6,412
Views
9
CrossRef citations to date
0
Altmetric
Review

Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism

, , , , &
Article: 2236749 | Received 01 May 2023, Accepted 10 Jul 2023, Published online: 09 Aug 2023

References

  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–22. doi:10.1016/S0140-6736(03)12489-0.
  • de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–1032. doi:10.1136/gutjnl-2021-326789.
  • Eriksson H, Gustafsson JÅ, Sjövall J Steroids in germfree and conventional rats. European Journal of Biochemistry 1969;9:286–290.
  • Chen KL, Madak-Erdogan Z. Estrogen and microbiota crosstalk: Should we pay attention? Trends Endocrinol Metab. 2016;27(11):752–755. doi:10.1016/j.tem.2016.08.001.
  • Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host & Microbe. 2011;10(4):324–335. doi:10.1016/j.chom.2011.10.003.
  • Ervin SM, Li H, Lim L, Roberts LR, Liang X, Mani S, Redinbo MR. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem. 2019;294(49):18586–18599. doi:10.1074/jbc.RA119.010950.
  • Masamune H. Biochemical studies on carbohydrates: IV. On an enzyme which catalyses the hydrolysis of biosynthetic osides of glucuronic acid. J Biochem. 1934;19(2):353–375. doi:10.1093/oxfordjournals.jbchem.a125337.
  • Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45–53. doi:10.1016/j.maturitas.2017.06.025.
  • Sui Y, Wu J, Chen J. The role of gut microbial β-glucuronidase in estrogen reactivation and breast cancer. Front Cell Dev Biol. 2021;9:631552. doi:10.3389/fcell.2021.631552.
  • Brandenberger AW, Tee MK, Lee JY, Chao V, Jaffe RB. Tissue distribution of Estrogen Receptors Alpha (ER-alpha) and Beta (ER-alpha) mRNA in the midgestational human fetus. J Clin Endocrinol Metab. 1997;82(10):3509–3512. doi:10.1210/jc.82.10.3509.
  • Sandberg AA, Slaunwhite WR Jr. Studies on phenolic steroids in human subjects. II. The metabolic fate and hepato-biliary-enteric circulation of C14-estrone and C14-estradiol in women. J Clin Invest. 1957;36(8):1266–1278. doi:10.1172/JCI103524.
  • Sandberg AA, Slaunwhite WR Jr. Studies on phenolic steroids in human subjects. vii. metabolic fate of estriol and its glucuronide. J Clin Invest. 1965;44(4):694–702. doi:10.1172/JCI105181.
  • Adlercreutz H, Järvenpää P. Assay of estrogens in human feces. J Steroid Biochem. 1982;17(6):639–645. doi:10.1016/0022-4731(82)90565-9.
  • Fishman WH, Fishman LW. THE ELEVATION of UTERINE β-GLUCURONIDASE ACTIVITY by ESTROGENIC HORMONES. J Biol Chem. 1944;152(2):487–488. doi:10.1016/S0021-9258(18)72081-4.
  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5. doi:10.1093/nar/gkt1178.
  • An J, Kwon H, Lim W, Moon B-I. Staphylococcus aureus-derived extracellular vesicles enhance the efficacy of endocrine therapy in breast cancer cells. J Clin Med. 2022;11(7):11. doi:10.3390/jcm11072030.
  • Gao S, Sun R, Singh R, Yu so S, Chan CTY, Savidge T, Hu M. The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discov Today. 2022;27(10):103316. doi:10.1016/j.drudis.2022.07.001.
  • Sui Y, Wu J, Chen J. The role of gut microbial β-glucuronidase in estrogen reactivation and breast cancer. Front In Cell And Dev Biol. 2021;9. doi:10.3389/fcell.2021.631552.
  • Wu Q, Zhou QH, Li W, Ren T-B, Zhang X-B, Yuan L. Evolving an ultra-sensitive near-infrared β-galactosidase fluorescent probe for breast cancer imaging and surgical resection navigation. ACS Sens. 2022;7(12):3829–3837. doi:10.1021/acssensors.2c01752.
  • Kwa M, Plottel CS, Blaser MJ, Adams S. The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst. 2016;108(8). doi:10.1093/jnci/djw029.
