2,600
Views
8
CrossRef citations to date
0
Altmetric
Review

L-arginine metabolism as pivotal interface of mutual host–microbe interactions in the gut

, , , &
Article: 2222961 | Received 15 Sep 2022, Accepted 05 Jun 2023, Published online: 26 Jun 2023

References

  • Schaefer K, Wagener J, Ames RM, Christou S, MacCallum DM, Bates S, Gow NAR. Three related enzymes in Candida albicans achieve arginine- and agmatine-dependent metabolism that is essential for growth and fungal virulence. mBio. 2020;11(4). doi:10.1128/mBio.01845-20.
  • Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem. 2005;43(8):729–31. doi:10.1016/j.plaphy.2005.06.007.
  • Morris SM, Jr. Arginine metabolism revisited. J Nutr. 2016;146(12):2579S–2586S. doi:10.3945/jn.115.226621.
  • Lu CD. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol. 2006;70(3):261–272. doi:10.1007/s00253-005-0308-z.
  • Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36(3):161–178. doi:10.1016/j.it.2015.01.003.
  • Morris SM, Jr. Enzymes of arginine metabolism. J Nutr. 2004;134(10):2743S–2747S; discussion 2765S-2767S. doi:10.1093/jn/134.10.2743S.
  • Appleton J. Arginine: clinical potential of a semi-essential amino acid. Altern Med Rev. 2002;7:512–522.
  • Marini JC, Agarwal U, Didelija IC. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice. J Nutr. 2015;145(6):1227–1231. doi:10.3945/jn.114.209668.
  • Wakabayashi Y, Jones ME. Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa. J Biol Chem. 1983;258(6):3865–3872. doi:10.1016/S0021-9258(18)32747-9.
  • Wakabayashi Y, Yamada E, Yoshida T, Takahashi H. Arginine becomes an essential amino acid after massive resection of rat small intestine. J Biol Chem. 1994;269(51):32667–32671. doi:10.1016/S0021-9258(18)31686-7.
  • Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol. 1981;241(6):E473–480. doi:10.1152/ajpendo.1981.241.6.E473.
  • Crenn P, Cynober L. Effect of intestinal resections on arginine metabolism: practical implications for nutrition support. Curr Opin Clin Nutr Metab Care. 2010;13(1):65–69. doi:10.1097/MCO.0b013e328333c1a8.
  • Luiking YC, Poeze M, Ramsay G, Deutz NE. The role of arginine in infection and sepsis. JPEN J Parenter Enteral Nutr. 2005;29(1S):S70–74. doi:10.1177/01486071050290S1S70.
  • Fritz JH, Adams JH. Arginine cools the inflamed gut. Infect Immun. 2013;81(10):3500–3502. doi:10.1128/IAI.00789-13.
  • Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–340. doi:10.1016/j.cell.2016.01.013.
  • Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020;38(1):23–48. doi:10.1146/annurev-immunol-070119-115104.
  • Sommer F, Backhed F. Know your neighbor: microbiota and host epithelial cells interact locally to control intestinal function and physiology. Bioessays. 2016;38(5):455–464. doi:10.1002/bies.201500151.
  • Wrage M, Kaltwasser J, Menge S, Mattner J. CD101 as an indicator molecule for pathological changes at the interface of host-microbiota interactions. Int J Med Microbiol. 2021;311(4):151497. doi:10.1016/j.ijmm.2021.151497.
  • Miner-Williams WM, Moughan PJ. Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev. 2016;29(1):40–59. doi:10.1017/S0954422416000019.
  • Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, Forslund K, Hildebrand F, Prifti E, Falony G, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–381. doi:10.1038/nature18646.
  • Kinashi Y, Hase K. Partners in leaky gut syndrome: intestinal dysbiosis and autoimmunity. Front Immunol. 2021;12:673708. doi:10.3389/fimmu.2021.673708.
  • Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–662. doi:10.1038/s41586-019-1237-9.
  • Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nature Microbiol. 2019;4(2):293–305. doi:10.1038/s41564-018-0306-4.
  • Singh K, Gobert AP, Coburn LA, Barry DP, Allaman M, Asim M, Luis PB, Schneider C, Milne GL, Boone HH, et al. Dietary arginine regulates severity of experimental colitis and affects the colonic microbiome. Front Cell Infect Microbiol. 2019;9:66. doi:10.3389/fcimb.2019.00066.
  • Bertrand J, Goichon A, Dechelotte P, Coeffier M. Regulation of intestinal protein metabolism by amino acids. Amino Acids. 2013;45(3):443–450. doi:10.1007/s00726-012-1325-8.
  • Davis JS, Anstey NM. Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis. Crit Care Med. 2011;39(2):380–385. doi:10.1097/CCM.0b013e3181ffd9f7.
  • Weiss SL, Haymond S, Ranaivo HR, Wang D, De Jesus VR, Chace DH, Wainwright MS. Evaluation of asymmetric dimethylarginine, arginine, and carnitine metabolism in pediatric sepsis. Pediatr Crit Care Med. 2012;13(4):e210–e218. doi:10.1097/PCC.0b013e318238b5cd.
  • Winkler MS, Nierhaus A, Rösler G, Lezius S, Harlandt O, Schwedhelm SE, Böger RH, Kluge S. Symmetrical (SDMA) and asymmetrical dimethylarginine (ADMA) in sepsis: high plasma levels as combined risk markers for sepsis survival. Crit Care. 2018;22(1):216. doi:10.1186/s13054-018-2090-1.
  • Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–152. doi:10.3945/ajcn.2007.25765.
  • Kao CC, Bandi V, Guntupalli K, Wu M, Castillo L, Jahoor F. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond). 2009;117(1):23–30. doi:10.1042/CS20080444.
  • Villalpando S, Gopal J, Balasubramanyam A, Bandi VP, Guntupalli K, Jahoor F. In vivo arginine production and intravascular nitric oxide synthesis in hypotensive sepsis. Am J Clin Nutr. 2006;84(1):197–203. doi:10.1093/ajcn/84.1.197.
  • Davis JS, Yeo TW, Thomas JH, McMillan M, Darcy CJ, McNeil YR, Cheng AC, Celermajer DS, Stephens DP, Anstey NM, et al. Sepsis-associated microvascular dysfunction measured by peripheral arterial tonometry: an observational study. Crit Care. 2009;13(5):R155. doi:10.1186/cc8055.
  • Singh J, Lee Y, Kellum JA. A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care. 2022;26(1):246. doi:10.1186/s13054-022-04075-0.
  • Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5(8):641–654. doi:10.1038/nri1668.
  • Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–2605. doi:10.1001/jama.2011.1829.
  • Daviaud F, Grimaldi D, Dechartres A, Charpentier J, Geri G, Marin N, Chiche JD, Cariou A, Mira JP, Pène F, et al. Timing and causes of death in septic shock. Ann Intensive Care. 2015;5(1):16. doi:10.1186/s13613-015-0058-8.
  • Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121–137. doi:10.1038/nrneph.2017.165.
  • Costa KA, Soares ADN, Wanner SP, Santos RDGCD, Fernandes SOA, Martins FDS, Nicoli JR, Coimbra CC, Cardoso VN. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male swiss mice subjected to physical exercise under environmental heat stress. J Nutri. 2014;144(2):218–223. doi:10.3945/jn.113.183186.
  • Viana ML, dos Santos RDGC, Generoso SDV, Nicoli JR, Martins FDS, Nogueira-Machado JA, Arantes RME, Correia MITD, Cardoso VN. The role of L-arginine-nitric oxide pathway in bacterial translocation. Amino Acids. 2013;45(5):1089–1096. doi:10.1007/s00726-013-1558-1.
