3,986
Views
5
CrossRef citations to date
0
Altmetric
Review

Better together–Salmonella biofilm-associated antibiotic resistance

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2229937 | Received 18 Jan 2023, Accepted 21 Jun 2023, Published online: 04 Jul 2023

References

  • Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, et al. World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12(12):e1001923. doi:10.1371/journal.pmed.1001923.
  • Ryan MP, O’Dwyer J, Adley CC. Evaluation of the complex nomenclature of the clinically and veterinary significant pathogen Salmonella. Biomed Res Int. 2017;2017 doi:10.1155/2017/3782182.
  • Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ, Olsen JE. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000;125(2):229–22. doi:10.1017/S0950268899004379.
  • Zhang S, Kingsley RA, Santos RL, Andrews-Polymenis H, Raffatellu M, Figueiredo J, Nunes J, Tsolis RM, Adams LG, Bäumler AJ, et al. Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Infect Immun. 2003;71(1):1–12. doi:10.1128/IAI.71.1.1-12.2003.
  • Gal-Mor O. Persistent infection and long-term carriage of typhoidal and nontyphoidal salmonellae. Clin Microbiol Rev. 2019;32(1). doi:10.1128/CMR.00088-18.
  • European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018;16(12). doi:10.2903/j.efsa.2018.5500.
  • Vandenberg O, Nyarukweba DZ, Ndeba PM, Hendriksen RS, Barzilay EJ, Schirvel C, Bisimwa BB, Collard J-M, Aidara Kane A, Aarestrup FM, et al. Microbiologic and clinical features of salmonella species isolated from bacteremic children in eastern democratic republic of congo. Pediatr Infect Dis J. 2010;29(6):504–510. doi:10.1097/INF.0b013e3181cd615a.
  • Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238(1):86–95. doi:10.1038/scientificamerican0178-86.
  • Harrell JE, Hahn MM, D’Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract. Front Cell Infect Microbiol. 2021;10. doi:10.3389/fcimb.2020.624622.
  • Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol. 2010;86(3):813–823. Preprint at. doi:10.1007/s00253-010-2468-8.
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi:10.1038/nrmicro2415.
  • Holden ER, Yasir M, Turner AK, Charles IG, Webber MA. Comparison of the genetic basis of biofilm formation between Salmonella Typhimurium and Escherichia coli. Microb Genom. 2022;8(11). doi:10.1099/mgen.0.000885.
  • De la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013;16(5):580–589. doi:10.1016/j.mib.2013.06.013.
  • Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7(9):1061–1072. doi:10.2217/fmb.12.76.
  • Tursi SA, Tükel Ç. Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications. Microbiol Mol Biol R. 2018;82(4). doi:10.1128/MMBR.00028-18.
  • Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64(4):323–334. doi:10.1099/jmm.0.000032.
  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493–512. doi:10.4155/fmc.15.6.
  • MacKenzie KD, Palmer MB, Köster WL, White AP. Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species. Front Vet Sci. 2017;4: doi:10.3389/fvets.2017.00138.
  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi:https://doi.org/10.1038/nrmicro.2016.94.
  • Lowe JA. Chapter 13. Mechanisms of antibiotic resistance. 1982. p. 119–127. doi:10.1016/S0065-7743(08)60495-9.
  • Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother. 2012;67(9):2069–2089. doi:10.1093/jac/dks196.
  • Stewart PS. Diffusion in biofilms. J Bacteriol. 2003;185(5):1485–1491. doi:10.1128/JB.185.5.1485-1491.2003.
  • Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: causes, measurements, and its implications for antibiotic resistance. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.1028560.
  • Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292(2):107–113. doi:10.1078/1438-4221-00196.
  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol. 2001;39(6):1452–1463. doi:10.1046/j.1365-2958.2001.02337.x.
  • Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int. 2012;45(2):502–531. doi:10.1016/j.foodres.2011.01.038.
  • Adcox HE, Vasicek EM, Dwivedi V, Hoang KV, Turner J, Gunn JS. Salmonella extracellular matrix components influence biofilm formation and gallbladder colonization. Infect Immun. 2016;84(11):3243–3251. doi:10.1128/IAI.00532-16.
