1,292
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Cytotoxic necrotizing factor 1 hinders colon tumorigenesis induced by colibactin-producing Escherichia coli in ApcMin/+ mice

, , , , , , , , , & ORCID Icon show all
Article: 2229569 | Received 24 Jan 2022, Accepted 21 Jun 2023, Published online: 07 Jul 2023

References

  • Global Cancer Observatory [Internet]. 2021 [accessed 2021 Jan 4]. https://gco.iarc.fr/
  • Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst [Internet]. 2017;109(8). doi:10.1093/jnci/djw332.
  • Gagnière J. Gut microbiota imbalance and colorectal cancer. WJG. 2016;22(2):501. doi:10.3748/wjg.v22.i2.501.
  • Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198–19. doi:10.1016/j.cell.2018.02.044.
  • Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60(2):208–215. doi:10.1093/cid/ciu787.
  • Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun. 2015;6(1):6528. doi:10.1038/ncomms7528.
  • Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe. 2013;14(2):207–215. doi:10.1016/j.chom.2013.07.007.
  • Lucas C, Barnich N, Nguyen NH. Microbiota, inflammation and colorectal cancer. Int J Mol Sci. 2017;18(6):1310. doi:10.3390/ijms18061310.
  • Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal cancer. Cancer Cell. 2018;33(6):954–964. doi:10.1016/j.ccell.2018.03.004.
  • Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC, Kärre K, Pettersson S, Greicius G. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APC Min/+ mice. Carcinogenesis. 2012;33:1231–1238. doi:10.1093/carcin/bgs137.
  • Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, WKK W, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153(6):1621–1633.e6. doi:10.1053/j.gastro.2017.08.022.
  • Orberg ET, Fan H, Tam AJ, Dejea CM, Destefano-Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al. The myeloid immune signature of enterotoxigenic bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017;10(2):421–433. doi:10.1038/mi.2016.53.
  • Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D, Petit C, Oswald E, Nougayrède J-P, Galan JE, Sansonetti PJ. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mBio. 2018;9(2):e02393–17. mbio/9/2/mBio.02393-17.atom. doi:10.1128/mBio.02393-17.
  • Nougayrède J-P, Taieb F, De Rycke J, Oswald E. Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol. 2005;13(3):103–110. doi:10.1016/j.tim.2005.01.002.
  • Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R, Battista JR. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One. 2013;8(2):e56964. doi:10.1371/journal.pone.0056964.
  • Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120–123. doi:10.1126/science.1224820.
  • Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 2010;107(25):11537–11542. doi:10.1073/pnas.1001261107.
  • Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F, Dobrindt U, Hermeking H, Sigal M, Meyer TF. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun. 2021;12(1):1003. doi:10.1038/s41467-021-21162-y.
  • Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313(5788):848–851. doi:10.1126/science.1127059.
  • Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. Coli. Nature. 2020;580:269–273.
  • Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A, Katainen R, Cajuso T, Crosetto N, Orozco M, Aaltonen LA, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26(7):1063–1069. doi:10.1038/s41591-020-0908-2.
  • Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–1942. doi:10.1136/gutjnl-2013-305257.
  • Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Déchelotte P, Bonnet R, Pezet D, Darfeuille-Michaud A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20(4):859–867. doi:10.1158/1078-0432.CCR-13-1343.
  • Tomkovich S, Yang Y, Winglee K, Gauthier J, Mühlbauer M, Sun X, Mohamadzadeh M, Liu X, Martin P, Wang GP, et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017;77(10):2620–2632. doi:10.1158/0008-5472.CAN-16-3472.
  • Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu G-Y, Osterreicher CH, Hung KE, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–258. doi:10.1038/nature11465.
  • Cooper HS, Everley L, Chang W, Pfeiffer G, Lee B, Murthy S, Clapper ML. The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium–induced colitis. Gastroenterology. 2001;121(6):1407–1416. doi:10.1053/gast.2001.29609.
  • Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10–producing T cells. Cancer Res. 2013;73(19):5905–5913. doi:10.1158/0008-5472.CAN-13-1511.
  • Huang EH, Park JC, Appelman H, Weinberg AD, Banerjee M, Logsdon CD, Schmidt AM. Induction of inflammatory bowel disease accelerates adenoma formation in Min +/− mice. Surgery. 2006;139(6):782–788. doi:10.1016/j.surg.2005.11.005.