  • Pollet RM, D’Agostino EH, Walton WG, Xu Y, Little MS, Biernat KA, Pellock SJ, Patterson LM, Creekmore BC, Isenberg HN, et al. An atlas of β-glucuronidases in the human intestinal microbiome. Structure. 2017;25(7):967–977.e5. doi:10.1016/j.str.2017.05.003.
  • Creekmore BC, Gray JH, Walton WG, Biernat KA, Little MS, Xu Y, Liu J, Gharaibeh RZ, Redinbo MR. Mouse gut microbiome-encoded β-glucuronidases identified using metagenome analysis guided by protein structure. mSystems. 2019;4(4):4. doi:10.1128/mSystems.00452-19.
  • Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh L-A, Mani S, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831–835. doi:10.1126/science.1191175.
  • Candeliere F, Raimondi S, Ranieri R, Musmeci E, Zambon A, Amaretti A, Rossi M. β-glucuronidase pattern predicted from gut metagenomes indicates potentially diversified pharmacomicrobiomics. Front Microbiol. 2022;13:826994. doi:10.3389/fmicb.2022.826994.
  • Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol. 2008;66(3):487–495. doi:10.1111/j.1574-6941.2008.00520.x.
  • Gloux K, Berteau O, El Oumami H, Béguet F, Leclerc M, Doré J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci USA. 2011;108(supplement_1):4539–4546. doi:10.1073/pnas.1000066107.
  • McIntosh FM, Maison N, Holtrop G, Young P, Stevens VJ, Ince J, Johnstone AM, Lobley GE, Flint HJ, Louis P, et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol. 2012;14(8):1876–1887. doi:10.1111/j.1462-2920.2012.02711.x.
  • Carrette O, Favier C, Mizon C, Neut, C., Cortot, A., Colombel, J F., Mizon, J. Bacterial enzymes used for colon-specific drug delivery are decreased in active Crohn’s disease. Digest Dis Sci. 1995;40(12):2641–2646. doi:10.1007/BF02220454.
  • Geier MS, Butler RN, Howarth GS. Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer? Cancer Biol Ther. 2006;5(10):1265–1269. doi:10.4161/cbt.5.10.3296.
  • Lombardi P, Goldin B, Boutin E, Gorbach SL. Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem. 1978;9(8):795–801. doi:10.1016/0022-4731(78)90203-0.
  • Adlercreutz H, Pulkkinen MO, Hämäläinen EK, Korpela JT. Studies on the role of intestinal bacteria in metabolism of synthetic and natural steroid hormones. J Steroid Biochem. 1984;20(1):217–229. doi:10.1016/0022-4731(84)90208-5.
  • Li D, Sun T, Tong Y, Le J, Yao Q, Tao J, Liu H, Jiao W, Mei Y, Chen J, et al. Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metab. 2023;35(4):685–694.e5. doi:10.1016/j.cmet.2023.02.017.
  • Chan AA, Bashir M, Rivas MN, Duvall K, Sieling PA, Pieber TR, Vaishampayan PA, Love SM, Lee DJ. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep. 2016;6(1):28061. doi:10.1038/srep28061.
  • Byrd DA, Vogtmann E, Wu Z, Han Y, Wan Y, Clegg‐Lamptey J-N, Yarney J, Wiafe‐Addai B, Wiafe S, Awuah B, et al. Associations of fecal microbial profiles with breast cancer and nonmalignant breast disease in the Ghana Breast Health Study. Int J Cancer. 2021;148(11):2712–2723. doi:10.1002/ijc.33473.
  • Wang Z, Qin X, Hu D, Huang J, Guo E, Xiao R, Li W, Sun C, Chen G. Akkermansia supplementation reverses the tumor-promoting effect of the fecal microbiota transplantation in ovarian cancer. Cell Rep. 2022;41(13):111890. doi:10.1016/j.celrep.2022.111890.
  • Lin C, Zeng Z, Lin Y, Wang P, Cao D, Xie K, Luo Y, Yang H, Yang J, Wang W, et al. Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota. Phytomedicine. 2022;106:154401. doi:10.1016/j.phymed.2022.154401.