  • Becker RM, Wu G, Galanko JA, Chen W, Maynor AR, Bose CL, Rhoads JM. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr. 2000;137(6):785–793. doi:10.1067/mpd.2000.109145.
  • Richir MC, Siroen MPC, van Elburg RM, Fetter WPF, Quik F, Nijveldt RJ, Heij HA, Smit BJ, Teerlink T, van Leeuwen PAM, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr. 2007;97(5):906–911. doi:10.1017/S0007114507669268.
  • Zamora SA, Amin HJ, McMillan DD, Kubes P, Fick GH, Butzner JD, Parsons HG, Scott RB. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr. 1997;131(2):226–232. doi:10.1016/s0022-3476(97)70158-6.
  • Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res. 2015;77(2):290–297. doi:10.1038/pr.2014.177.
  • Leung KT, Chan KYY, Ma TPY, Yu JWS, Tong JHM, Tam YH, Cheung HM, To KF, Lam HS, Lee KH, et al. Dysregulated expression of arginine metabolic enzymes in human intestinal tissues of necrotizing enterocolitis and response of CaCO2 cells to bacterial components. J Nutr Biochem. 2016;29:64–72. doi:10.1016/j.jnutbio.2015.10.010.
  • Das P, Lahiri A, Lahiri A, Chakravortty D, Manchester M. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6(6):e1000899. doi:10.1371/journal.ppat.1000899.
  • Cuervo H, Guerrero NA, Carbajosa S, Beschin A, De Baetselier P, Gironès N, Fresno M. Myeloid-derived suppressor cells infiltrate the heart in acute trypanosoma cruzi infection. J Immunol. 2011;187(5):2656–2665. doi:10.4049/jimmunol.1002928.
  • Stadelmann B, Hanevik K, Andersson MK, Bruserud O, Svard SG. The role of arginine and arginine-metabolizing enzymes during giardia – host cell interactions in vitro. BMC Microbiol. 2013;13(1):256. doi:10.1186/1471-2180-13-256.
  • Stadelmann B, Merino MC, Persson L, Svard SG, Zilberstein D. Arginine consumption by the intestinal parasite giardia intestinalis reduces proliferation of intestinal epithelial cells. PLoS One. 2012;7(9):e45325. doi:10.1371/journal.pone.0045325.
  • Ortega-Pierres MG, Arguello-Garcia R. Giardia duodenalis: role of secreted molecules as virulent factors in the cytotoxic effect on epithelial cells. Adv Parasitol. 2019;106:129–169. doi:10.1016/bs.apar.2019.07.003.
  • Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, Mobley HLT, Wilson KT. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA. 2001;98(24):13844–13849. doi:10.1073/pnas.241443798.
  • Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids. 2012;43(1):233–244. doi:10.1007/s00726-011-1067-z.
  • Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici A, Rauh M, Daniel C, et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest. 2020;130(11):5703–5720. doi:10.1172/JCI126923.
  • Hong SK, Maltz BE, Coburn LA, Slaughter JC, Chaturvedi R, Schwartz DA, Wilson KT. Increased serum levels of L-arginine in ulcerative colitis and correlation with disease severity. Inflamm Bowel Dis. 2010;16(1):105–111. doi:10.1002/ibd.21035.
  • Coburn LA, Horst SN, Allaman MM, Brown CT, Williams CS, Hodges ME, Druce JP, Beaulieu DB, Schwartz DA, Wilson KT, et al. L-Arginine availability and metabolism is altered in ulcerative colitis. Inflamm Bowel Dis. 2016;22(8):1847–1858. doi:10.1097/MIB.0000000000000790.
  • Li JY, Guo YC, Zhou HF, Yue TT, Wang FX, Sun F, Wang WZ. Arginine metabolism regulates the pathogenesis of inflammatory bowel disease. Nutr Rev. 2022;81(5):578–586. doi:10.1093/nutrit/nuac070.
  • Owczarek D, Cibor D, Mach T. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), arginine, and 8-iso-prostaglandin F2α (8-iso-PGF2α) level in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2010;16(1):52–57. doi:10.1002/ibd.20994.
  • Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, Zhang B, Upadhyay V, Pollard KS, Lynch SV, Turnbaugh PJ, et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe. 2022;30(1):17–30 e19. doi:10.1016/j.chom.2021.11.001.
  • Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. doi:10.1186/gb-2012-13-9-r79.
  • Horowitz S, Binion DG, Nelson VM, Kanaa Y, Javadi P, Lazarova Z, Andrekopoulos C, Kalyanaraman B, Otterson MF, Rafiee P, et al. Increased arginase activity and endothelial dysfunction in human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2007;292(5):G1323–1336. doi:10.1152/ajpgi.00499.2006.
  • Rees CA, Rostad CA, Mantus G, Anderson EJ, Chahroudi A, Jaggi P, Wrammert J, Ochoa JB, Ochoa A, Basu RK, et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc Natl Acad Sci USA. 2021;118(25). doi:10.1073/pnas.2101708118.
  • Reizine F, Lesouhaitier M, Gregoire M, Pinceaux K, Gacouin A, Maamar A, Painvin B, Camus C, Le Tulzo Y, Tattevin P, et al. SARS-CoV-2-induced ARDS associates with MDSC expansion, lymphocyte dysfunction, and arginine shortage. J Clin Immunol. 2021;41(3):515–525. doi:10.1007/s10875-020-00920-5.
  • Hasimi A, Dogan O, Serdar CC, Serdar MA. Association of serum ADMA, SDMA and L-NMMA concentrations with disease progression in COVID-19 patients. Biochem Med (Zagreb). 2023;33:010701. doi:10.11613/BM.2023.010701.
  • Haj AK, Hasan H, Raife TJ. Heritability of protein and metabolite biomarkers associated with COVID-19 severity: a metabolomics and proteomics analysis. Biomolecul. 2022;13(1):46. doi:10.3390/biom13010046.
  • Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 2011;212(3):385–399e1. doi:10.1016/j.jamcollsurg.2010.10.016.
  • Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired amino acid deficiencies: a focus on arginine and glutamine. Nutr Clin Pract. 2017;32(1_suppl):30S–47S. doi:10.1177/0884533617691250.
  • Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24(6):302–306. doi:10.1016/s1471-4906(03)00132-7.
  • Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LM, Yang C, Emili A, Philpott D, Girardin S, et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe. 2012;11(6):563–575. doi:10.1016/j.chom.2012.04.012.
  • Krzystek-Korpacka M, Fleszar MG, Bednarz-Misa I, Lewandowski Ł, Szczuka I, Kempiński R, Neubauer K. Transcriptional and metabolomic analysis of L-Arginine/nitric oxide pathway in inflammatory bowel disease and its association with local inflammatory and angiogenic response: preliminary findings. IJMS. 2020;21:1641. doi:10.3390/ijms21051641.
  • Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307–321. doi:10.1016/j.ccc.2019.12.009.
  • Guslandi M. Nitric oxide and inflammatory bowel diseases. Eur J Clin Invest. 1998;28(11):904–907. doi:10.1046/j.1365-2362.1998.00377.x.
  • Wang X, Sadeghirad B, Morgan RL, Zeratkaar D, Chang Y, Crandon HN, Couban R, Foroutan F, Florez ID. Amino acids for the prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis. Sci Rep. 2022;12(1):18333. doi:10.1038/s41598-022-21318-w.
  • Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev. 2021;101(3):1371–1426. doi:10.1152/physrev.00026.2020.s
  • Zhuang Y, Wang XX, He J, He S, Yin Y. Recent advances in understanding of amino acid signaling to mTORC1 activation. Front Biosci. 2019;24(5):971–982. doi:10.2741/4762.