  • Zogaj X, Bokranz W, Nimtz M, Römling U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun. 2003;71(7):4151–4158. doi:10.1128/IAI.71.7.4151-4158.2003.
  • Hahn MM, González JF, Gunn JS. Salmonella biofilms tolerate hydrogen peroxide by a combination of extracellular polymeric substance barrier function and catalase enzymes. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.683081.
  • Gibson DL, White AP, Snyder SD, Martin S, Heiss C, Azadi P, Surette M, Kay WW. Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol. 2006;188(22):7722–7730. doi:10.1128/JB.00809-06.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427–a012427. doi:10.1101/cshperspect.a012427.
  • Janssens JCA, Metzger K, Daniels R, Ptacek D, Verhoeven T, Habel LW, Vanderleyden J, De Vos DE, De Keersmaecker SCJ. Synthesis of N-acyl homoserine lactone analogues reveals strong activators of SdiA, the Salmonella enterica serovar typhimurium LuxR homologue. Appl Environ Microbiol. 2007;73(2):535–544. doi:10.1128/AEM.01451-06.
  • Choi J, Shin D, Ryu S. Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1. Infect Immun. 2007;75(10):4885–4890. doi:10.1128/IAI.01942-06.
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340. doi:10.3390/molecules25061340.
  • Ying YC, Bian HS, Tan TMC, Mattmann ME, Geske GD, Igarashi J, Hatano T, Suga H, Blackwell HE, Chua KL, et al. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol. 2007;189(11):4320–4324. doi:10.1128/JB.00003-07.
  • Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM, Woodward MJ, Piddock LJV. The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol. 2006;8(5):847–856. doi:10.1111/j.1462-5822.2005.00671.x.
  • Nishino K, Nikaido E, Yamaguchi A. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim Biophys Acta Proteins Proteomics. 2009;1794(5):834–843. doi:10.1016/j.bbapap.2009.02.002.
  • Martins M, McCusker M, Amaral L, Fanning S. Mechanisms of antibiotic resistance in Salmonella: efflux pumps, genetics, quorum sensing and biofilm formation. Lett Drug Des Discov. 2011;8(2):114–123. doi:10.2174/157018011794183770.
  • Fauvart M, de Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol. 2011;60(6):699–709. doi:10.1099/jmm.0.030932-0.
  • Tezel BU, Akçelik N, Yüksel FN, Karatuğ NT, Akçelik M. Effects of sub-MIC antibiotic concentrations on biofilm production of Salmonella Infantis. Biotechnol Biotechnol Equip. 2016;30(6):1184–1191. doi:10.1080/13102818.2016.1224981.
  • Narasanna R. Influence of subinhibitory-concentration (sub-MIC) Cefetoxime on biofilm formation. SEM study of ESBL-producing Salmonella typhi. J Microbiol Infect Dis. 2017;7(2):67–74. doi:10.5799/jmid.328786.
  • Majtán J, Majtánová Ľ, Xu M, Majtán V. In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia. J Appl Microbiol. 2008;104(5):1294–1301. doi:10.1111/j.1365-2672.2007.03653.x.
  • Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). Antimicrob Agents Chemother. 2001;45(1):38–43. doi:10.1128/AAC.45.1.38-43.2001.
  • O’Regan E, Quinn T, Pagès J-M, McCusker M, Piddock L, Fanning S. Multiple regulatory pathways associated with high-level ciprofloxacin and multidrug resistance in Salmonella enterica serovar eNteritidis: involvement of ramA and other global regulators. Antimicrob Agents Chemother. 2009;53(3):1080–1087. doi:10.1128/AAC.01005-08.
  • Nonaka L, Maruyama F, Miyamoto M, Miyakoshi M, Kurokawa K, Masuda M. Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microb Environ. 2012;27(3):263–272. doi:10.1264/jsme2.ME11338.
  • Sugimoto Y, Suzuki S, Nonaka L, Boonla C, Sukpanyatham N, Chou HY, Wu JH. The novel mef(C)–mph(G) macrolide resistance genes are conveyed in the environment on various vectors. J Glob Antimicrob Resist. 2017;10:47–53. doi:10.1016/j.jgar.2017.03.015.
