5,261
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach

, , , , , , , , , , , , , & show all
Article: 2223330 | Received 03 Jan 2023, Accepted 05 Jun 2023, Published online: 14 Jun 2023

References

  • Ruissen MM, Mak AL, Beuers U, Tushuizen ME, Holleboom AG. Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. Eur J Endocrinol. 2020;183(3):R57–15. doi:10.1530/EJE-20-0065.
  • Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, Wai‐Sun Wong V, Yilmaz Y, George J, Fan J, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69(6):2672–2682. doi:10.1002/hep.30251.
  • Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18(4):223–238. doi:10.1038/s41575-020-00381-6.
  • Younossi ZM. Non-alcoholic fatty liver disease – A global public health perspective. J Hepatol. 2019;70(3):531–544. doi:10.1016/j.jhep.2018.10.033.
  • Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A, Nader F, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. doi:10.1016/j.jhep.2019.06.021.
  • Ruissen MM, Mak AL, Beuers U, Tushuizen ME, Holleboom AG. Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. Eur J Endocrinol. 2020;183(3):R57–R73. doi:10.1530/EJE-20-0065.
  • Ekstedt M, Hagström H, Nasr P, Fredrikson M, Stål P, Kechagias S, Hultcrantz R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61(5):1547–1554. doi:10.1002/hep.27368.
  • Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut. 2021;71(9):1867–1875. (Cvd):gutjnl-2021-325724. doi:10.1136/gutjnl-2021-325724.
  • Hanssen NMJ, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab. 2021;33(6):1098–1110. doi:10.1016/j.cmet.2021.05.005.
  • Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity? Gastroenterology. 2020;158(7):1881–1898. doi:10.1053/j.gastro.2020.01.049.
  • van der Vossen EWJ, Bastos D, Stols-Gonçalves D, van der Vossen EWJ, de Goffau MC, Davids M, Pereira JPB, Li Yim AYF, Henneman P, Netea MG, et al. Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes. 2021;13(1):1–18. doi:10.1080/19490976.2021.1993513.
  • Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–1044. doi:10.1016/j.cmet.2019.03.009.
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–463. doi:10.1038/nature02625.
  • Ansari I, Raddatz G, Gutekunst J, Ridnik M, Cohen D, Abu-Remaileh M, Tuganbaev T, Shapiro H, Pikarsky E, Elinav E, et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol. 2020;5(4):610–619. doi:10.1038/s41564-019-0659-3.
  • Yao H, Fan C, Lu Y, Fan X, Xia L, Li P, Wang R, Tang T, Wang Y, Qi K, et al. Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr. 2020;15(1). doi:10.1186/s12263-020-00671-3.
  • Ramos-Molina B, Sánchez-Alcoholado L, Cabrera-Mulero A,Ramos-Molina B, Sánchez-Alcoholado L, Cabrera-Mulero A, Lopez-Dominguez R, Carmona-Saez P, Garcia-Fuentes E, Moreno-Indias I, Tinahones FJ. Gut microbiota composition is associated with the global DNA methylation pattern in obesity. Front Genet. 2019;10(JUL):1–9. doi:10.3389/fgene.2019.00613.
  • Yao H, Mo S, Wang J, Li Y, Wang C-Z, Wan J-Y, Zhang Z, Chen Y, Sun R, Yuan C-S, et al. Genome-wide DNA methylation profiles of phlegm-dampness constitution. Cell Physiol Biochem. 2018;45(5):1999–2008. doi:10.1159/000487976.
  • Guo W, Zhang Z, Li L, Liang X, Wu Y, Wang X, Ma H, Cheng J, Zhang A, Tang P, et al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol Res. 2022;182(11):106355. doi:10.1016/j.phrs.2022.106355.
  • Stols-Gonçalves D, Tristão LS, Henneman P, Nieuwdorp M. Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease. Curr Diab Rep. 2019;19(6):1–9. doi:10.1007/s11892-019-1151-4.
  • Hyun J, Jung Y. Dna methylation in nonalcoholic fatty liver disease. Int J Mol Sci. 2020;21(21):1–26. doi:10.3390/ijms21218138.