  • Halaby MJ, Hezaveh K, Lamorte S, Ciudad MT, Kloetgen A, MacLeod BL, Guo M, Chakravarthy A, Medina TDS, Ugel S, et al. GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Sci Immunol. 2019;4(42). doi:10.1126/sciimmunol.aax8189.
  • Averous J, Lambert-Langlais S, Mesclon F, Carraro V, Parry L, Jousse C, Bruhat A, Maurin AC, Pierre P, Proud CG, et al. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Sci Rep. 2016;6(1):27698. doi:10.1038/srep27698.
  • Jungnickel KEJ, Parker JL, Newstead S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun. 2018;9(1):550. doi:10.1038/s41467-018-03066-6.
  • Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine nutrition and metabolism in ruminants. Adv Exp Med Biol. 2022;1354:177–206. doi:10.1007/978-3-030-85686-1_10.
  • de Jonge WJ, Hallemeesch MM, Kwikkers KL, Ruijter JM, de Gier-de Vries C, van Roon MA, Meijer AJ, Marescau B, De Deyn PP, Deutz NE, et al. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle, and lymphoid development. Am J Clin Nutr. 2002;76(1):128–140. doi:10.1093/ajcn/76.1.128.
  • Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309(6):C350–360. doi:10.1152/ajpcell.00191.2015.
  • Boger RH. The pharmacodynamics of L-arginine. J Nutr. 2007;137(6):1650S–1655S. doi:10.1093/jn/137.6.1650S.
  • Hernandez VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev. 2021;45(6). doi:10.1093/femsre/fuab034.
  • Menezes-Garcia Z, Kumar A, Zhu W, Winter SE, Sperandio V. L-Arginine sensing regulates virulence gene expression and disease progression in enteric pathogens. Proc Natl Acad Sci USA. 2020;117(22):12387–12393. doi:10.1073/pnas.1919683117.
  • Casiano-Colon A, Marquis RE. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol. 1988;54(6):1318–1324. doi:10.1128/aem.54.6.1318-1324.1988.
  • Schofield PJ, Costello M, Edwards MR, O’Sullivan WJ. The arginine dihydrolase pathway is present in giardia intestinalis. Int J Parasitol. 1990;20(5):697–699. doi:10.1016/0020-7519(90)90133-8.
  • Abolins S, King EC, Lazarou L, Weldon L, Hughes L, Drescher P, Raynes JG, Hafalla JCR, Viney ME, Riley EM, et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat Commun. 2017;8(1):14811. doi:10.1038/ncomms14811.
  • Ilgu H, Jeckelmann JM, Gapsys V, Ucurum Z, de Groot BL, Fotiadis D. Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC. Proc Natl Acad Sci USA. 2016;113(37):10358–10363. doi:10.1073/pnas.1605442113.
  • Ghazisaeedi F, Meens J, Hansche B, Maurischat S, Schwerk P, Goethe R, Wieler LH, Fulde M, Tedin K. A virulence factor as a therapeutic: the probiotic enterococcus faecium SF68 arginine deiminase inhibits innate immune signaling pathways. Gut Microbes. 2022;14(1):2106105. doi:10.1080/19490976.2022.2106105.
  • Kawatra A, Dhankhar R, Gulati P. Microbial arginine deiminase: a multifaceted green catalyst in biomedical sciences. Int J Biol Macromol. 2022;196:151–162. doi:10.1016/j.ijbiomac.2021.12.015.
  • Dave K, Ahuja M, Jayashri TN, Sirola RB, Punekar NS. A novel selectable marker based on aspergillus niger arginase expression. Enzyme Microb Technol. 2012;51(1):53–58. doi:10.1016/j.enzmictec.2012.04.001.
  • Davis RH. Compartmental and regulatory mechanisms in the arginine pathways of neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev. 1986;50(3):280–313. doi:10.1128/mr.50.3.280-313.1986.
  • Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes. 2019;10(2):159–171. doi:10.1080/19490976.2018.1494466.
  • Kurihara S. Polyamine metabolism and transport in gut microbes. Biosci Biotechnol Biochem. 2022;86:957–966. doi:10.1093/bbb/zbac080.
  • Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD. Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis. 2021;102:566–570. doi:10.1016/j.ijid.2020.10.100.
  • Gogoi M, Datey A, Wilson KT, Chakravortty D. Dual role of arginine metabolism in establishing pathogenesis. Curr Opin Microbiol. 2016;29:43–48. doi:10.1016/j.mib.2015.10.005.
  • Galan JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014;68(1):415–438. doi:10.1146/annurev-micro-092412-155725.
  • Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett. 2018;365(19). doi:10.1093/femsle/fny201.
  • Araujo-Garrido JL, Bernal-Bayard J, Ramos-Morales F. Type III secretion effectors with arginine N-Glycosyltransferase activity. Microorgan. 2020;8(3):357. doi:10.3390/microorganisms8030357.
  • Schaffler H, Breitruck A. Clostridium difficile - from colonization to infection. Front Microbiol. 2018;9:646. doi:10.3389/fmicb.2018.00646.
  • Anderson A, Click B, Ramos-Rivers C, Cheng D, Babichenko D, Koutroubakis IE, Hashash JG, Schwartz M, Swoger J, Barrie AM, et al. Lasting impact of clostridium difficile infection in inflammatory bowel disease: a propensity score matched analysis. Inflamm Bowel Dis. 2017;23(12):2180–2188. doi:10.1097/MIB.0000000000001251.
  • Dai C, Jiang M, Sun MJ. The impact of clostridium difficile infection on mortality in patients with inflammatory bowel disease. J Clin Gastroenterol. 2019;53(2):155. doi:10.1097/MCG.0000000000000996.
  • Bossuyt P, Verhaegen J, Van Assche G, Rutgeerts P, Vermeire S. Increasing incidence of clostridium difficile-associated diarrhea in inflammatory bowel disease. J Crohns Colitis. 2009;3(1):4–7. doi:10.1016/j.crohns.2008.09.003.
  • Clayton EM, Rea MC, Shanahan F, Quigley EMM, Kiely B, Hill C, Ross RP. The vexed relationship between clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am J Gastroenterol. 2009;104(5):1162–1169. doi:10.1038/ajg.2009.4.
  • Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med. 2018;10(464). doi:10.1126/scitranslmed.aam7019.
  • Pruss KM, Enam F, Battaglioli E, DeFeo M, Diaz OR, Higginbottom SK, Fischer CR, Hryckowian AJ, Van Treuren W, Dodd D, et al. Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization. Nat Metab. 2022;4(1):19–28. doi:10.1038/s42255-021-00506-4.
  • Karasawa T, Maegawa T, Nojiri T, Yamakawa K, Nakamura S. Effect of arginine on toxin production by clostridium difficile in defined medium. Microbiol Immunol. 1997;41(8):581–585. doi:10.1111/j.1348-0421.1997.tb01895.x.
  • Smith AB, Jenior ML, Keenan O, Hart JL, Specker J, Abbas A, Rangel PC, Di C, Green J, Bustin KA, et al. Enterococci enhance clostridioides difficile pathogenesis. Nature. 2022;611(7937):780–786. doi:10.1038/s41586-022-05438-x.
  • Sokol H, Jegou S, McQuitty C, Straub M, Leducq V, Landman C, Kirchgesner J, Le Gall G, Bourrier A, Nion-Larmurier I, et al. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and clostridium difficile infection. Gut Microbes. 2018;9(1):55–60. doi:10.1080/19490976.2017.1361092.
  • Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA, Finlay BB, Frankel G. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12(9):612–623. doi:10.1038/nrmicro3315.
  • Pifer R, Russell RM, Kumar A, Curtis MM, Sperandio V. Redox, amino acid, and fatty acid metabolism intersect with bacterial virulence in the gut. Proc Natl Acad Sci USA. 2018;115(45):E10712–E10719. doi:10.1073/pnas.1813451115.