  • Yaron S, Kolling GL, Simon L, Matthews KR. Vesicle-mediated transfer of virulence genes from Escherichia coli O157: h7 to other enteric bacteria. Appl Environ Microbiol. 2000;66(10):4414–4420. doi:10.1128/AEM.66.10.4414-4420.2000.
  • Bai X, Nakatsu CH, Bhunia AK. Bacterial biofilms and their implications in pathogenesis and food safety. Foods. 2021;10(9):2117. doi:10.3390/foods10092117.
  • Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 2014;22(11):648–655. doi:https://doi.org/10.1016/j.tim.2014.06.007.
  • Schembri MA, Kjærgaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 2003;48(1):253–267. doi:10.1046/j.1365-2958.2003.03432.x.
  • Wang H, Zhang X, Dong Y, Xu X, Zhou G. Insights into the transcriptome profile of mature biofilm of Salmonella Typhimurium on stainless steels surface. Food Res Int. 2015;77:378–384. doi:10.1016/j.foodres.2015.08.034.
  • Ghosh S, Lahiri D, Nag M, Sarkar T, Pati S, Edinur HA, Kumar M, Mohd Zain MRA, Ray RR. Precision targeting of food biofilm-forming genes by microbial scissors: cRISPR-Cas as an effective modulator. Front Microbiol. 2022;13: doi:10.3389/fmicb.2022.964848.
  • Steenackers HP, Parijs I, Foster KR, Vanderleyden J, Banin E. Experimental evolution in biofilm populations. FEMS Microbiol Rev. 2016;40(3):373–397. doi:10.1093/femsre/fuw002.
  • Coenye T, Bové M, Bjarnsholt T. Biofilm antimicrobial susceptibility through an experimental evolutionary lens. NPJ Biofilms Microbiomes. 2022;8(1):82. doi:10.1038/s41522-022-00346-4.
  • Fuentes-Hernández A, Hernández-Koutoucheva A, Muñoz AF, Palestino RD, Peña-Miller R. Diffusion-driven enhancement of the antibiotic resistance selection window. J R Soc Interface. 2019;16(158):20190363. doi:10.1098/rsif.2019.0363.
  • Hegreness M, Shoresh N, Damian D, Hartl D, Kishony R. Accelerated evolution of resistance in multidrug environments. Proc Natl Acad Sci USA. 2008;105(37):13977–13981. doi:10.1073/pnas.0805965105.
  • Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. Elife. 2019;8. doi:10.7554/eLife.47612.
  • Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of antibiotic resistance in biofilm and planktonic pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 2018;62(8). doi:10.1128/AAC.00320-18.
  • Ahmed MN, Abdelsamad A, Wassermann T, Porse A, Becker J, Sommer MOA, Høiby N, Ciofu O. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes. 2020;6(1). doi:10.1038/s41522-020-00138-8.
  • MacKenzie KD, Wang Y, Shivak DJ, Wong CS, Hoffman LJL, Lam S, Kröger C, Cameron ADS, Townsend HGG, Köster W, et al. Bistable expression of CsgD in Salmonella enterica serovar typhimurium connects virulence to persistence. Infect Immun. 2015;83(6):2312–2326. doi:10.1128/IAI.00137-15.
  • Lories B, Roberfroid S, Dieltjens L, De Coster D, Foster KR, Steenackers HP. Biofilm bacteria use stress responses to detect and respond to competitors. Curr Biol. 2020;30(7):1231–1244.e4. doi:10.1016/j.cub.2020.01.065.
  • Zou Y, Woo J, Ahn J. Cellular and molecular responses of Salmonella Typhimurium to antimicrobial-induced stresses during the planktonic-to-biofilm transition. Lett Appl Microbiol. 2012;55(4):274–282. doi:10.1111/j.1472-765X.2012.03288.x.
  • Chin KCJ, Taylor TD, Hebrard M, Anbalagan K, Dashti MG, Phua KK. Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm. Bmc Genom. 2017;18(1). doi:10.1186/s12864-017-4212-6.
  • Orme R, Douglas CWI, Rimmer S, Webb M. Proteomic analysis of Escherichia coli biofilms reveals the overexpression of the outer membrane protein OmpA. Proteomics. 2006;6(15):4269–4277. doi:10.1002/pmic.200600193.
  • Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM, Hinton JC. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. Bmc Genom. 2009;10(1). doi:10.1186/1471-2164-10-599.
  • Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML, Yaron S. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett. 2007;267(2):200–206. doi:10.1111/j.1574-6968.2006.00547.x.
  • Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol. 2000;182(12):3467–3474. doi:10.1128/JB.182.12.3467-3474.2000.
  • Pasqua M, Grossi M, Zennaro A, Fanelli G, Micheli G, Barras F, Colonna B, Prosseda G. The varied role of efflux pumps of the mfs family in the interplay of bacteria with animal and plant cells. Microorganisms. 2019;7(9):285. doi:10.3390/microorganisms7090285.
  • Yamasaki S, Nagasawa S, Fukushima A, Hayashi-Nishino M, Nishino K. Cooperation of the multidrug efflux pump and lipopolysaccharides in the intrinsic antibiotic resistance of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2013;68(5):1066–1070. doi:10.1093/jac/dks528.
  • Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;59(1):126–141. doi:10.1111/j.1365-2958.2005.04940.x.
  • Baugh S, Ekanayaka AS, Piddock LJV, Webber MA. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother. 2012;67(10):2409–2417. doi:10.1093/jac/dks228.
  • Andersen JL, He G-X, Kakarla P, Kc R, Kumar S, Lakra W, Mukherjee M, Ranaweera I, Shrestha U, Tran T, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Env Res Pub He. 2015;12(2):1487–1547. doi:10.3390/ijerph120201487.
  • Kapach G, Nuri R, Schmidt C, Danin A, Ferrera S, Savidor A, Gerlach RG, Shai Y. Loss of the periplasmic chaperone skp and mutations in the efflux pump AcrAB-TolC play a role in acquired resistance to antimicrobial peptides in Salmonella typhimurium. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.00189.
  • Hayashi M, Tabata K, Yagasaki M, Yonetani Y. Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli. FEMS Microbiol Lett. 2010;304(1):12–19. doi:10.1111/j.1574-6968.2009.01879.x.
  • Hancock V, Klemm P. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun. 2007;75(2):966–976. doi:10.1128/IAI.01748-06.
  • Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol. 2001;183(20):5803–5812. doi:10.1128/JB.183.20.5803-5812.2001.
  • Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, Mulvey MR. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar typhimurium DT104 and its identification in phage type DT120 and serovar agona. J Bacteriol. 2001;183(19):5725–5732. doi:10.1128/JB.183.19.5725-5732.2001.
  • Villagra NA, Fuentes JA, Jofre MR, Hidalgo AA, Garcia P, Mora GC. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J Antimicrob Chemother. 2012;67(4):921–927. doi:10.1093/jac/dkr573.
  • Marsh D, Henderson PJF. Specific spin labelling of the sugar-H+ symporter, GalP, in cell membranes of Escherichia coli: site mobility and overall rotational diffusion of the protein. Biochim Biophys Acta Biomembr. 2001;1510(1–2):464–473. doi:10.1016/S0005-2736(00)00377-1.
  • Postma PW. Galactose transport in Salmonella typhimurium. J Bacteriol. 1977;129(2):630–639. doi:10.1128/jb.129.2.630-639.1977.
  • Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol. 2018;169(7–8):425–431. doi:10.1016/j.resmic.2017.10.005.
  • Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF. Structure of the AcrAB–TolC multidrug efflux pump. Nature. 2014;509(7501):512–515. doi:10.1038/nature13205.
  • Horiyama T, Yamaguchi A, Nishino K. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2010;65(7):1372–1376. doi:10.1093/jac/dkq160.
  • Hwang J, Park S-H, Lee CW, Do H, Shin SC, Kim H-W, Lee SG, Park HH, Kwon S, Lee JH, et al. Crystal structure of a MarR family protein from the psychrophilic bacterium Paenisporosarcina sp. TG-14 in complex with a lipid-like molecule. IUCrJ. 2021;8(5):842–852. doi:10.1107/S2052252521005704.
  • Martin RG, Rosner JL. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol. 2002;44(6):1611–1624. doi:10.1046/j.1365-2958.2002.02985.x.