  • Ho M, Mettouchi A, Wilson BA, Lemichez E. CNF1-like deamidase domains: common Lego bricks among cancer-promoting immunomodulatory bacterial virulence factors. Pathog Dis. 2018;76(5):fty045. doi:10.1093/femspd/fty045.
  • Boyer L, Travaglione S, Falzano L, Gauthier NC, Popoff MR, Lemichez E, Fiorentini C, Fabbri A. Rac GTPase instructs nuclear factor-κB activation by conveying the SCF complex and IkBα to the ruffling membranes. Mol Biol Cell. 2004;15(3):1124–1133. doi:10.1091/mbc.e03-05-0301.
  • Falzano L, Quaranta MG, Travaglione S, Filippini P, Fabbri A, Viora M, Donelli G, Fiorentini C. Cytotoxic necrotizing factor 1 enhances reactive oxygen species-dependent transcription and secretion of proinflammatory cytokines in human uroepithelial cells. Infect Immun. 2003;71(7):4178–4181. doi:10.1128/IAI.71.7.4178-4181.2003.
  • Munro P, Flatau G, Doye A, Boyer L, Oregioni O, Mege J-L, Landraud L, Lemichez E. Activation and proteasomal degradation of rho GTPases by cytotoxic necrotizing factor-1 elicit a controlled inflammatory response. J Biol Chem. 2004;279(34):35849–35857. doi:10.1074/jbc.M401580200.
  • Fiorentini C, Fabbri A, Matarrese P, Falzano L, Boquet P, Malorni W. Hinderance of apoptosis and phagocytic behaviour induced by Escherichia coli cytotoxic necrotizing factor 1: two related activities in epithelial cells. Biochem Biophys Res Commun. 1997;241(2):341–346. doi:10.1006/bbrc.1997.7723.
  • Fiorentini C, Matarrese P, Straface E, Falzano L, Donelli G, Boquet P, Malorni W. Rho-dependent cell spreading activated by E.Coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Differ. 1998;5(11):921–929. doi:10.1038/sj.cdd.4400422.
  • Falzano L, Filippini P, Travaglione S, Miraglia AG, Fabbri A, Fiorentini C. Escherichia coli cytotoxic necrotizing factor 1 blocks cell cycle G2/M transition in uroepithelial cells. Infect Immun. 2006;74(7):3765–3772. doi:10.1128/IAI.01413-05.
  • Fabbri A, Travaglione S, Rosadi F, Ballan G, Maroccia Z, Giambenedetti M, Guidotti M, Ødum N, Krejsgaard T, Fiorentini C. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell Microbiol. 2020;22(2):e13138. doi:10.1111/cmi.13138.
  • Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, Keller ET, Yao Z, Wang Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42–PAK1 axis. J Pathol. 2017;243(2):208–219. doi:10.1002/path.4940.
  • Gagnière J, Bonnin V, Jarrousse A-S, Cardamone E, Agus A, Uhrhammer N, Sauvanet P, Déchelotte P, Barnich N, Bonnet R, et al. Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin Sci. 2017;131(6):471–485. doi:10.1042/CS20160876.
  • Lucas C, Salesse L, Hoang MHT, Bonnet M, Sauvanet P, Larabi A, Godfraind C, Gagnière J, Pezet D, Rosenstiel P, et al. Autophagy oF intestinal epithelial cells inhibits colorectal carcinogenesis induced by colibactin-producing Escherichia coli in ApcMin/+ mice. Gastroenterology. 2020;158(5):1373–1388. doi:10.1053/j.gastro.2019.12.026.
  • Mah L-J, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–686. doi:10.1038/leu.2010.6.
  • Feng Y, Mannion A, Madden CM, Swennes AG, Townes C, Byrd C, Marini RP, Fox JG. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog [Internet]. 2017;9(1). 10.1186/s13099-017-0220-y
  • Fiorentini C, Arancia G, Caprioli A, Falbo V, Ruggeri FM, Donelli G. Cytoskeletal changes induced in HEp-2 cells by the cytotoxic necrotizing factor of Escherichia coli. Toxicon. 1988;26(11):1047–1056. doi:10.1016/0041-0101(88)90203-6.