  • Canonaco F, Schlattner U, Wallimann T, Sauer U. Functional expression of arginine kinase improves recovery from pH stress of escherichia coli. Biotechnol Lett. 2003;25(13):1013–1017. doi:10.1023/a:1024172518062.
  • Nicholson B, Manner CK, Kleeman J, MacLeod CL. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J Biol Chem. 2001;276(19):15881–15885. doi:10.1074/jbc.M010030200.
  • Chaturvedi R, Asim M, Hoge S, Lewis ND, Singh K, Barry DP, de Sablet T, Piazuelo MB, Sarvaria AR, Cheng Y, et al. Polyamines impair immunity to helicobacter pylori by inhibiting L-Arginine uptake required for nitric oxide production. Gastroenterol. 2010;139(5):1686–1698. doi:10.1053/j.gastro.2010.06.060.
  • Singh K, Coburn LA, Barry DP, Asim M, Scull BP, Allaman MM, Lewis ND, Washington MK, Rosen MJ, Williams CS, et al. Deletion of cationic amino acid transporter 2 exacerbates dextran sulfate sodium colitis and leads to an IL-17-predominant T cell response. Am J Physiol Gastrointest Liver Physiol. 2013;305(3):G225–240. doi:10.1152/ajpgi.00091.2013.
  • Singh K, Al-Greene NT, Verriere TG, Coburn LA, Asim M, Barry DP, Allaman MM, Hardbower DM, Delgado AG, Piazuelo MB, et al. The L-Arginine transporter solute carrier family 7 member 2 mediates the immunopathogenesis of attaching and effacing bacteria. PLoS Pathog. 2016;12(10):e1005984. doi:10.1371/journal.ppat.1005984.
  • Otake T, Fujimoto M, Hoshino Y, Ishihara T, Haneda T, Okada N, Miki T. Twin-arginine translocation system is involved in citrobacter rodentium fitness in the intestinal tract. Infect Immun. 2020;88(3). doi:10.1128/IAI.00892-19.
  • Lee PA, Tullman-Ercek D, Georgiou G. The bacterial twin-arginine translocation pathway. Annu Rev Microbiol. 2006;60(1):373–395. doi:10.1146/annurev.micro.60.080805.142212.
  • Fujimoto M, Goto R, Hirota R, Ito M, Haneda T, Okada N, Miki T. Tat-exported peptidoglycan amidase-dependent cell division contributes to salmonella typhimurium fitness in the inflamed gut. PLoS Pathog. 2018;14(10):e1007391. doi:10.1371/journal.ppat.1007391.
  • Kaiser P, Diard M, Stecher B, Hardt WD. The streptomycin mouse model for salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response. Immunol Rev. 2012;245(1):56–83. doi:10.1111/j.1600-065X.2011.01070.x.
  • Hapfelmeier S, Hardt WD. A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol. 2005;13(10):497–503. doi:10.1016/j.tim.2005.08.008.
  • Giordano NP, Mettlach JA, Dalebroux ZD, Raffatellu M. Conserved tandem arginines for PbgA/YejM allow salmonella typhimurium to regulate LpxC and control lipopolysaccharide biogenesis during infection. Infect Immun. 2022;90(2):e0049021. doi:10.1128/IAI.00490-21.
  • El Qaidi S, Scott NE, Hays MP, Hardwidge PR. Arginine glycosylation regulates UDP-GlcNAc biosynthesis in salmonella enterica. Sci Rep. 2022;12(1):5293. doi:10.1038/s41598-022-09276-9.
  • Xue J, Huang Y, Zhang H, Hu J, Pan X, Peng T, Lv J, Meng K, Li S. Arginine GlcNAcylation and activity regulation of PhoP by a type III secretion system effector in salmonella. Front Microbiol. 2021;12:825743. doi:10.3389/fmicb.2021.825743.
  • Park JB, Kim YH, Yoo Y, Kim J, Jun SH, Cho JW, El Qaidi S, Walpole S, Monaco S, García-García AA, et al. Structural basis for arginine glycosylation of host substrates by bacterial effector proteins. Nat Commun. 2018;9(1):4283. doi:10.1038/s41467-018-06680-6.
  • Newson JM, Scott N, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C, Gan J, Wang N, Strugnell RA, Brown NF, Cygler M, et al. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Mol Cell Proteom. 2019;18(6):1138–1156. doi:10.1074/mcp.RA118.001093.
  • Scott NE, Giogha C, Pollock GL, Kennedy CL, Webb AI, Williamson NA, Pearson JS, Hartland EL. The bacterial arginine glycosyltransferase effector NleB preferentially modifies fas-associated death domain protein (FADD). J Biol Chem. 2017;292(42):17337–17350. doi:10.1074/jbc.M117.805036.
  • Schmid J, Heider D, Wendel NJ, Sperl N, Sieber V. Bacterial glycosyltransferases: challenges and opportunities of a highly diverse enzyme class toward tailoring natural products. Front Microbiol. 2016;7:182. doi:10.3389/fmicb.2016.00182.
  • Mills E, Petersen E, Kulasekara BR, Miller SI. A direct screen for c-di-GMP modulators reveals a salmonella typhimurium periplasmic ʟ-arginine–sensing pathway. Sci Signal. 2015;8(380):ra57. doi:10.1126/scisignal.aaa1796.
  • Yucel B, Robinson GK, Shepherd M. The copper-responsive ScsC protein of salmonella promotes intramacrophage survival and interacts with the arginine sensor artI. FEBS J. 2020;287(17):3827–3840. doi:10.1111/febs.15285.
  • Guerra PR, Liu G, Lemire S, Nawrocki A, Kudirkiene E, Møller-Jensen J, Olsen JE, Jelsbak L. Polyamine depletion has global effects on stress and virulence gene expression and affects HilA translation in salmonella enterica serovar typhimurium. Res Microbiol. 2020;171(3–4):143–152. doi:10.1016/j.resmic.2019.12.001.
  • Deka G, Bisht S, Savithri HS, Murthy MRN. Comparative structural and enzymatic studies on salmonella typhimurium diaminopropionate ammonia lyase reveal its unique features. J Struct Biol. 2018;202(2):118–128. doi:10.1016/j.jsb.2017.12.012.
  • Kieboom J, Abee T. Arginine-dependent acid resistance in salmonella enterica serovar typhimurium. J Bacteriol. 2006;188(15):5650–5653. doi:10.1128/JB.00323-06.
  • Choi Y, Choi J, Groisman EA, Kang DH, Shin D, Ryu S. Expression of STM4467-encoded arginine deiminase controlled by the STM4463 regulator contributes to salmonella enterica serovar typhimurium virulence. Infect Immun. 2012;80(12):4291–4297. doi:10.1128/IAI.00880-12.
  • Einarsson E, Ma’ayeh S, Svard SG. An up-date on giardia and giardiasis. Curr Opin Microbiol. 2016;34:47–52. doi:10.1016/j.mib.2016.07.019.
  • Fink MY, Singer SM. The intersection of immune responses, microbiota, and pathogenesis in giardiasis. Trends Parasitol. 2017;33(11):901–913. doi:10.1016/j.pt.2017.08.001.
  • Barash NR, Maloney JG, Singer SM, Dawson SC, Appleton JA. Giardia alters commensal microbial diversity throughout the murine gut. Infect Immun. 2017;85(6). doi:10.1128/IAI.00948-16.
  • Barash NR, Nosala C, Pham JK, McInally SG, Gourguechon S, McCarthy-Sinclair B, Dawson SC. Giardia colonizes and encysts in high-density foci in the murine small intestine. mSphere. 2017;2(3). doi:10.1128/mSphere.00343-16.
