1,236
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Comparative genomics and phenotypic studies to determine site-specificity of Escherichia coli in the lower gastrointestinal tract of humans

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2223332 | Received 26 Apr 2023, Accepted 06 Jun 2023, Published online: 20 Jun 2023

References

  • Blyton MDJ, Cornall SJ, Kennedy K, Colligon P, Gordon DM. Sex-dependent competitive dominance of phylogenetic group B2 Escherichia coli strains within human hosts. Environ Microbiol Rep. 2014;6(6):605–19. doi:10.1111/1758-2229.12168.
  • Smati M, Clermont O, Le Gal F, Schichmanoff O, Jauréguy F, Eddi A, Denamur E, Picard B. Real-time PCR for quantitative analysis of human commensal Escherichia coli populations reveals a high frequency of subdominant phylogroups. Appl Environ Microbiol. 2013;79(16):5005–5012. doi:10.1128/AEM.01423-13.
  • Martinson JNV, Pinkham NV, Peters GW, Cho H, Heng J, Rauch M, Broadaway SC, Walk ST. Rethinking gut microbiome residency and the Enterobacteriaceae in healthy human adults. Isme J. 2019;13(9):2306–2318. doi:10.1038/s41396-019-0435-7.
  • Lescat M, Clermont O, Woerther PL, Glodt J, Dion S, Skurnik D, Djossou F, Dupont C, Perroz G, Picard B, et al. Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ Microbiol Rep. 2013;5(1):49–57. doi:10.1111/j.1758-2229.2012.00374.x.
  • Gordon DM, O’Brien CL, Pavli P. Escherichia coli diversity in the lower intestinal tract of humans. Environ Microbiol Rep. 2015;7(4):642–648. doi:10.1111/1758-2229.12300.
  • Denamur E, Clermont O, Bonacorsi S, Gordon D. The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol. 2020;19(1):37–54. doi:10.1038/s41579-020-0416-x.
  • Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol. 2010;8(3):207–217. doi:10.1038/nrmicro2298.
  • Skurnik D, Bonnet D, Bernède-Bauduin C, Michel R, Guette C, Becker J-M, Balaire C, Chau F, Mohler J, Jarlier V, et al. Characteristics of human intestinal Escherichia coli with changing environments. Environ Microbiol. 2008;10(8):2132–2137. doi:10.1111/j.1462-2920.2008.01636.x.
  • Escobar-Páramo P, Le Menac’h A, Le Gall T, Amorin C, Gouriou S, Picard B, Skurnik D, Denamur E. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol. 2006;8(11):1975–1984. doi:10.1111/j.1462-2920.2006.01077.x.
  • Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM, Martin V, Peacock SJ, Parkhill J. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res. 2017;27(8):1437–1449. doi:10.1101/gr.216606.116.
  • Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27(3):543–574. doi:10.1128/CMR.00125-13.
  • Matsui Y, Hu Y, Rubin J, de Assis R.S, Suh J, Riley LW, Assis RS. Multilocus sequence typing of Escherichia coli isolates from urinary tract infection patients and from fecal samples of healthy subjects in a college community. MicrobiologyOpen. 2020;9(6):1225–1233. doi:10.1002/mbo3.1032.
  • Manges AR, Harel J, Masson L, Edens TJ, Portt A, Reid-Smith RJ, Zhanel GG, Kropinski AM, Boerlin P. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis. 2015;12(4):302–310. doi:10.1089/fpd.2014.1860.
  • Nowrouzian FL, Adlerberth I, Wold AE. Enhanced persistence in the colonic microbiota of Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and adherence to colonic cells. Microbes Infect. 2006;8(3):834–840. doi:10.1016/j.micinf.2005.10.011.
  • Hillman ET, Lu H, Yao T, Nakatsu CH. Microbial ecology along the gastrointestinal tract. Microbes Environ. 2017;32(4):300–313. doi:10.1264/jsme2.ME17017.
  • Hounnou G, Destrieux C, Desmé J, Bertrand P, Velut S. Anatomical study of the length of the human intestine. Surg Radiol Anat. 2002;24(5):290–294. doi:10.1007/s00276-002-0057-y.
  • Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, Pentafragka C, Reppas C, Rubbens J, Van Den Αbeele J, et al. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review. Eur J Pharm Sci. 2019;134:153–175. doi:10.1016/j.ejps.2019.04.013.
  • Dixit OVA, O’Brien CL, Pavli P, Gordon DM. Within-host evolution versus immigration as a determinant of Escherichia coli diversity in the human gastrointestinal tract. Environ Microbiol. 2018;20(3):993–1001. doi:10.1111/1462-2920.14028.
  • Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E, Lescat M, Tenaillon O. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl Environ Microb. 2018;84:e02377–17. doi:10.1128/AEM.02377-17.
  • Lescat M, Launay A, Ghalayini M, Magnan M, Glodt J, Pintard C, Dion S, Denamur E, Tenaillon O. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut. Mol Ecol. 2017;26(7):1802–1817. doi:10.1111/mec.13851.
  • Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. Isme J. 2017;11(10):2181–2194. doi:10.1038/ismej.2017.69.
  • Maharjan RP, Ferenci T, Gore J. A shifting mutational landscape in 6 nutritional states: stress-induced mutagenesis as a series of distinct stress input–mutation output relationships. PLoS Biol. 2017;15(6):e2001477. doi:10.1371/journal.pbio.2001477.
  • Bridier-Nahmias A, Launay A, Bleibtreu A, Magnan M, Walewski V, Chatel J, Dion S, Robbe-Saule V, Clermont O, Norel F, et al. Escherichia coli genomic diversity within extraintestinal acute infections argues for adaptive evolution at play. mSphere. 2021;6(1):e01176–20. doi:10.1128/mSphere.01176-20.
  • Barroso-Batista J, Demengeot J, Gordo I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat Commun. 2015;6(1):8945. doi:10.1038/ncomms9945.
  • Clermont O, Lescat M, O’Brien CL, Gordon DM, Tenaillon O, Denamur E. Evidence for a human-specific Escherichia coli clone. Environ Microbiol. 2008;10(4):1000–1006. doi:10.1111/j.1462-2920.2007.01520.x.
  • Johnson JR, Davis G, Clabots C, Johnston BD, Porter S, DebRoy C, Pomputius W, Ender PT, Cooperstock M, Slater BS, et al. Household Clustering of Escherichia coli sequence type 131 clinical and fecal isolates according to whole genome sequence analysis. Open Forum Infect Dis. 2016;3(3):ofw129. doi:10.1093/ofid/ofw129.
  • Lee SM, Wyse A, Lesher A, Everett ML, Lou L, Holzknecht ZE, Whitesides JF, Spears PA, Bowles DE, Lin SS, et al. Adaptation in a mouse colony monoassociated with Escherichia coli K-12 for more than 1,000 days. Appl Environ Microbiol. 2010;76(14):4655–4663. doi:10.1128/AEM.00358-10.
  • Rice DH, Sheng HQ, Wynia SA, Hovde CJ. Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157: h7-colonized cattle and those transiently shedding the same organism. J Clin Microbiol. 2003;41(11):4924–4929. doi:10.1128/JCM.41.11.4924-4929.2003.
  • Evans DJ Jr., Evans DG. Escherichia Coli in Diarrheal disease. In: Baron S, editor Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston, Copyright © 1996, The University of Texas Medical Branch at Galveston. 1996. p. 251.
  • Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, Smith DGE, Gally DL. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157: h7 in the bovine host. Infect Immun. 2003;71(3):1505–1512. doi:10.1128/IAI.71.3.1505-1512.2003.
  • Qadri F, Svennerholm A-M, Faruque ASG, Sack RB. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev. 2005;18(3):465–483. doi:10.1128/CMR.18.3.465-483.2005.
  • Dixit SM, Gordon DM, Wu XY, Chapman T, Kailasapathy K, Chin JJ. Diversity analysis of commensal porcine Escherichia coli – associations between genotypes and habitat in the porcine gastrointestinal tract. Microbiol. 2004;150(6):1735–1740. doi:10.1099/mic.0.26733-0.
  • Abraham S, Gordon DM, Chin J, Brouwers HJ, Njuguna P, Groves MD, Zhang R, Chapman TA. Molecular characterization of commensal Escherichia coli adapted to different compartments of the porcine gastrointestinal tract. Appl Environ Microbiol. 2012;78(19):6799–6803. doi:10.1128/AEM.01688-12.
  • Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother. 2003;47(7):2161–2168. doi:10.1128/AAC.47.7.2161-2168.2003.
  • Johnson JR, Johnston BD, Porter S, Thuras P, Aziz M, Price LB. Accessory traits and phylogenetic background predict Escherichia coli extraintestinal virulence better than does ecological source. J Infect Dis. 2018;219:121–132. doi:10.1093/infdis/jiy459.
  • Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–140. doi:10.1038/nrmicro818.
  • Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog. 2019;11(1):10. doi:10.1186/s13099-019-0290-0.
  • Spurbeck RR, Dinh PC Jr., Walk ST, Stapleton AE, Hooton TM, Nolan LK, Kim KS, Johnson JR, Mobley HLT. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infect Immun. 2012;80(12):4115–4122. doi:10.1128/IAI.00752-12.