  • Beggs GA, Brennan RG, Arshad M. MarR family proteins are important regulators of clinically relevant antibiotic resistance. Protein Sci. 2020;29(3):647–653. doi:10.1002/pro.3769.
  • Perera IC, Grove A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol. 2010;2(5):243–254. doi:10.1093/jmcb/mjq021.
  • Prieto AI, Herández SB, Cota I, Pucciarelli MG, Orlov Y, Ramos-Morales F, García-Del Portillo F, Casadesus J. Roles of the outer membrane protein asmA of Salmonella enterica in the control of marRAB expression and invasion of epithelial cells. J Bacteriol. 2009;191(11):3615–3622. doi:10.1128/JB.01592-08.
  • Feng Z, Liu D, Wang L, Wang Y, Zang Z, Liu Z, Song B, Gu L, Fan Z, Yang S, et al. A putative efflux transporter of the ABC family, YbhFSR, in Escherichia coli functions in tetracycline efflux and Na+(Li+)/H+ Transport. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.00556.
  • Choi U, Lee CR. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00953.
  • Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6(12):893–903. doi:10.1038/nrmicro1994.
  • Moya-Torres A, Mulvey MR, Kumar A, Oresnik IJ, Brassinga AKC. The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiology (UK). 2014;160(9):1882–1892. doi:10.1099/mic.0.081166-0.
  • Villarreal JM, Becerra-Lobato N, Rebollar-Flores JE, Medina-Aparicio L, Carbajal-Gómez E, Zavala-García ML, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Encarnación S, et al. The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol. 2014;92(5):1005–1024. doi:10.1111/mmi.12610.
  • Shi C, Li M, Muhammad I, Ma X, Chang Y, Li R, Li C, He J, Liu F. Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR. J Vet Sci. 2018;19(6):808. doi:10.4142/jvs.2018.19.6.808.
  • Perni S, Preedy EC, Landini P, Prokopovich P. Influence of csgD and ompR on nanomechanics, adhesion forces, and curli properties of E. coli. Langmuir. 2016;32(31):7965–7974. doi:10.1021/acs.langmuir.6b02342.
  • Ziervogel BK, Roux B. The binding of antibiotics in OmpF porin. Structure. 2013;21(1):76–87. doi:10.1016/j.str.2012.10.014.
  • Matera G, Altuvia Y, Gerovac M, El Mouali Y, Margalit H, Vogel J. Global RNA interactome of Salmonella discovers a 5′ UTR sponge for the MicF small RNA that connects membrane permeability to transport capacity. Mol Cell. 2022;82(3):629–644.e4. doi:10.1016/j.molcel.2021.12.030.
  • Medeiros AA, O’Brien TF, Rosenberg EY, Nikaido H. Loss of OmpC porin in a strain of salmonella typhimirium causes increased resistance to cephalosporins during therapy. J Infect Dis. 1987;156(5):751–757. doi:10.1093/infdis/156.5.751.
  • Chowdhury AR, Mukherjee D, Singh AK, Chakravortty D. Loss of outer membrane protein a (OmpA) impairs the survival of Salmonella Typhimurium by inducing membrane damage in the presence of ceftazidime and meropenem. J Antimicrob Chemother. 2022;77(12):3376–3389. doi:10.1093/jac/dkac327.
  • Smani Y, Fàbrega A, Roca I, Sánchez-Encinales V, Vila J, Pachón J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58(3):1806–1808. doi:10.1128/AAC.02101-13.
  • Dupont M, James CE, Chevalier J, Pagès JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother. 2007;51(9):3190–3198. doi:10.1128/AAC.01481-06.
  • Briones AC, Lorca D, Cofre A, Cabezas CE, Krüger GI, Pardo-Esté C, Baquedano MS, Salinas CR, Espinoza M, Castro-Severyn J, et al. Genetic regulation of the ompX porin of Salmonella Typhimurium in response to hydrogen peroxide stress. Biol Res. 2022;55(1). doi:10.1186/s40659-022-00377-3.
  • Hirakawa H, Suzue K, Takita A, Kamitani W, Tomita H, Brodsky IE. Roles of ompx, an outer membrane protein, on virulence and flagellar expression in uropathogenic Escherichia coli. Infect Immun. 2021;89(6). doi:10.1128/IAI.00721-20.