  • Halliez MC, Buret AG. Extra-intestinal and long term consequences of giardia duodenalis infections. World J Gastroenterol. 2013;19(47):8974–8985. doi:10.3748/wjg.v19.i47.8974.
  • Oberhuber G, Kastner N, Stolte M. Giardiasis: a histologic analysis of 567 cases. Scand J Gastroenterol. 1997;32(1):48–51. doi:10.3109/00365529709025062.
  • Dann SM, Le CHY, Hanson EM, Ross MC, Eckmann L. Giardia infection of the small intestine induces chronic colitis in genetically susceptible hosts. J Immunol. 2018;201(2):548–559. doi:10.4049/jimmunol.1700824.
  • Ringqvist E, Palm JED, Skarin H, Hehl AB, Weiland M, Davids BJ, Reiner DS, Griffiths WJ, Eckmann L, Gillin FD, et al. Release of metabolic enzymes by giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol. 2008;159(2):85–91. doi:10.1016/j.molbiopara.2008.02.005.
  • Maloney J, Keselman A, Li E, Singer SM. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during giardia lamblia infection. Microbes Infect. 2015;17(6):462–467. doi:10.1016/j.micinf.2015.03.006.
  • Eckmann L, Laurent F, Langford TD, Hetsko ML, Smith JR, Kagnoff MF, Gillin FD. Nitric oxide production by human intestinal epithelial cells and competition for arginine as potential determinants of host defense against the lumen-dwelling pathogen giardia lamblia. J Immunol. 2000;164(3):1478–1487. doi:10.4049/jimmunol.164.3.1478.
  • Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15(1):85–94. doi:10.1016/S1473-3099(14)70772-8.
  • de Graaf DC, Vanopdenbosch E, Ortega-Mora LM, Abbassi H, Peeters JE. A review of the importance of cryptosporidiosis in farm animals. Int J Parasitol. 1999;29(8):1269–1287. doi:10.1016/s0020-7519(99)00076-4.
  • Rahman SU, Gong H, Mi R, Huang Y, Han X, Chen Z. Chitosan protects immunosuppressed mice against cryptosporidium parvum infection through TLR4/STAT1 signaling pathways and gut microbiota modulation. Front Immunol. 2021;12:784683. doi:10.3389/fimmu.2021.784683.
  • Rahman SU, Zhou K, Zhou S, Sun T, Mi R, Huang Y, Han X, Gong H, Chen Z. Curcumin mitigates cryptosporidium parvum infection through modulation of gut microbiota and innate immune-related genes in immunosuppressed neonatal mice. Microb Pathog. 2022;164:105424. doi:10.1016/j.micpath.2022.105424.
  • Carey MA, Medlock GL, Alam M, Kabir M, Uddin MJ, Nayak U, Papin J, Faruque ASG, Haque R, Petri WA, et al. Megasphaera in the stool microbiota is negatively associated with diarrheal cryptosporidiosis. Clin Infect Dis. 2021;73(6):e1242–e1251. doi:10.1093/cid/ciab207.
  • VanDussen KL, Funkhouser-Jones LJ, Akey ME, Schaefer DA, Ackman K, Riggs MW, Stappenbeck TS, Sibley LD. Neonatal mouse gut metabolites influence cryptosporidium parvum infection in intestinal epithelial cells. mBio. 2020;11(6). doi:10.1128/mBio.02582-20.
  • Russler-Germain EV, Jung J, Miller AT, Young S, Yi J, Wehmeier A, Fox LE, Monte KJ, Chai JN, Kulkarni DH, et al. Commensal cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity. 2021;54(11):2547–2564 e2547. doi:10.1016/j.immuni.2021.10.002.
  • Leitch GJ, He Q, Kozel TR. Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/c mouse model. Infect Immun. 1999;67(11):5885–5891. doi:10.1128/IAI.67.11.5885-5891.1999.
  • Gookin JL, Duckett LL, Armstrong MU, Stauffer SH, Finnegan CP, Murtaugh MP, Argenzio RA. Nitric oxide synthase stimulates prostaglandin synthesis and barrier function in C. parvum-infected porcine ileum. Am J Physiol Gastrointest Liver Physiol. 2004;287(3):G571–581. doi:10.1152/ajpgi.00413.2003.
  • Argenzio RA, Lecce J, Powell DW. Prostanoids inhibit intestinal NaCl absorption in experimental porcine cryptosporidiosis. Gastroenterol. 1993;104(2):440–447. doi:10.1016/0016-5085(93)90412-6.
  • Cole J, Blikslager A, Hunt E, Gookin J, Argenzio R. Cyclooxygenase blockade and exogenous glutamine enhance sodium absorption in infected bovine ileum. Am J Physiol Gastrointest Liver Physiol. 2003;284(3):G516–524. doi:10.1152/ajpgi.00172.2002.
  • Gookin JL, Stauffer SH, Stone MR. Induction of arginase II by intestinal epithelium promotes the uptake of L-Arginine from the lumen of cryptosporidium parvum–infected porcine ileum. J Pediatr Gastroenterol Nutr. 2008;47(4):417–427. doi:10.1097/MPG.0b013e31816f6c02.
  • Azevedo OG, Bolick DT, Roche JK, Pinkerton RF, Lima AAM, Vitek MP, Warren CA, Oriá RB, Guerrant RL. Apolipoprotein E plays a key role against cryptosporidial infection in transgenic undernourished mice. PLoS One. 2014;9(2):e89562. doi:10.1371/journal.pone.0089562.
  • Mennigen R, Bieganski T, Elbers A, Kusche J. The histamine-diamine oxidase system and mucosal proliferation under the influence of aminoguanidine and seventy percent resection of the rat small intestine. Agents Actions. 1989;27(1–2):221–223. doi:10.1007/BF02222245.
  • Miyoshi J, Miyamoto H, Goji T, Taniguchi T, Tomonari T, Sogabe M, Kimura T, Kitamura S, Okamoto K, Fujino Y, et al. Serum diamine oxidase activity as a predictor of gastrointestinal toxicity and malnutrition due to anticancer drugs. J Gastroenterol Hepatol. 2015;30(11):1582–1590. doi:10.1111/jgh.13004.
  • Namikawa T, Fukudome I, Kitagawa H, Okabayashi T, Kobayashi M, Hanazaki K. Plasma diamine oxidase activity is a useful biomarker for evaluating gastrointestinal tract toxicities during chemotherapy with oral fluorouracil anti-cancer drugs in patients with gastric cancer. Oncology. 2012;82(3):147–152. doi:10.1159/000336799.
  • Fukuda T, Tsukano K, Nakatsuji H, Suzuki K. Plasma diamine oxidase activity decline with diarrhea severity in calves indicating systemic dysfunction related to intestinal mucosal damage. Res Vet Sci. 2019;126:127–130. doi:10.1016/j.rvsc.2019.08.027.
  • Tsukano K, Lakritz J, Suzuki K. Plasma amino acid status is useful for understanding intestinal mucosal damage in calves with cryptosporidiosis. Amino Acids. 2020;52(10):1459–1464. doi:10.1007/s00726-020-02904-6.
  • Meingast CL, Joshi PU, Turpeinen DG, Xu X, Holstein M, Feroz H, Ranjan S, Ghose S, Li ZJ, Heldt CL, et al. Physiochemical properties of enveloped viruses and arginine dictate inactivation. Biotechnol J. 2021;16(7):e2000342. doi:10.1002/biot.202000342.