  • Zhao SS, Chen L, Yang J, Wu Z-H, Wang X-Y, Zhang Q, Liu W-J, Liu H-X. Altered gut microbial profile accompanied by abnormal fatty acid metabolism activity exacerbates endometrial cancer progression. Microbiol Spectr. 2022;10(6):e0261222. doi:10.1128/spectrum.02612-22.
  • Gressel GM, Usyk M, Frimer M, Kuo DYS, Burk RD. Characterization of the endometrial, cervicovaginal and anorectal microbiota in post-menopausal women with endometrioid and serous endometrial cancers. PLoS One. 2021;16(11):e0259188. doi:10.1371/journal.pone.0259188.
  • Yuan M, Li D, Zhang Z, Sun H, An M, Wang G. Endometriosis induces gut microbiota alterations in mice. Hum Reprod. 2018;33(4):607–616. doi:10.1093/humrep/dex372.
  • Chadchan SB, Cheng M, Parnell LA, Yin Y, Schriefer A, Mysorekar IU, Kommagani R. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota. Hum Reprod. 2019;34(6):1106–1116. doi:10.1093/humrep/dez041.
  • Peters BA, Lin J, Qi Q, Usyk M, Isasi CR, Mossavar-Rahmani Y, Derby CA, Santoro N, Perreira KM, Daviglus ML, et al. Menopause is associated with an altered gut microbiome and estrobolome, with implications for adverse cardiometabolic risk in the hispanic community health study/study of latinos. mSystems. 2022;7(3):e0027322. doi:10.1128/msystems.00273-22.
  • Chen KLA, Liu X, Zhao YC, Hieronymi K, Rossi G, Auvil LS, Welge M, Bushell C, Smith RL, Carlson KE, et al. Long-term administration of conjugated estrogen and bazedoxifene decreased murine fecal β-glucuronidase activity without impacting overall microbiome community. Sci Rep. 2018;8(1):8166. doi:10.1038/s41598-018-26506-1.
  • Wu Z, Pfeiffer RM, Byrd DA, Wan Y, Ansong D, Clegg-Lamptey J-N, Wiafe-Addai B, Edusei L, Adjei E, Titiloye N, et al. Associations of circulating estrogens and estrogen metabolites with fecal and oral microbiome in postmenopausal women in the ghana breast health study. Microbiol Spectr. 2023:e0157223. doi:10.1128/spectrum.01572-23
  • Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, Goedert JJ. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab. 2014;99(12):4632–4640. doi:10.1210/jc.2014-2222.
  • da Silva TCA, Dos Santos Gonçalves JA, Souza L, Lima AA, Guerra-Sá R. The correlation of the fecal microbiome with the biochemical profile during menopause: a Brazilian cohort study. BMC Womens Health. 2022;22(1):499. doi:10.1186/s12905-022-02063-8.
  • Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, Gajer P, Ravel J, Goedert JJ. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10(1):253. doi:10.1186/1479-5876-10-253.
  • Liu Y, Zhou Y, Mao T, Huang Y, Liang J, Zhu M, Yao P, Zong Y, Lang J, Zhang Y, et al. The relationship between menopausal syndrome and gut microbes. BMC Womens Health. 2022;22(1):437. doi:10.1186/s12905-022-02029-w.
  • Pavlovska OM, Pavlovska KM, Heryak SM, Khmil SV, Khmil MS. Vasomotor menopausal disorders as a possible result of dysfunction of the microbiota-intestine-brain axis. J Med Life. 2022;15(2):234–240. doi:10.25122/jml-2021-0106.
  • Yang X, Xiao H, Zeng Y, Huang L, Ji K, Deng D, Yang W, Liu L. Tianwang buxin granules influence the intestinal flora in perimenopausal insomnia. Biomed Res Int. 2021;2021:1–9. doi:10.1155/2021/9979511.
  • Ma S, Qin J, Hao Y, Shi Y, Fu L. Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass. Aging (Albany NY). 2020;12(11):10736–10753. doi:10.18632/aging.103290.
  • Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut microbiota and gynecological cancers: A summary of pathogenetic mechanisms and future directions. ACS Infect Dis. 2021;7(5):987–1009. doi:10.1021/acsinfecdis.0c00839.
  • Fishman WH. B-Glucuronidase activity of the blood and tissues of obstetrical and surgical patients. Science. 1947;105(2738):646–647. doi:10.1126/science.105.2738.646.