  • Pirola CJ, Scian R, Gianotti TF, Dopazo H, Rohr C, Martino JS, Castaño GO, Sookoian S. Epigenetic modifications in the biology of nonalcoholic fatty liver disease: the role of DNA hydroxymethylation and TET proteins. Med (United States). 2015;94(36):1–10. doi:10.1097/MD.0000000000001480.
  • Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, Moses DID, Hartono S, Fan V, Lim TKH, et al. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci. 2019;76(21):4341–4354. doi:10.1007/s00018-019-03114-4.
  • Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS, Troelstra MA, Bouter KEC, Herrema H, Levin E, Holleboom AG, et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun. 2020;4(11):1578–1590. doi:10.1002/hep4.1601.
  • Rauschert S, Raubenheimer K, Melton PE, Huang RC. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenetics. 2020;12(1). doi:10.1186/s13148-020-00842-4.
  • Jiao N, Loomba R, Yang ZH, Wu D, Fang S, Bettencourt R, Lan P, Zhu R, Zhu L. Alterations in bile acid metabolizing gut microbiota and specific bile acid genes as a precision medicine to subclassify nafld. Physiol Genomics. 2021;53(8):336–348. doi:10.1152/physiolgenomics.00011.2021.
  • Newman TM, Shively CA, Register TC, Appt SE, Yadav H, Colwell RR, Fanelli B, Dadlani M, Graubics K, Nguyen UT, et al. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome. 2021;9(1):1–17. doi:10.1186/s40168-021-01069-y.
  • Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia—a new functional genus with potential probiotic properties? Gut Microbes. 2021;13(1):1–21. doi:10.1080/19490976.2021.1875796.
  • Benítez-Páez A, Gómez Del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y, Turnbaugh PJ. Depletion of Blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. mSystems. 2020;5(2):1–13. doi:10.1128/msystems.00857-19.
  • Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N, Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C, et al. Impact of hypocaloric hyperproteic diet on gut microbiota in overweight or obese patients with nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci. 2016;61(9):2721–2731. doi:10.1007/s10620-016-4179-1.
  • Hosomi K, Saito M, Park J, Murakami H, Shibata N, Ando M, Nagatake T, Konishi K, Ohno H, Tanisawa K, et al. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun. 2022;13(1):1–17. doi:10.1038/s41467-022-32015-7.
  • Yang D, Brunengraber H. Glutamate, a window on liver intermediary metabolism. J Nutr. 2000;130(4):991–994. doi:10.1093/jn/130.4.991s.
  • Lefebvre R. Impact of phenylacetic acid, a microbiota-derived metabolite, on hepatic endoplasmic reticulum-mitochondria interactions and steatosis. 2022. https://www.abstractsonline.com/pp8/#!/10613/presentation/1413.
  • Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell. 2020;180(5):862–877.e22. doi:10.1016/j.cell.2020.02.016.
  • Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–1080. doi:10.1038/s41591-018-0061-3.
  • Oh KK, Gupta H, Min BH, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, et al. The identification of metabolites from gut microbiota in NAFLD via network pharmacology. Sci Rep. 2023;13(1):1–13. doi:10.1038/s41598-023-27885-w.
  • Perng W, Rahman ML, Aris IM, Michelotti G, Sordillo JE, Chavarro JE, Oken E, Hivert M-F. Metabolite profiles of the relationship between body mass index (BMI) milestones and metabolic risk during early adolescence. Metabolites. 2020;10(8):1–23. doi:10.3390/metabo10080316.
  • Madiraju P, Pande SV, Prentki M, Madiraju SRM. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics. 2009;4(6):399–403. doi:10.4161/epi.4.6.9767.
  • Smallwood T, Allayee H, Bennett BJ. Choline metabolites: gene by diet interactions. Curr Opin Lipidol. 2016;27(1):33–39. doi:10.1097/MOL.0000000000000259.
  • Steven HZ. Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IIUBMB Life. 2007;59(6):380–387. doi:10.1080/15216540701468954.
