • Zhou X, Lu J, Wei K, Wei J, Tian P, Yue M, Wang Y, Hong D, Li F, Wang B, et al. Neuroprotective effect of ceftriaxone on MPTP-induced parkinson’s disease mouse model by regulating inflammation and intestinal microbiota. Oxid Med Cell Longev. 2021;2021(1):1–15. doi:10.1155/2021/9424582.
  • He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: a review of current status, challenges, and strategies. Crit Rev Food Sci Nutr. 2022;1–18. doi:10.1080/10408398.2022.2054934.
  • Costa CPD, Vieira P, Mendes-Rocha M, Pereira-Marques J, Ferreira RM, Figueiredo C. The tissue-associated microbiota in colorectal cancer: a systematic review. Cancers (Basel). 2022;14(14):3385. doi:10.3390/cancers14143385.
  • Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host & Microbe. 2018;23(2):203–214 e205. doi:10.1016/j.chom.2018.01.007.
  • Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest. 2022;132(4):e155101. doi:10.1172/JCI155101.
  • Zheng Y, Fang Z, Xue Y, Zhang J, Zhu J, Gao R, Yao S, Ye Y, Wang S, Lin C, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020;11(4):1030–1042. doi:10.1080/19490976.2020.1737487.
  • Teng NMY, Price CA, McKee AM, Hall LJ, Robinson SD. Exploring the impact of gut microbiota and diet on breast cancer risk and progression. Int J Cancer. 2021;149(3):494–504. doi:10.1002/ijc.33496.
  • Hong J, Guo F, Lu SY, Shen C, Ma D, Zhang X, Xie Y, Yan T, Yu T, Sun T, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut. 2021;70(11):2123–2137. doi:10.1136/gutjnl-2020-322780.
  • Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704. doi:10.1038/s41575-019-0209-8.
  • Berek JS, Renz M, Kehoe S, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int J Gynaecol Obstet. 2021;1(Suppl 1):61–85. doi:10.1002/ijgo.13878. 55 Suppl 1.
  • Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann Oncol. 2017;28(suppl_8):viii61–viii65. doi:10.1093/annonc/mdx443.
  • Craig ER, Londoño AI, Norian LA, Arend RC. Metabolic risk factors and mechanisms of disease in epithelial ovarian cancer: a review. Gynecol Oncol. 2016;143(3):674–683. doi:10.1016/j.ygyno.2016.10.005.
  • He T, Cheng X, Xing C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered. 2021;12(1):7046–7060. doi:10.1080/21655979.2021.1972077.
  • Yu W, Xie Z, Chen K, Cai Z, Li J, Ma M, Su Z, Che Y, Wang P, Wu Y, et al. Variations in the gut microbiota in breast cancer occurrence and bone metastasis. Front Microbiol. 2022;13:894283. doi:10.3389/fmicb.2022.894283.
  • Jacobson D, Moore K, Gunderson C, Rowland M, Austin R, Honap TP, Xu J, Warinner C, Sankaranarayanan K, Lewis Jr CM Jr. Shifts in gut and vaginal microbiomes are associated with cancer recurrence time in women with ovarian cancer. PeerJ. 2021;9:e11574. doi:10.7717/peerj.11574.
  • Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, Lu H, Shan W, Wu Y, Li Y, et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci Rep. 2019;9(1):1691. doi:10.1038/s41598-018-38031-2.
  • Li N, Bai C, Zhao L, Sun Z, Ge Y, Li X. The relationship between gut microbiome features and chemotherapy response in gastrointestinal cancer. Front Oncol. 2021;11:781697. doi:10.3389/fonc.2021.781697.
  • Lee SH, Cho SY, Yoon Y, Park C, Sohn J, Jeong JJ, Jeon BN, Jang M, An C, Lee S, et al. Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat Microbiol. 2021;6(3):277–288. doi:10.1038/s41564-020-00831-6.
  • Kordahi MC, Stanaway IB, Avril M, Chac D, Blanc MP, Ross B, Diener C, Jain S, McCleary P, Parker A, et al. Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer. Cell Host & Microbe. 2021;29(10):1589–1598 e1586. doi:10.1016/j.chom.2021.08.013.