  • Wang Y, Yi L, Zhang J, Sun L, Wen W, Zhang C, Wang S. Functional analysis of superoxide dismutase of Salmonella typhimurium in serum resistance and biofilm formation. J Appl Microbiol. 2018;125(5):1526–1533. doi:10.1111/jam.14044.
  • Stevanin TM, Poole RK, Demoncheaux EAG, Read RC. Flavohemoglobin Hmp protects Salmonella enterica serovar typhimurium from nitric oxide-related killing by human macrophages. Infect Immun. 2002;70(8):4399–4405. doi:10.1128/IAI.70.8.4399-4405.2002.
  • Fukuda M, Takeda H, Kato HE, Doki S, Ito K, Maturana AD, Ishitani R, Nureki O. Structural basis for dynamic mechanism of nitrate/nitrite antiport by NarK. Nat Commun. 2015;6(1). doi:10.1038/ncomms8097.
  • Jia W, Tovell N, Clegg S, Trimmer M, Cole J. A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem J. 2009;417(1):297–307. doi:10.1042/BJ20080746.
  • Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother. 2017;61(1). doi:10.1128/AAC.01162-16.
  • Sakai A, Nakanishi M, Yoshiyama K, Maki H. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Genes to Cells. 2006;11(7):767–778. doi:10.1111/j.1365-2443.2006.00982.x.
  • Cosgrove K, Coutts G, Jonsson I-M, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol. 2007;189(3):1025–1035. doi:10.1128/JB.01524-06.
  • Jacobson FS, Morgan RW, Christman MF, Ames BN. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J Biol Chem. 1989;264(3):1488–1496. doi:10.1016/S0021-9258(18)94214-6.
  • Parsonage D, Karplus PA, Poole LB. Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci USA. 2008;105(24):8209–8214. doi:10.1073/pnas.0708308105.
  • Bollinger N, Hassett DJ, Iglewski BH, Costerton JW, McDermott TR. Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol. 2001;183(6):1990–1996. doi:10.1128/JB.183.6.1990-1996.2001.
  • Jang IA, Kim J, Park W. Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1. Sci Rep. 2016;6(1). doi:10.1038/srep21121.
  • Loewen PC, De Silva PM, Donald LJ, Switala J, Villanueva J, Fita I, Kumar A. KatG-Mediated oxidation leading to reduced susceptibility of bacteria to kanamycin. ACS Omega. 2018;3(4):4213–4219. doi:10.1021/acsomega.8b00356.
  • Zhu Y-Q, Zhu D-Y, Lu H-X, Yang N, Li G-P, Wang D-C. Purification and preliminary crystallographic studies of CutC, a novel copper homeostasis protein from shigella flexneri. Protein Pept Lett. 2005;12(8):823–826. doi:10.2174/0929866054864184.
  • Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microb. 2011;77(5):1541–1547. doi:10.1128/AEM.02766-10.
  • Gupta SD, Lee BTO, Camakaris J, Wu HC. Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli. J Bacteriol. 1995;177(15):4207–4215. doi:10.1128/jb.177.15.4207-4215.1995.
  • Geslin C, Llanos J, Prieur D, Jeanthon C. The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol. 2001;152(10):901–905. doi:10.1016/S0923-2508(01)01273-6.
  • Calhoun LN, Kwon YM. The ferritin-like protein Dps protects Salmonella enterica serotype Enteritidis from the Fenton-mediated killing mechanism of bactericidal antibiotics. Int J Antimicrob Agents. 2011;37(3):261–265. doi:10.1016/j.ijantimicag.2010.11.034.
  • Nair S, Finkel SE. Dps protects cells against multiple stresses during stationary phase. J Bacteriol. 2004;186(13):4192–4198. doi:10.1128/JB.186.13.4192-4198.2004.
  • Almiron M, Link AJ, Furlong D, Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 1992;6(12b):2646–2654. doi:10.1101/gad.6.12b.2646.
  • Goto R, Miki T, Nakamura N, Fujimoto M, Okada N, Cloeckaert A. Salmonella Typhimurium PagP- and UgtL-dependent resistance to antimicrobial peptides contributes to the gut colonization. PLoS One. 2017;12(12):e0190095. doi:10.1371/journal.pone.0190095.