  • Fishman WH, Anlyan AJ. Comparison of the β-glucuronidase activity of normal, tumor, and lymph node tissues of surgical patients. Science. 1947;106(2742):66–67. doi:10.1126/science.106.2742.66.
  • Hill MJ, Goddard P, Williams RE. Gut bacteria and aetiology of cancer of the breast. Lancet. 1971;298(7722):472–473. doi:10.1016/S0140-6736(71)92634-1.
  • Gorbach SL. Estrogens, breast cancer, and intestinal flora. Rev Infect Dis. 1984;6(Suppl 1):S85–90. doi:10.1093/clinids/6.Supplement_1.S85.
  • Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem. 2020;187:111921. doi:10.1016/j.ejmech.2019.111921.
  • Rosenberg L, Bethea TN, Viscidi E, Hong C-C, Troester MA, Bandera EV, Haiman CA, Kolonel LN, Olshan AF, Ambrosone CB, et al. Postmenopausal female hormone use and estrogen receptor–positive and –negative breast cancer in African American Women. J Natl Cancer Inst. 2016;108(4):djv361. doi:10.1093/jnci/djv361.
  • Whitaker BL. Plasma β-glucuronidase levels in breast cancer. Br J Cancer. 1960;14(3):471–477. doi:10.1038/bjc.1960.51.
  • Beratis NG, Kaperonis A, Eliopoulou MI, Kourounis G, Tzingounis VA. Increased activity of lysosomal enzymes in the peritoneal fluid of patients with gynecologic cancers and pelvic inflammatory disease. J Cancer Res Clin Oncol. 2005;131(6):371–376. doi:10.1007/s00432-004-0649-5.
  • Laborda-Illanes A, Sanchez-Alcoholado L, Dominguez-Recio ME, Jimenez-Rodriguez B, Lavado R, Comino-Méndez I, Alba E, Queipo-Ortuño MI. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers Basel. 2020;12(9):12. doi:10.3390/cancers12092465.
  • Zhu J, Liao M, Yao Z, Liang W, Li Q, Liu J, Yang H, Ji Y, Wei W, Tan A, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome. 2018;6(1):136. doi:10.1186/s40168-018-0515-3.
  • He S, Li H, Yu Z, Zhang F, Liang S, Liu H, Chen H, Lü M. The gut microbiome and sex hormone-related diseases. Front Microbiol. 2021;12:711137. doi:10.3389/fmicb.2021.711137.
  • Beral V, Gaitskell K, Hermon C. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet. 2015;385:1835–1842.
  • Chambers LM, Esakov Rhoades EL, Bharti R, Braley C, Tewari S, Trestan L, Alali Z, Bayik D, Lathia JD, Sangwan N, et al. Disruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancer. Cancer Res. 2022;82(24):4654–4669. doi:10.1158/0008-5472.CAN-22-0455.
  • Cheng H, Wang Z, Cui L, Wen Y, Chen X, Gong F, Yi H. Opportunities and challenges of the human microbiome in ovarian cancer. Front Oncol. 2020;10:163. doi:10.3389/fonc.2020.00163.
  • Laschke MW, Menger MD. The gut microbiota: a puppet master in the pathogenesis of endometriosis? Am J Obstet Gynecol. 2016;215(1):.e68.1–.e68.4. doi:10.1016/j.ajog.2016.02.036.
  • Talwar C, Singh V, Kommagani R. The gut microbiota: a double-edged sword in endometriosis†. Biol Reprod. 2022;107:881–901. doi:10.1093/biolre/ioac147.
  • Qin R, Tian G, Liu J, Cao L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front Cell Infect Microbiol. 2022;12:1069557. doi:10.3389/fcimb.2022.1069557.
  • Galvankar M, Singh N, Modi D. Estrogen is essential but not sufficient to induce endometriosis. J Biosci. 2017;42(2):251–263. doi:10.1007/s12038-017-9687-4.
  • Clemenza S, Vannuccini S, Ruotolo A, Capezzuoli T, Petraglia F. Advances in targeting estrogen synthesis and receptors in patients with endometriosis. Expert Opin Investig Drugs. 2022;31(11):1227–1238. doi:10.1080/13543784.2022.2152325.