  • Bouquet F, Muller C, Salles B. The loss of γH2AX signal is a marker of DNA double strand breaks repair only at low levels of DNA damage. Cell Cycle. 2006;5(10):1116–1122. doi:10.4161/cc.5.10.2799.
  • Secher T, Samba-Louaka A, Oswald E, Nougayrède J-P, Sherman M. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLOS ONE. 2013;8(10):17. doi:10.1371/journal.pone.0077157.
  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–1806. doi:10.1038/nprot.2009.191.
  • Zhang Z, Aung KM, Uhlin BE, Wai SN. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep. 2018;8(1):17780. doi:10.1038/s41598-018-36036-5.
  • Moolmuang B, Tainsky MA. CREG1 enhances p16INK4a-induced cellular senescence. Cell Cycle. 2011;10(3):518–530. doi:10.4161/cc.10.3.14756.
  • Fabbri A, Travaglione S, Ballan G, Loizzo S, Fiorentini C. The cytotoxic necrotizing factor 1 from E. coli: a janus toxin playing with cancer regulators. Toxins (Basel). 2013;5(8):1462–1474. doi:10.3390/toxins5081462.
  • Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front Microbiol. 2020;11:2065. doi:10.3389/fmicb.2020.02065.
  • Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell. 2002;111(4):553–564. doi:10.1016/S0092-8674(02)01132-7.
  • Falzano L, Fiorentini C, Donneli G, Michel E, Kocks C, Cossart P, Cabanié L, Oswald E, Boquet P. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol Microbiol. 1993;9(6):1247–1254. doi:10.1111/j.1365-2958.1993.tb01254.x.
  • Fabbri A, Travaglione S, Fiorentini C. Escherichia coli cytotoxic necrotizing factor 1 (CNF1): toxin biology, in Vivo applications and therapeutic potential. Toxins (Basel). 2010;2(2):283–296. doi:10.3390/toxins2020282.
  • Vannini E, Panighini A, Cerri C, Fabbri A, Lisi S, Pracucci E, Benedetto N, Vannozzi R, Fiorentini C, Caleo M, et al. The bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1) provides long-term survival in a murine glioma model. Bmc Cancer. 2014;14(1):449. doi:10.1186/1471-2407-14-449.
  • Colarusso A, Maroccia Z, Parrilli E, Germinario EAP, Fortuna A, Loizzo S, Ricceri L, Tutino ML, Fiorentini C, Fabbri A. Cnf1 variants endowed with the ability to cross the blood–brain barrier: a new potential therapeutic strategy for glioblastoma. Toxins (Basel). 2020;12(5):E291. doi:10.3390/toxins12050291.
  • Vannini E, Mori E, Tantillo E, Schmidt G, Caleo M, Costa M. CTX-CNF1 recombinant protein selectively targets glioma Cells in vivo. Toxins (Basel). 2021;13(3):194. doi:10.3390/toxins13030194.
  • Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5(5):675–680. doi:10.4161/19490976.2014.969989.
  • Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–771. doi:10.1038/nrc3611.
  • Salesse L, Lucas C, Hoang MHT, Sauvanet P, Rezard A, Rosenstiel P, Damon-Soubeyrand C, Barnich N, Godfraind C, Dalmasso G, et al. Colibactin-producing Escherichia coli induce the formation of invasive carcinomas in a chronic inflammation-associated mouse model. Cancers Basel. 2021;13(9):2060. doi:10.3390/cancers13092060.
  • Dominguez C, McCampbell KK, David JM, Palena C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight [Internet]. 2021 Jan 18;2(21). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752275/.
  • Alfaro C, Teijeira A, Oñate C, Pérez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of Neutrophil Extracellular Traps (NETs). Clin Cancer Res. 2016;22(15):3924–3936. doi:10.1158/1078-0432.CCR-15-2463.
  • Fernando RI, Castillo MD, Litzinger M, Hamilton DH, Palena C. IL-8 signaling plays a critical role in the epithelial–mesenchymal transition of human carcinoma cells. Cancer Res. 2011;71(15):5296–5306. doi:10.1158/0008-5472.CAN-11-0156.