  • Stetten, Jr DW, Salcedo, Jr J. The effect of chain length of the dietary fatty acid upon the fatty liver of choline deficiency. J Nutr. 1945;29(3):167–170. doi:10.1093/jn/29.3.167.
  • Spencer MD, Hamp TJ, Reid RW, Fischer LM, Steven H, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency Melanieelanie. Gastroenterology. 2012;140(3):976–986. doi:10.1053/j.gastro.2010.11.049.
  • Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA. 2006;103(33):12511–12516. doi:10.1073/pnas.0601056103.
  • Kinchen JM, Mohney RP, Pappan KL. Long-chain acylcholines link butyrylcholinesterase to regulation of non-neuronal cholinergic signaling. J Proteome Res. 2022;21(3):599–611. doi:10.1021/acs.jproteome.1c00538.
  • Romano KA, Vivas EI, Amador-Noguez D, Rey FE, Blaser MJ. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio. 2015;6(2):1–8. doi:10.1128/mBio.02481-14.
  • Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 2018;27(1):22–41. doi:10.1016/j.cmet.2017.08.002.
  • Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW, Holleboom AG, van de Peppel IP. The role of lipophagy in the development and treatment of non-alcoholic fatty liver disease. Front Endocrinol. 2021;11(February):1–12. doi:10.3389/fendo.2020.601627.
  • Theil AF, Botta E, Raams A, Smith DEC, Mendes MI, Caligiuri G, Giachetti S, Bione S, Carriero R, Liberi G, et al. Bi-allelic TARS mutations are associated with brittle hair phenotype. Am J Hum Genet. 2019;105(2):434–440. doi:10.1016/j.ajhg.2019.06.017.
  • TARS 1 Genecards. https://www.genecards.org/cgi-bin/carddisp.pl?gene=TARS1#expression.
  • Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z. The upstream pathway of mtor-mediated autophagy in liver diseases. Cells. 2019;8(12):1597. doi:10.3390/cells8121597.
  • Monteagudo-Sánchez A, Hernandez Mora JR, Simon C, Burton A, Tenorio J, Lapunzina P, Clark S, Esteller M, Kelsey G, López-Siguero JP, et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 2020;48(20):11394–11407. doi:10.1093/nar/gkaa837.
  • Mackay DJG, Callaway JLA, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40(8):949–951. doi:10.1038/ng.187.
  • Héberlé É, Bardet AF, Blewitt M. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63(6):727–741. doi:10.1042/EBC20190033.
  • Rinella ME, Tacke F, Sanyal AJ, Anstee QM. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J Hepatol. 2019;71(4):823–833. doi:10.1016/j.jhep.2019.04.019.
  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–i890. doi:10.1093/bioinformatics/bty560.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352.
  • Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins PS. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31(12):2032–2034. doi:10.1093/bioinformatics/btv098.
  • Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi:10.1093/bioinformatics/btq033.
  • Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P, Scholz M, Thomas AM, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3. Elife. 2021;10:1–42. doi:10.7554/eLife.65088.
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12(1):59–60. doi:10.1038/nmeth.3176.
  • Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018;175(4):947–961.e17. doi:10.1016/j.cell.2018.09.055.
  • Fortin J-P, Fertig E, Hansen K. shinyMethyl: interactive quality control of Illumina 450k DNA methylation arrays in R. F1000Research. 2014 May;3:1–10. doi:10.12688/f1000research.4680.1.
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–1369. doi:10.1093/bioinformatics/btu049.
  • Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4):e22. doi:10.1093/nar/gkw967.
  • Andrews SV, Ladd-Acosta C, Feinberg AP, Hansen KD, Fallin MD. “Gap hunting” to characterize clustered probe signals in Illumina methylation array data. Epigenetics Chromatin. 2016;9(1):1–21. doi:10.1186/s13072-016-0107-z.
  • Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3–42. doi:10.1007/s10994-006-6226-1.
  • Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Ser B Stat Methodol. 2010;72(4):417–473. doi:10.1111/j.1467-9868.2010.00740.x.
  • Pedregosa F, Duchesnay É. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.