  • Jiang I, Yong PJ, Allaire C, Bedaiwy MA. Intricate connections between the microbiota and endometriosis. Int J Mol Sci. 2021;22(11):22. doi:10.3390/ijms22115644.
  • Brandelli A, Passos EP. Glycosidases in the peritoneal fluid from infertile women with and without endometriosis. Clin Biochem. 1998;31(3):181–186. doi:10.1016/S0009-9120(98)00012-5.
  • Graham ME, Herbert WG, Song SD, Raman HN, Zhu JE, Gonzalez PE, Walther-António MRS, Tetel MJ. Gut and vaginal microbiomes on steroids: implications for women’s health. Trends Endocrinol Metab. 2021;32(8):554–565. doi:10.1016/j.tem.2021.04.014.
  • Burger HG, Hale GE, Robertson DM, Dennerstein L. A review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project. Hum Reprod Update. 2007;13(6):559–565. doi:10.1093/humupd/dmm020.
  • Schreurs MPH, de Vos van Steenwijk PJ, Romano A, Dieleman S, Werner HMJ. How the gut microbiome links to menopause and obesity, with possible implications for endometrial cancer development. JCM. 2021;10(13):10. doi:10.3390/jcm10132916.
  • Menon R, Watson SE, Thomas LN, Allred CD, Dabney A, Azcarate-Peril MA, Sturino JM. Diet complexity and estrogen receptor β status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol. 2013;79(18):5763–5773. doi:10.1128/AEM.01182-13.
  • Meng Q, Ma M, Zhang W, Bi Y, Cheng P, Yu X, Fu Y, Chao Y, Ji T, Li J, et al. The gut microbiota during the progression of atherosclerosis in the perimenopausal period shows specific compositional changes and significant correlations with circulating lipid metabolites. Gut Microbes. 2021;13(1):1–27. doi:10.1080/19490976.2021.1880220.
  • Insenser M, Murri M, Del Campo R, Martínez-García MÁ, Fernández-Durán E, Escobar-Morreale HF. Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 2018;103(7):2552–2562. doi:10.1210/jc.2017-02799.
  • Song CH, Kim N, Nam RH, Choi SI, Lee H-N, Surh Y-J. 17β-Estradiol supplementation changes gut microbiota diversity in intact and colorectal cancer-induced ICR male mice. Sci Rep. 2020;10(1):12283. doi:10.1038/s41598-020-69112-w.
  • Tran A, Scholtes C, Songane M, Champagne C, Galarneau L, Levasseur M-P, Fodil N, Dufour CR, Giguère V, Saleh M, et al. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis. Sci Rep. 2021;11(1):15073. doi:10.1038/s41598-021-94499-5.
  • Mayneris-Perxachs J, Arnoriaga-Rodríguez M, Luque-Córdoba D, Priego-Capote F, Pérez-Brocal V, Moya A, Burokas A, Maldonado R, Fernández-Real J-M. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. Microbiome. 2020;8(1):136. doi:10.1186/s40168-020-00913-x.
  • de la Cuesta-Zuluaga J, Kelley ST, Chen Y, Escobar JS, Mueller NT, Ley RE, McDonald D, Huang S, Swafford AD, Knight R, et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems. 2019;4(4):4. doi:10.1128/mSystems.00261-19.
  • Vaccaro CM, Capozzi A, Ettore G, Bernorio R, Cagnacci A, Gambacciani M, Coletta V, Maffei S, Nappi RE, Scambia G, et al. What women think about menopause: An Italian survey. Maturitas. 2021;147:47–52. doi:10.1016/j.maturitas.2021.03.007.
  • Mili N, Paschou SA, Armeni A, Georgopoulos N, Goulis DG, Lambrinoudaki I. Genitourinary syndrome of menopause: a systematic review on prevalence and treatment. Menopause. 2021;28(6):706–716. doi:10.1097/GME.0000000000001752.
  • Luo M, Li J, Tang R, Li HJ, Liu B, Peng Y, Wang Y, Liu G, Lin S, Chen R, et al. Insomnia symptoms in relation to menopause among middle-aged Chinese women: Findings from a longitudinal cohort study. Maturitas. 2020;141:1–8. doi:10.1016/j.maturitas.2020.06.010.