  • Ikeda K, Yamasaki H, Minami S, Suzuki Y, Tsujimoto K, Sekino Y, IRIE H, Arakawa T, Koyama AH. Arginine inactivates human herpesvirus 2 and inhibits genital herpesvirus infection. Int J Mol Med. 2012;30(6):1307–1312. doi:10.3892/ijmm.2012.1149.
  • Park JH, Kang I, Kim HC, Lee Y, Lee SK, Lee HK. Obesity enhances antiviral immunity in the genital mucosa through a microbiota-mediated effect on γδ T cells. Cell Rep. 2022;41(6):111594. doi:10.1016/j.celrep.2022.111594.
  • Adiliaghdam F, Amatullah H, Digumarthi S, Saunders TL, Rahman RU, Wong LP, Sadreyev R, Droit L, Paquette J, Goyette P, et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol. 2022;7(70):eabn6660. doi:10.1126/sciimmunol.abn6660.
  • Norman JM, Handley S, Baldridge M, Droit L, Liu C, Keller B, Kambal A, Monaco C, Zhao G, Fleshner P, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160(3):447–460. doi:10.1016/j.cell.2015.01.002.
  • Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, Danese S. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes. 2019;10(2):149–158. doi:10.1080/19490976.2018.1511664.
  • Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, Walmsley SL, Mazzulli T, Avendano M, Derkach P, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289(21):2801–2809. doi:10.1001/jama.289.21.JOC30885.
  • Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, Ng YY, Chu MY, Chung TWH, Tam AR, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterol. 2020;159(1):81–95. doi:10.1053/j.gastro.2020.03.065.
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-7.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCov spike in the prefusion conformation. Sci. 2020;367(6483):1260–1263. doi:10.1126/science.abb2507.
  • Patankar JV, Chiriac MT, Lehmann M, Kühl AA, Atreya R, Becker C, Gonzalez-Acera M, Schmitt H, Gamez-Belmonte R, Mahapatro M, et al. Severe acute respiratory syndrome coronavirus 2 attachment receptor angiotensin-converting enzyme 2 is decreased in crohn’s disease and regulated by microbial and inflammatory signaling. Gastroenterol. 2021;160(3):925–928 e924. doi:10.1053/j.gastro.2020.10.021.
  • Zhang H, Li HB, Lyu JR, Lei XM, Li W, Wu G, Lyu J, Dai ZM. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCov infection. Int J Infect Dis. 2020;96:19–24. doi:10.1016/j.ijid.2020.04.027.
  • Atkinson S, Sieffert E, Bihari D. A prospective, randomized, double-blind, controlled clinical trial of enteral immunonutrition in the critically ill. Guy’s hospital intensive care group. Crit Care Med. 1998;26(7):1164–1172. doi:10.1097/00003246-199807000-00013.
  • Avontuur JA, Stam TC, Eggermont AMM, Braining HA, Jongen-Lavrencic M, van Amsterdam JGC. Effect of l-NAME, an inhibitor of nitric oxide synthesis, on plasma levels of IL-6, IL-8, TNFα and nitrite/nitrate in human septic shock. Intensive Care Med. 1998;24(7):673–679. doi:10.1007/s001340050643.
  • Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G, Tognoni G. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 2003;29(5):834–840. doi:10.1007/s00134-003-1711-5.
  • Buhrer C, Fischer HS, Wellmann S. Nutritional interventions to reduce rates of infection, necrotizing enterocolitis and mortality in very preterm infants. Pediatr Res. 2020;87(2):371–377. doi:10.1038/s41390-019-0630-2.
  • Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG, Scott RB. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr. 2002;140(4):425–431. doi:10.1067/mpd.2002.123289.
  • Shah PS, Shah VS, Kelly LE. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst Rev. 2017;4: CD004339. doi:10.1002/14651858.CD004339.pub4.
  • Zhang Y, Gu F, Wang F, Zhang Y. Effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection. Pak J Med Sci. 2016;32(3):599–603. doi:10.12669/pjms.323.9717.
  • Nielsen AA, Nielsen JN, Grønbæk H, Eivindson M, Vind I, Munkholm P, Brandslund I, Hey H. Impact of enteral supplements enriched with ω–3 fatty acids and/or ω–6 fatty acids, arginine and ribonucleic acid compounds on leptin levels and nutritional status in active crohn’s disease treated with prednisolone. Digestion. 2007;75(1):10–16. doi:10.1159/000101560.
  • Bologna C, Pone E. Clinical study on the efficacy and safety of arginine administered orally in association with other active ingredients for the prevention and treatment of sarcopenia in patients with COVID-19-related pneumonia, hospitalized in a sub-intensive care unit. Healthcare (Basel). 2022;10(1):162. doi:10.3390/healthcare10010162.
  • Tosato M, Calvani R, Picca A, Ciciarello F, Galluzzo V, Coelho-Júnior HJ, Di Giorgio A, Di Mario C, Gervasoni J, Gremese E, et al. Effects of l-Arginine plus vitamin C supplementation on physical performance, endothelial function, and persistent fatigue in adults with long COVID: a single-blind randomized controlled trial. Nutrients. 2022;14(23):4984. doi:10.3390/nu14234984.
  • Fiorentino G, Coppola A, Izzo R, Annunziata A, Bernardo M, Lombardi A, Trimarco V, Santulli G, Trimarco B. Effects of adding L-arginine orally to standard therapy in patients with COVID-19: a randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMed. 2021;40:101125. doi:10.1016/j.eclinm.2021.101125.
  • Muralidharan J, Kashyap SP, Jacob M, Ollapally A, Idiculla J, Raj JM, Thomas T, Kurpad AV. The effect of l-arginine supplementation on amelioration of oxygen support in severe COVID-19 pneumonia. Clin Nutr ESPEN. 2022;52:431–435. doi:10.1016/j.clnesp.2022.09.024.
  • Izzo R, Trimarco V, Mone P, Aloè T, Capra Marzani M, Diana A, Fazio G, Mallardo M, Maniscalco M, Marazzi G, et al. Combining L-Arginine with vitamin C improves long-COVID symptoms: the LINCOLN survey. Pharmacol Res. 2022;183:106360. doi:10.1016/j.phrs.2022.106360.
  • Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Leggeri C, Cinelli G, Tarsitano MG, Caparello G, Carrano E, et al. COVID-19: is there a role for immunonutrition in obese patient? J Transl Med. 2020;18(1):415. doi:10.1186/s12967-020-02594-4.
  • Saithong S, Worasilchai N, Saisorn W, Udompornpitak K, Bhunyakarnjanarat T, Chindamporn A, Tovichayathamrong P, Torvorapanit P, Chiewchengchol D, Chancharoenthana W, et al. Neutrophil extracellular traps in severe SARS-CoV-2 infection: a possible impact of LPS and (1→3)-β-D-glucan in blood from gut translocation. Cells. 2022;11(7):1103. doi:10.3390/cells11071103.
  • He Q, Shi Y, Xing H, Tang Q, Liu J, Li C, Zhang H, Zhang B, Zhang J, Chen X, et al. Modulating effect of xuanfei baidu granule on host metabolism and gut microbiome in rats. Front Pharmacol. 2022;13:922642. doi:10.3389/fphar.2022.922642.
  • Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, Ntinopoulou M, Sertaridou E, Tsironidou V, Tsigalou C, et al. Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–6157. doi:10.1172/JCI141374.
  • Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, Schneider AH, Caetité D, Tavares LA, Paiva IM, et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12). doi:10.1084/jem.20201129.
  • Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic review and meta-analysis. J Med Virol. 2021;93(5):2662–2674. doi:10.1002/jmv.26677.
  • Yang Y, Wang L, Liu J, Fu S, Zhou L, Wang Y. Obesity or increased body mass index and the risk of severe outcomes in patients with COVID-19: a protocol for systematic review and meta-analysis. Med. 2022;101(1):e28499. doi:10.1097/MD.0000000000028499.