  • Hershberg R. Mutation—the engine of evolution: studying mutation and its role in the evolution of bacteria: figure 1. Cold Spring Harb Perspect Biol. 2015;7(9):a018077–a. doi:10.1101/cshperspect.a018077.
  • Brito IL. Examining horizontal gene transfer in microbial communities. Nat Rev Microbiol. 2021;19(7):442–453. doi:10.1038/s41579-021-00534-7.
  • Culyba MJ, Van Tyne D, Hiller NL. Bacterial evolution during human infection: adapt and live or adapt and die. PLoS Pathog. 2021;17(9):e1009872. doi:10.1371/journal.ppat.1009872.
  • Frazão N, Sousa A, Lässig M, Gordo I Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proceedings of the National Academy of Sciences 2019;116:17906–17915.
  • Kidsley AK, O’Dea M, Saputra S, Jordan D, Johnson JR, Gordon DM, Turni C, Djordjevic SP, Abraham S, Trott DJ, et al. Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia. Vet Microbiol. 2020;248:108783. doi:10.1016/j.vetmic.2020.108783.
  • Baniga Z, Hounmanou YMG, Kudirkiene E, Kusiluka LJM, Mdegela RH, Dalsgaard A. Genome-based analysis of extended-spectrum β-lactamase-producing Escherichia coli in the aquatic environment and Nile Perch (lates niloticus) of Lake Victoria, Tanzania. Front Microbiol. 2020;11:11. doi:10.3389/fmicb.2020.00108.
  • Valat C, Drapeau A, Beurlet S, Bachy V, Boulouis HJ, Pin R, Cazeau G, Madec J-Y, Haenni M. Pathogenic Escherichia coli in dogs reveals the predominance of ST372 and the human-associated ST73 extra-intestinal lineages. Front Microbiol. 2020;11:580. doi:10.3389/fmicb.2020.00580.
  • Foster PL. Adaptive mutation: implications for evolution. BioEssays: news and reviews in molecular, cellular and developmental biology. BioEssays. 2000;22(12):1067–1074. doi:10.1002/1521-1878(200012)22:12<1067:AID-BIES4>3.0.CO;2-Q.
  • Swings T, Van den Bergh B, Wuyts S, Oeyen E, Voordeckers K, Verstrepen KJ, Fauvart M, Verstraeten N, Michiels J. Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli. eLife. 2017;6:e22939. doi:10.7554/eLife.22939.
  • Gordo I, Demengeot J, Xavier K. Escherichia coli adaptation to the gut environment: a constant fight for survival. Future Microbiol. 2014;9(11):1235–1238. doi:10.2217/fmb.14.86.
  • Ghalayini M, Magnan M, Dion S, Zatout O, Bourguignon L, Tenaillon O, Lescat M. Long-term evolution of the natural isolate of Escherichia coli 536 in the mouse gut colonized after maternal transmission reveals convergence in the constitutive expression of the lactose operon. Mol Ecol. 2019;28(19):4470–4485. doi:10.1111/mec.15232.
  • Fitzhenry RJ, Reece S, Trabulsi LR, Heuschkel R, Murch S, Thomson M, Frankel G, Phillips AD. Tissue tropism of enteropathogenic Escherichia coli strains belonging to the O55 serogroup. Infect Immun. 2002;70(8):4362–4368. doi:10.1128/IAI.70.8.4362-4368.2002.
  • Aktan İ, Ragione RML, Woodward MJ. Colonization, persistence, and tissue tropism of Escherichia coli O26 in conventionally reared weaned lambs. Appl Environ Microb. 2007;73:691–698. doi:10.1128/AEM.01879-06.
  • Chong Y, Fitzhenry R, Heuschkel R, Torrente F, Frankel G, Phillips AD. Human intestinal tissue tropism in Escherichia coli O157: h7 – initial colonization of terminal ileum and Peyer’s patches and minimal colonic adhesion ex vivo. Microbiol. 2007;153(3):794–802. doi:10.1099/mic.0.2006/003178-0.
  • Sperandio V, Nguyen Y. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol. 2012;2. doi:10.3389/fcimb.2012.00090.
  • McCall L-I, Siqueira-Neto JL, McKerrow JH, Knoll LJ. Location, location, location: five facts about tissue tropism and pathogenesis. PLoS Pathog. 2016;12(5):e1005519–e. doi:10.1371/journal.ppat.1005519.
  • Gonzales-Siles L, Sjöling Å. The different ecological niches of enterotoxigenic Escherichia coli. Environ Microbiol. 2016;18(3):741–751. doi:10.1111/1462-2920.13106.
  • Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect. 2010;12(2):89–98. doi:10.1016/j.micinf.2009.10.002.
  • Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. Extraintestinal virulence is a coincidental by-product of commensalism in b2 phylogenetic group Escherichia coli strains. Mol Biol Evol. 2007;24(11):2373–2384. doi:10.1093/molbev/msm172.
  • Riley LW, Blanton RE. Distinguishing pathovars from nonpathovars: Escherichia coli*. Microbiol Spectr. 2020;8(4):8. doi:10.1128/microbiolspec.AME-0014-2020.
  • Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterol Rep. 2019;7(1):3–12. doi:10.1093/gastro/goy052.
  • Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, van der Post S, Svensson F, Rodríguez-Piñeiro AM, Nyström EEL, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260(1):8–20. doi:10.1111/imr.12182.
  • Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastro Hepat. 2013;10(6):352–361. doi:10.1038/nrgastro.2013.35.
  • Arnoldini M, Cremer J, Hwa T. Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes. 2018;9:559–566. doi:10.1080/19490976.2018.1448741.
  • Pellock SJ, Redinbo MR. Glucuronides in the gut: sugar-driven symbioses between microbe and host. J Biol Chem. 2017;292(21):8569–8576. doi:10.1074/jbc.R116.767434.
  • Xavier NM, Fortuna A. Synthesis and biological properties of d-glucuronamide-containing compounds. Reference Module Chem, Molecular Sci Chem Eng. 2019; Elsevier.
  • Ye F, Shen H, Li Z, Meng F, Li L, Yang J, Chen Y, Bo X, Zhang X, Ni M, et al. Influence of the biliary system on biliary bacteria revealed by bacterial communities of the human biliary and upper digestive tracts. PLos One. 2016;11(3):e0150519. doi:10.1371/journal.pone.0150519.
  • Le Bouguénec C, Schouler C. Sugar metabolism, an additional virulence factor in enterobacteria. Int J Med Microbiol. 2011;301(1):1–6. doi:10.1016/j.ijmm.2010.04.021.
  • Gibreel TM, Dodgson AR, Cheesbrough J, Bolton FJ, Fox AJ, Upton M. High metabolic potential may contribute to the success of ST131 uropathogenic Escherichia coli. J Clin Microbiol. 2012;50(10):3202–3207. doi:10.1128/JCM.01423-12.
  • Vimont S, Boyd A, Bleibtreu A, Bens M, Goujon J-M, Garry L, Clermont O, Denamur E, Arlet G, Vandewalle A, et al. The CTX-M-15-producing Escherichia coli clone O25b: h4-ST131 has high intestine colonization and urinary tract infection abilities. PLos One. 2012;7(9):e46547. doi:10.1371/journal.pone.0046547.
  • Alqasim A, Emes R, Clark G, Newcombe J, La Ragione R, McNally A, Ahmed N. Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli. PLos One. 2014;9(2):e88374. doi:10.1371/journal.pone.0088374.
  • Alqasim A, Jaffal AA, Almutairi N, Alyousef AA. Comparative phenotypic characterization identifies few differences in the metabolic capacity between Escherichia coli ST131 subclones. Saudi J Biol Sci. 2021;28(1):762–769. doi:10.1016/j.sjbs.2020.11.008.
  • Lenski RE, Rose MR, Simpson SC, Tadler SC. Long-term experimental evolution in Escherichia coli. i. adaptation and divergence during 2,000 generations. Am Nat. 1991;138(6):1315–1341. doi:10.1086/285289.
  • Wiser MJ, Ribeck N, Lenski RE. Long-term dynamics of adaptation in asexual populations. Science. 2013;342(6164):1364–1367. doi:10.1126/science.1243357.
  • Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Berlin: Springer Berlin Heidelberg Berlin Heidelberg; 2013. pp. 158–170. 10.1007/978-3-642-37195-0_13.
  • Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–1403. doi:10.1101/gr.2289704.
  • Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom. 2018;4(7):e000192. doi:10.1099/mgen.0.000192.
  • Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136–1151. doi:10.1111/j.1365-2958.2006.05172.x.
  • Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol. 2015;53:2410–2426.
  • Roer L, Tchesnokova V, Allesøe R, Muradova M, Chattopadhyay S, Ahrenfeldt J, Thomsen MCF, Lund O, Hansen F, Hammerum AM, et al. Development of a web tool for Escherichia coli subtyping based on fimH Alleles. J Clin Microbiol. 2017;55(8):2538–2543. doi:10.1128/JCM.00737-17.
  • Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345.
  • Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi:10.1128/AAC.02412-14.
  • Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501–1510. doi:10.1128/JCM.03617-13.
  • Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, et al. Rasttk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5(1):8365–. doi:10.1038/srep08365.
  • Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 2020;48:D606–D12. doi:10.1093/nar/gkz943.