  • Zeng LN, Yang Y, Feng Y, Cui X, Wang R, Hall BJ, Ungvari GS, Chen L, Xiang Y-T. The prevalence of depression in menopausal women in China: A meta-analysis of observational studies. J Affect Disord. 2019;256:337–343. doi:10.1016/j.jad.2019.06.017.
  • Park S, Kim DS, Kang ES, Kim DB, Kang S. Low-dose brain estrogen prevents menopausal syndrome while maintaining the diversity of the gut microbiomes in estrogen-deficient rats. Am J Physiol Endocrinol Metab. 2018;315(1):E99–e109. doi:10.1152/ajpendo.00005.2018.
  • Guadamuro L, Delgado S, Redruello B, Flórez AB, Suárez A, Martínez-Camblor P, Mayo B. Equol status and changes in fecal microbiota in menopausal women receiving long-term treatment for menopause symptoms with a soy-isoflavone concentrate. Front Microbiol. 2015;6:777. doi:10.3389/fmicb.2015.00777.
  • Mörkl S, Butler MI, Lackner S. Advances in the gut microbiome and mood disorders. Curr Opin Psychiatry. 2022;36(1):1–7. doi:10.1097/YCO.0000000000000829.
  • Fang Y, Zhang J, Zhu S, He M, Ma S, Jia Q, Sun Q, Song L, Wang Y, Duan L, et al. Berberine ameliorates ovariectomy-induced anxiety-like behaviors by enrichment in equol generating gut microbiota. Pharmacol Res. 2021;165:105439. doi:10.1016/j.phrs.2021.105439.
  • Sovijit WN, Sovijit WE, Pu S, Usuda K, Inoue R, Watanabe G, Yamaguchi H, Nagaoka K. Ovarian progesterone suppresses depression and anxiety-like behaviors by increasing the Lactobacillus population of gut microbiota in ovariectomized mice. Neurosci Res (NY). 2021;168:76–82. doi:10.1016/j.neures.2019.04.005.
  • Huang J, Shan W, Li F, Wang Z, Cheng J, Lu F, Guo E, Beejadhursing R, Xiao R, Liu C, et al. Fecal microbiota transplantation mitigates vaginal atrophy in ovariectomized mice. Aging (Albany NY). 2021;13(5):7589–7607. doi:10.18632/aging.202627.
  • Valko-Rokytovská M, Očenáš P, Salayová A, Kostecká Z. Breast cancer: Targeting of steroid hormones in cancerogenesis and diagnostics. Int J Mol Sci. 2021;22(11):22. doi:10.3390/ijms22115878.
  • Tan B, Zhang Y, Zhang T, He J, Luo X, Bian X, Wu J, Zou C, Wang Y, Fu L, et al. Identifying potential serum biomarkers of breast cancer through targeted free fatty acid profiles screening based on a GC–MS platform. Biomed Chromatogr. 2020;34(10):e4922. doi:10.1002/bmc.4922.
  • Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–285. doi:10.1038/nrc.2017.13.
  • Ofinran O, Bose U, Hay D, Abdul S, Tufatelli C, Khan R. Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer. Mol Med Rep. 2016;14(6):5725–5731. doi:10.3892/mmr.2016.5933.
  • Jin Y, Tian X, Jin L, Cui Y, Liu T, Yu Z, Huo X, Cui J, Sun C, Wang C, et al. Highly specific near-infrared fluorescent probe for the real-time detection of β-glucuronidase in various living cells and animals. Anal Chem. 2018;90(5):3276–3283. doi:10.1021/acs.analchem.7b04813.
  • Li T, Li G, Su Z, Liu J, Wang P. Recent advances of sensing strategies for the detection of β-glucuronidase activity. Anal Bioanal Chem. 2022;414(9):2935–2951. doi:10.1007/s00216-022-03921-y.
  • Wang P, Jia Y, Wu R, Chen Z, Yan R. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol. 2021;190:114566. doi:10.1016/j.bcp.2021.114566.
  • Muccee F, Ghazanfar S, Ajmal W, Al-Zahrani M. In-silico characterization of estrogen reactivating β-glucuronidase enzyme in git associated microbiota of normal human and breast cancer patients. Genes (Basel). 2022;13(9):1545. doi:10.3390/genes13091545.