  • Zhang X, Lewis AM, Moley JR, Brestoff JR. A systematic review and meta-analysis of obesity and COVID-19 outcomes. Sci Rep. 2021;11(1):7193. doi:10.1038/s41598-021-86694-1.
  • Marti ILAA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci. 2021;78(13):5303–5324. doi:10.1007/s00018-021-03828-4.
  • Strazar M, Temba GS, Vlamakis H, Kullaya VI, Lyamuya F, Mmbaga BT, Joosten LAB, van der Ven AJAM, Netea MG, de Mast Q, et al. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nat Commun. 2021;12(1):4845. doi:10.1038/s41467-021-25213-2.
  • Kim YJ, Lee JY, Lee JJ, Jeon SM, Silwal P, Kim IS, Kim HJ, Park CR, Chung C, Han JE, et al. Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection. Gut Microbes. 2022;14(1):2073132. doi:10.1080/19490976.2022.2073132.
  • Crowther RR, Qualls JE. Metabolic regulation of immune responses to mycobacterium tuberculosis: a spotlight on L-Arginine and L-Tryptophan metabolism. Front Immunol. 2020;11:628432. doi:10.3389/fimmu.2020.628432.
  • Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P, Grehn C, Seidel K, et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell. 2019;176(6):1340–1355 e1315. doi:10.1016/j.cell.2019.01.041.
  • Shao TY, Ang WXG, Jiang TT, Huang FS, Andersen H, Kinder JM, Pham G, Burg AR, Ruff B, Gonzalez T, et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe. 2019;25(3):404–417 e406. doi:10.1016/j.chom.2019.02.004.
  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE. COVID-19 and L-arginine supplementations: yet to find the missed key. Curr Protein Pept Sci. 2022;23(3):166–169. doi:10.2174/1389203723666220512104039.
  • Arrieta MC, Arévalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, Vaca M, Boutin RCT, Morien E, Jin M, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424–434 e410. doi:10.1016/j.jaci.2017.08.041.
  • Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176.
  • Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the human mycobiome over the first month of life and across body sites. mSystems. 2018;3(3). doi:10.1128/mSystems.00140-17.
  • Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352–358. doi:10.1080/21505594.2016.1247140.
  • Li J, Chen D, Yu B, He J, Zheng P, Mao X, Yu J, Luo J, Tian G, Huang Z, et al. Fungi in gastrointestinal tracts of human and mice: from community to functions. Microb Ecol. 2018;75(4):821–829. doi:10.1007/s00248-017-1105-9.
  • van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin JB, Vicentini FA, Keenan CM, Ramay HR, Samara J, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11(1):2577. doi:10.1038/s41467-020-16431-1.
  • Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2019;16:331–345. doi:10.1038/s41575-019-0121-2.
  • Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as part of the microbiota and interactions with intestinal bacteria. Curr Top Microbiol Immunol. 2019;422:265–301. doi:10.1007/82_2018_117.
  • Buonomo EL, Petri WA Jr. The microbiota and immune response during clostridium difficile infection. Anaerobe. 2016;41:79–84. doi:10.1016/j.anaerobe.2016.05.009.
  • Chao A, Vazquez JA. Fungal infections of the gastrointestinal tract. Gastroenterol Clin North Am. 2021;50(2):243–260. doi:10.1016/j.gtc.2021.02.009.
  • Alonso-Monge R, Gresnigt MS, Roman E, Hube B, Pla J, Jarosz D. Candida albicans colonization of the gastrointestinal tract: a double-edged sword. PLoS Pathog. 2021;17(7):e1009710. doi:10.1371/journal.ppat.1009710.
  • Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, Lai GC, Srinivasan KG, Yurieva M, Liao W, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Sci. 2018;362(6414):589–595. doi:10.1126/science.aat0537.
  • Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, Migaud M, Gao IH, Lin WY, Kusakabe T, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017–1031.e14. doi:10.1016/j.cell.2021.01.016.
  • Uppuluri P, Lin L, Alqarihi A, Luo G, Youssef EG, Alkhazraji S, Yount NY, Ibrahim BA, Bolaris MA, Edwards JE, et al. The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for acinetobacter bacterial infection. PLoS Pathog. 2018;14(5):e1007056. doi:10.1371/journal.ppat.1007056.
  • Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest. 2022;132(5). doi:10.1172/JCI155786.
  • Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, Baldassano RN, Lewis JD, Bushman FD, Wu GD, et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1948–1956. doi:10.1097/MIB.0000000000000454.
  • Lewis JD, Chen E, Baldassano R, Otley A, Griffiths A, Lee D, Bittinger K, Bailey A, Friedman E, Hoffmann C, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric crohn’s disease. Cell Host Microbe. 2015;18(4):489–500. doi:10.1016/j.chom.2015.09.008.
  • Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–1048. doi:10.1136/gutjnl-2015-310746.
  • Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS, Nielsen J, Uhlen M, Moyes DL, Shoaie S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun Biol. 2022;5(1):1013. doi:10.1038/s42003-022-03955-z.
  • Jimenez-Lopez C, Collette JR, Brothers KM, Shepardson KM, Cramer RA, Wheeler RT, Lorenz MC. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell. 2013;12(1):91–100. doi:10.1128/EC.00290-12.
  • Ghosh S, Navarathna DHMLP, Roberts DD, Cooper JT, Atkin AL, Petro TM, Nickerson KW. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun. 2009;77(4):1596–1605. doi:10.1128/IAI.01452-08.
  • Wagener J, MacCallum DM, Brown GD, Gow NA, Doering TL. Candida albicans chitin increases Arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions. mBio. 2017;8(1). doi:10.1128/mBio.01820-16.
  • Nishimura A, Nakagami K, Kan K, Morita F, Takagi H. Arginine inhibits saccharomyces cerevisiae biofilm formation by inducing endocytosis of the arginine transporter Can1. Biosci Biotechnol Biochem. 2022;86(9):1300–1307. doi:10.1093/bbb/zbac094.
  • Ma N, Tian Y, Wu Y, Ma X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr Protein Pept Sci. 2017;18(8):795–808. doi:10.2174/1389203718666170216153505.
  • Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol. 2017;17(12):761–773. doi:10.1038/nri.2017.100.
  • Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Caprioli F, Bottiglieri L, Oldani A, Viale G, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Sci. 2015;350(6262):830–834. doi:10.1126/science.aad0135.
  • Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab. 2022;33(4):247–265. doi:10.1016/j.tem.2022.01.002.
  • Wu M, Xiao H, Shao F, Tan B, Hu S. Arginine accelerates intestinal health through cytokines and intestinal microbiota. Int Immunopharmacol. 2020;81:106029. doi:10.1016/j.intimp.2019.106029.
  • Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G, et al. Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr. 2014;144(6):988–995. doi:10.3945/jn.114.192120.
  • Monticelli LA, Buck MD, Flamar AL, Saenz SA, Tait Wojno ED, Yudanin NA, Osborne LC, Hepworth MR, Tran SV, Rodewald HR, et al. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol. 2016;17(6):656–665. doi:10.1038/ni.3421.
  • Holzapfel W, Arini A, Aeschbacher M, Coppolecchia R, Pot B. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef Microbes. 2018;9(3):375–388. doi:10.3920/BM2017.0148.
  • Wunderlich PF, Braun L, Fumagalli I, D’Apuzzo V, Heim F, Karly M, Lodi R, Politta G, Vonbank F, Zeltner L, et al. Double-blind report on the efficacy of lactic acid-producing enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res. 1989;17(4):333–338. doi:10.1177/030006058901700405.