  • Han JX, Tao ZH, Qian Y, Yu CY, Li J, Kang ZR, Lu S, Xie Y, Hong J, Chen H, et al. ZFP90 drives the initiation of colitis-associated colorectal cancer via a microbiota-dependent strategy. Gut Microbes. 2021;13(1):1–20. doi:10.1080/19490976.2021.1917269.
  • Li C, Gu Y, He Q, Huang J, Song Y, Wan X, Li Y. Integrated analysis of microbiome and transcriptome data reveals the interplay between commensal bacteria and fibrin degradation in endometrial cancer. Front Cell Infect Microbiol. 2021;11:748558. doi:10.3389/fcimb.2021.748558.
  • Zhou G, Zhou F, Gu Y, Zhang M, Zhang G, Shen F, Hua K, Ding J. Vaginal microbial environment skews macrophage polarization and contributes to cervical cancer development. J Immunol Res. 2022;2022:3525735. doi:10.1155/2022/3525735.
  • Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369(6510):1481–1489. doi:10.1126/science.abc3421.
  • Mahoney DE, Chalise P, Rahman F, Pierce JD. Influences of gastrointestinal microbiota dysbiosis on serum proinflammatory markers in epithelial ovarian cancer development and progression. Cancers (Basel). 2022;14(12):3022. doi:10.3390/cancers14123022.
  • Xu S, Liu Z, Lv M, Chen Y, Liu Y. Intestinal dysbiosis promotes epithelial-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer. Pathog Dis. 2019;77(2):ftz019. doi:10.1093/femspd/ftz019.
  • Chen L, Zhai Y, Wang Y, Fearon ER, Nunez G, Inohara N, Cho KR. Altering the microbiome inhibits tumorigenesis in a mouse model of oviductal high-grade serous carcinoma. Cancer Res. 2021;81(12):3309–3318. doi:10.1158/0008-5472.CAN-21-0106.
  • Chambers LM, Rhoades EL, Bharti R, Braley C, Tewari S, Trestan L, Alali Z, Bayik D, Lathia JD, Sangwan N, et al. Disruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancer. Cancer Res. 2022;CAN-22–0455. doi:10.1158/0008-5472.CAN-22-0455/3213123/can-22-0455.pdf.
  • Qi X, Li X. Mechanistic insights into the generation and transduction of hedgehog signaling. Trends Biochem Sci. 2020;45(5):397–410. doi:10.1016/j.tibs.2020.01.006.
  • Kong JH, Young CB, Pusapati GV, Hernán Espinoza F, Patel CB, Beckert F, Ho S, Patel BB, Gabriel GC, Aravind L, et al. Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength. Development. 2021;148(19):dev199867. doi:10.1242/dev.199867.
  • Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol. 2022;85:107–122. doi:10.1016/j.semcancer.2021.04.003.
  • Wang Y, Jin G, Li Q, Wang Z, Hu W, Li P, Li S, Wu H, Kong X, Gao J, et al. Hedgehog signaling non-canonical activated by pro-inflammatory cytokines in pancreatic ductal adenocarcinoma. J Cancer. 2016;7(14):2067–2076. doi:10.7150/jca.15786.
  • Vecchiotti D, Verzella D, Di Vito Nolfi M, D’Andrea D, Flati I, Di Francesco B, Cornice J, Alesse E, Capece D, Zazzeroni F. Elevated NF-kappaB/shh/gli1 signature denotes a worse prognosis and represent a novel potential therapeutic target in advanced prostate cancer. Cells. 2022;11(13):2118. doi:10.3390/cells11132118.
  • Kasperczyk H, Baumann B, Debatin KM, Fulda S. Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. Faseb J. 2009;23(1):21–33. doi:10.1096/fj.08-111096.
  • Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):263. doi:10.1038/s41392-021-00658-5.
  • De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, et al. Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-Kb to promote colorectal cancer cell growth. Oncogene. 2015;34(27):3493–3503. doi:10.1038/onc.2014.286.
  • Bencze J, Szarka M, Koti B, Seo W, Hortobagyi TG, Bencs V, Modis LV, Hortobagyi T. Comparison of semi-quantitative scoring and artificial intelligence aided digital image analysis of chromogenic immunohistochemistry. Biomolecules. 2021;12(1). doi:10.3390/biom12010019.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262.