  • Palena C, Hamilton DH, Fernando RI. Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8(6):713–722. doi:10.2217/fon.12.59.
  • Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–497. doi:10.1172/JCI39397.
  • Dominguez C, McCampbell KK, David JM, Palena C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight. 2017;2(21):e94296. doi:10.1172/jci.insight.94296.
  • Najdaghi S, Razi S, Rezaei N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine. 2020;135:155205. doi:10.1016/j.cyto.2020.155205.
  • Rippere-Lampe KE, O’Brien AD, Conran R, Lockman HA, Barbieri JT. Mutation of the gene encoding cytotoxic necrotizing factor Type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun. 2001;69(6):3954–3964. doi:10.1128/IAI.69.6.3954-3964.2001.
  • Loizzo S, Rimondini R, Travaglione S, Fabbri A, Guidotti M, Ferri A, Campana G, Fiorentini C, Ginsberg SD. CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer’s disease. PLoS One. 2013;8(5):e65898. doi:10.1371/journal.pone.0065898.
  • The Society of Cells – Cancer and control of cell proliferation. C. Sonnenschein and A. M. Soto. Bios Scientific, Oxford, 1999. No. of pages: 154. Price: £18.95. ISBN: 1 85996 276 9 (US Publisher: SpringerVerlag, New York. Price: US $34.95. ISBN 0 387 91583 4.). J Patholo. 2000; 190:518–9. No. of pages: 154. Price: £18.95. ISBN: 1 85996 276 9 (US Publisher: SpringerVerlag, New York. Price: US $34.95. ISBN 0 387 91583 4.). J Patholo. 2000; 190:5189. No. of pages: 154. Price: £18.95. ISBN: 1 85996 276 9 (US Publisher: SpringerVerlag, New York. Price: US $34.95. ISBN 0 387 91583 4.). J Patholo. 2000; 190:5189
  • Visvikis O, Boyer L, Torrino S, Doye A, Lemonnier M, Lorès P, Rolando M, Flatau G, Mettouchi A, Bouvard D, et al. Escherichia coli producing CNF1 toxin hijacks tollip to trigger Rac1-dependent cell invasion. Traffic. 2011;12(5):579–590. doi:10.1111/j.1600-0854.2011.01174.x.
  • Magalhaes YT, Farias JO, Silva LE, Forti FL. GTPases, genome, actin: a hidden story in DNA damage response and repair mechanisms. DNA Repair (Amst). 2021;100:103070. doi:10.1016/j.dnarep.2021.103070.
  • Huelsenbeck SC, Roggenkamp D, May M, Huelsenbeck J, Brakebusch C, Rottner K, Ladwein M, Just I, Fritz G, Schmidt G, et al. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1. Int J Biochem Cell Biol. 2013;45(8):1767–1775. doi:10.1016/j.biocel.2013.05.020.
  • Ju JA, Gilkes DM. RhoB: team oncogene or team tumor suppressor? Genes (Basel). 2018;9:67. doi:10.3390/genes9020067.
  • Liu A-X, Rane N, Liu J-P, Prendergast GC. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol. 2001;21(20):6906–6912. doi:10.1128/MCB.21.20.6906-6912.2001.
  • Chen Z, Sun J, Pradines A, Favre G, Adnane J, Sebti SM. Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J Biol Chem. 2000;275(24):17974–17978. doi:10.1074/jbc.C000145200.
  • Dubois D, Delmas J, Cady A, Robin F, Sivignon A, Oswald E, Bonnet R. Cyclomodulins in urosepsis strains of Escherichia coli. J Clin Microbiol. 2010;48(6):2122–2129. doi:10.1128/JCM.02365-09.
  • Fabian NJ, Mannion AJ, Feng Y, Madden CM, Fox JG. Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet Microbiol. 2020;240:108506. doi:10.1016/j.vetmic.2019.108506.
  • Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Micro. 2010;8(3):207–217. doi:10.1038/nrmicro2298.
  • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97(12):6640–6645. doi:10.1073/pnas.120163297.
  • Chaveroche MK, Ghigo JM, d’Enfert C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 2000;28(22):97e–97. doi:10.1093/nar/28.22.e97.