  • Shi Y, Cromie MJ, Hsu FF, Turk J, Groisman EA. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol Microbiol. 2004;53(1):229–241. doi:10.1111/j.1365-2958.2004.04107.x.
  • Pardo-Esté C, Castro-Severyn J, Krüger GI, Cabezas CE, Briones AC, Aguirre C, Morales N, Baquedano MS, Sulbaran YN, Hidalgo AA, et al. The transcription factor ArcA Modulates Salmonella’s metabolism in response to neutrophil hypochlorous acid-mediated stress. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.02754.
  • Zhang XS, García-Contreras R, Wood TK. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol. 2007;189(8):3051–3062. doi:10.1128/JB.01832-06.
  • Salazar JK, Deng K, Tortorello ML, Brandl MT, Wang H, Zhang W. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica typhimurium and saintpaul to fresh produce. PLoS One. 2013;8(2):e57272. doi:10.1371/journal.pone.0057272.
  • Nobre LS, Al-Shahrour F, Dopazo J, Saraiva LM. Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli. Microbiology (NY). 2009;155:813–824.
  • Conter A, Gangneux C, Suzanne M, Gutierrez C. Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. Res Microbiol. 2001;152(1):17–26. doi:10.1016/S0923-2508(00)01164-5.
  • Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J Bacteriol. 1998;180(10):2636–2643. doi:10.1128/JB.180.10.2636-2643.1998.
  • Vickery K. Special Issue: microbial biofilms in healthcare: formation, prevention and treatment. Materials. 2019;12(12):2001. doi:10.3390/ma12122001.
  • Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: clinical relevance - Development, composition and regulation - Therapeutical strategies. Microb Cell. 2021;8(2):28–56. doi:10.15698/mic2021.02.741.
  • Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol. 2012;65(2):183–195. doi:10.1111/j.1574-695X.2012.00960.x.
  • Gamazo C, Solano C, Lasa I. Biofilm formation by Salmonella in food processing environments. In: Biofilms in the food and beverage industries. Elsevier; 2009. pp. 226–249. doi:10.1533/9781845697167.2.226
  • Joseph B, Otta SK, Karunasagar I, Karunasagar I. Biofilm formation by Salmonella spp. On food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol. 2001;64(3):367–372. doi:10.1016/S0168-1605(00)00466-9.
  • Liu H, Whitehouse CA, Li B. Presence and persistence of Salmonella in water: the impact on microbial quality of water and food safety. Front Public Health. 2018;6: doi:10.3389/fpubh.2018.00159.
  • Liu Z, Adyel TM, Miao L, You G, Liu S, Hou J. Biofilm influenced metal accumulation onto plastic debris in different freshwaters. Environ Pollut. 2021;285:117646. doi:10.1016/j.envpol.2021.117646.
  • Cloete TE, Jacobs L, Brözel VS. The chemical control of biofouling in industrial water systems. Biodegradation. 1998;9(1):23–37. doi:10.1023/A:1008216209206.
  • Colclough A, Corander J, Sheppard SK, Bayliss SC, Vos M. Patterns of cross-resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials. Evol Appl. 2019;12(5):878–887. doi:10.1111/eva.12762.
  • Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554. doi:10.1080/21505594.2017.1313372.
  • Pogodin S, Hasan J, Baulin V, Webb H, Truong V, Phong Nguyen T, Boshkovikj V, Fluke C, Watson G, Watson J, et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J. 2013;104(4):835–840. doi:10.1016/j.bpj.2012.12.046.
  • Banat IM, De Rienzo MAD, Quinn GA. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol. 2014;98(24):9915–9929. doi:10.1007/s00253-014-6169-6.
  • Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2014;21(1):5–11. doi:10.2174/1381612820666140905114627.
  • Ren D, Sims JJ, Wood TK. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3- butyl-2(5H)-furanone. Environ Microbiol. 2001;3(11):731–736. doi:10.1046/j.1462-2920.2001.00249.x.
  • Li X-H, Lee J-H. Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol. 2017;55(10):753–766. doi:10.1007/s12275-017-7274-x.