  • Tian J, Utter DR, Cen L, Dong PT, Shi W, Bor B, Qin M, McLean JS, He X. Acquisition of the arginine deiminase system benefits epiparasitic saccharibacteria and their host bacteria in a mammalian niche environment. Proc Natl Acad Sci USA. 2022;119(2). doi:10.1073/pnas.2114909119.
  • Wei Z, Oh J, Flavell RA, Crawford JM. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature. 2022;609(7926):348–353. doi:10.1038/s41586-022-05111-3.
  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity. 1999;10(1):29–38. doi:10.1016/s1074-7613(00)80004-7.
  • Vazquez-Torres A, Baumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol. 2016;29:1–8. doi:10.1016/j.mib.2015.09.002.
  • Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science. 2013;339(6120):708–711. doi:10.1126/science.1232467.
  • Liou MJ, Miller BM, Litvak Y, Nguyen H, Natwick DE, Savage HP, Rixon JA, Mahan SP, Hiyoshi H, Rogers AWL, et al. Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host & Microbe. 2022;30(6):836–847 e836. doi:10.1016/j.chom.2022.04.012.
  • Walker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide. 2018;73:81–88. doi:10.1016/j.niox.2017.06.003.
  • Roediger WE. Review article: nitric oxide from dysbiotic bacterial respiration of nitrate in the pathogenesis and as a target for therapy of ulcerative colitis. Aliment Pharmacol Ther. 2008;27(7):531–541. doi:10.1111/j.1365-2036.2008.03612.x.
  • Moretti C, Zhuge Z, Zhang G, Haworth SM, Paulo LL, Guimarães DD, Cruz JC, Montenegro MF, Cordero-Herrera I, Braga VA, et al. The obligatory role of host microbiota in bioactivation of dietary nitrate. Free Radic Biol Med. 2019;145:342–348. doi:10.1016/j.freeradbiomed.2019.10.003.
  • Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for IBD treatment: are we there yet? Curr Treat Options Gastroenterol. 2019;17(1):115–126. doi:10.1007/s11938-019-00221-w.
  • Nüse B, Mattner J. L-arginine as a novel target for clinical intervention in inflammatory bowel disease. Expl Immunol. 2021;1:80–89. doi:10.37349/ei.2021.00008.
  • Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, Liu C, Klotz L, Stauffer U, Baranzini SE, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA. 2017;114(40):10719–10724. doi:10.1073/pnas.1711233114.
  • Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, Kanner R, Bencosme Y, Lee YK, Hauser SL, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713–10718. doi:10.1073/pnas.1711235114.
  • Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. doi:10.1038/nm.3914.
  • Zhu Q, Hou Q, Huang S, Ou Q, Huo D, Vázquez-Baeza Y, Cen C, Cantu V, Estaki M, Chang H, et al. Compositional and genetic alterations in graves’ disease gut microbiome reveal specific diagnostic biomarkers. Isme J. 2021;15(11):3399–3411. doi:10.1038/s41396-021-01016-7.
  • Hou Q, Dong Y, Huang J, Liao C, Lei J, Wang Y, Lai Y, Bian Y, He Y, Sun J, et al. Exogenous L-arginine increases intestinal stem cell function through CD90+ stromal cells producing mTORC1-induced Wnt2b. Commun Biol. 2020;3(1):611. doi:10.1038/s42003-020-01347-9.
  • Hou Q, Dong Y, Yu Q, Wang B, Le S, Guo Y, Zhang B. Regulation of the paneth cell niche by exogenous L-arginine couples the intestinal stem cell function. Faseb J. 2020;34(8):10299–10315. doi:10.1096/fj.201902573RR.
  • Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–338. doi:10.1038/nrc1074.
  • Li JM, Yang DC, Oldham J, Linderholm A, Zhang J, Liu J, Kenyon NJ, Chen CH. Therapeutic targeting of argininosuccinate synthase 1 (ASS1)-deficient pulmonary fibrosis. Molecular Therapy. 2021;29(4):1487–1500. doi:10.1016/j.ymthe.2021.01.028.
  • McNeal CJ, Meininger CJ, Reddy D, Wilborn CD, Wu G. Safety and effectiveness of Arginine in adults. J Nutr. 2016;146(12):2587S–2593S. doi:10.3945/jn.116.234740.
  • Rosenthal MD, Carrott PW, Patel J, Kiraly L, Martindale RG. Parenteral or enteral arginine supplementation safety and efficacy. J Nutr. 2016;146(12):2594S–2600S. doi:10.3945/jn.115.228544.
  • Lopez LR, Bleich RM, Arthur JC. Microbiota effects on carcinogenesis: initiation, promotion, and progression. Annu Rev Med. 2021;72(1):243–261. doi:10.1146/annurev-med-080719-091604.
  • Stettner N, Rosen C, Bernshtein B, Gur-Cohen S, Frug J, Silberman A, Sarver A, Carmel-Neiderman NN, Eilam R, Biton I, et al. Induction of nitric-oxide metabolism in enterocytes alleviates colitis and inflammation-associated colon cancer. Cell Rep. 2018;23(7):1962–1976. doi:10.1016/j.celrep.2018.04.053.
  • Huang HL, Chen WC, Hsu HP, Cho CY, Hung YH, Wang CY, Lai MD. Silencing of argininosuccinate lyase inhibits colorectal cancer formation. Oncology Reports. 2017;37(1):163–170. doi:10.3892/or.2016.5221.
  • van der Meer JHM, de Boer RJ, Meijer BJ, Smit WL, Vermeulen JLM, Meisner S, van Roest M, Koelink PJ, Dekker E, Hakvoort TBM, et al. Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis. Cell Death Dis. 2021;12(10):897. doi:10.1038/s41419-021-04173-x.
  • Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to clostridium difficile infection. Gut Microbes. 2018;9:497–509. doi:10.1080/19490976.2018.1465158.
  • Panpetch W, Hiengrach P, Nilgate S, Tumwasorn S, Somboonna N, Wilantho A, Chatthanathon P, Prueksapanich P, Leelahavanichkul A. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes. 2020;11(3):465–480. doi:10.1080/19490976.2019.1662712.
  • Bertolini M, Ranjan A, Thompson A, Diaz PI, Sobue T, Maas K, Dongari-Bagtzoglou A. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog. 2019;15(4):e1007717. doi:10.1371/journal.ppat.1007717.
  • Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG, Sarshad AA, Leonardi I, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365(6452). doi:10.1126/science.aaw4361.
  • Lin JD, Devlin JC, Yeung F, McCauley C, Leung JM, Chen Y-H, Cronkite A, Hansen C, Drake-Dunn C, Ruggles KV, et al. Rewilding Nod2 and Atg16l1 mutant mice uncovers genetic and environmental contributions to microbial responses and immune cell composition. Cell Host & Microbe. 2020;27(5):830–840 e834. doi:10.1016/j.chom.2020.03.001.
  • Yeung F, Chen YH, Lin JD, Leung JM, McCauley C, Devlin JC, Hansen C, Cronkite A, Stephens Z, Drake-Dunn C, et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host & Microbe. 2020;27(5):809–822 e806. doi:10.1016/j.chom.2020.02.015.
  • Lapiere A, Richard ML. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut Microbes. 2022;14(1):2105610. doi:10.1080/19490976.2022.2105610.
  • Carbajosa S, Rodríguez-Angulo HO, Gea S, Chillón-Marinas C, Poveda C, Maza MC, Colombet D, Fresno M, Gironès N. L-arginine supplementation reduces mortality and improves disease outcome in mice infected with trypanosoma cruzi. PLoS Negl Trop Dis. 2018;12(1):e0006179. doi:10.1371/journal.pntd.0006179.
  • Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiol. 1996;142(1):99–108. doi:10.1099/13500872-142-1-99.