  • Walaszek Z, Szemraj J, Narog M, Adams AK, Kilgore J, Sherman U, Hanausek M. Metabolism, uptake, and excretion of a D-glucaric acid salt and its potential use in cancer prevention. Cancer Detect Prev. 1997;21:178–190.
  • Cheng KW, Tseng CH, Chen IJ, Huang B-C, Liu H-J, Ho K-W, Lin W-W, Chuang C-H, Huang M-Y, Leu Y-L, et al. Inhibition of gut microbial β-glucuronidase effectively prevents carcinogen-induced microbial dysbiosis and intestinal tumorigenesis. Pharmacol Res. 2022;177:106115. doi:10.1016/j.phrs.2022.106115.
  • De Preter V, Raemen H, Cloetens L, Houben E, Rutgeerts P, Verbeke K. Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. Eur J Clin Nutr. 2008;62(2):225–231. doi:10.1038/sj.ejcn.1602706.
  • Letertre MPM, Bhatt AP, Harvey M, Nicholson JK, Wilson ID, Redinbo MR, Swann JR. Characterizing the metabolic effects of the selective inhibition of gut microbial β-glucuronidases in mice. Sci Rep. 2022;12(1):17435. doi:10.1038/s41598-022-21518-4.
  • Nishio S, Shimokawa M, Tasaki K, Nasu H, Yoshimitsu T, Matsukuma K, Terada A, Tsuda N, Kawano K, Ushijima K, et al. A phase II trial of irinotecan in patients with advanced or recurrent endometrial cancer and correlation with biomarker analysis. Gynecol Oncol. 2018;150(3):432–437. doi:10.1016/j.ygyno.2018.07.014.
  • Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci USA. 2020;117(13):7374–7381. doi:10.1073/pnas.1918095117.
  • Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 1996;56:3752–3757.
  • Chamseddine AN, Ducreux M, Armand JP, Paoletti X, Satar T, Paci A, Mir O. Intestinal bacterial β-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacology & Therapeutics. 2019;199:1–15. doi:10.1016/j.pharmthera.2019.03.002.
  • Wallace BD, Roberts AB, Pollet RM, Ingle J, Biernat K, Pellock S, Venkatesh M, Guthrie L, O’Neal S, Robinson S, et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015;22(9):1238–1249. doi:10.1016/j.chembiol.2015.08.005.
  • Cheng KW, Tseng CH, Tzeng CC, Leu Y-L, Cheng T-C, Wang J-Y, Chang J-M, Lu Y-C, Cheng C-M, Chen I-J, et al. Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol Res. 2019;139:41–49. doi:10.1016/j.phrs.2018.10.029.
  • Mego M, Chovanec J, Vochyanova-Andrezalova I, Konkolovsky P, Mikulova M, Reckova M, Miskovska V, Bystricky B, Beniak J, Medvecova L, et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement Ther Med. 2015;23(3):356–362. doi:10.1016/j.ctim.2015.03.008.
  • Palko-Łabuz A, Maksymowicz J, Sobieszczańska B, Wikiera A, Skonieczna M, Wesołowska O, Środa-Pomianek K. Newly obtained apple pectin as an adjunct to irinotecan therapy of colorectal cancer reducing E. coli adherence and β-glucuronidase activity. Cancers Basel. 2021;13(12):2952. doi:10.3390/cancers13122952.
  • Pellock SJ, Creekmore BC, Walton WG, Mehta N, Biernat KA, Cesmat AP, Ariyarathna Y, Dunn ZD, Li B, Jin J, et al. Gut microbial β-glucuronidase inhibition via catalytic cycle interception. ACS Cent Sci. 2018;4(7):868–879. doi:10.1021/acscentsci.8b00239.
  • Little MS, Pellock SJ, Walton WG, Tripathy A, Redinbo MR. Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae. Proc Natl Acad Sci USA. 2018;115(2):E152–e161. doi:10.1073/pnas.1716241115.
  • Wang P, Wu R, Jia Y, Tang P, Wei B, Zhang Q, Wang VYF, Yan R. Inhibition and structure-activity relationship of dietary flavones against three Loop 1-type human gut microbial β-glucuronidases. Int J Biol Macromol. 2022;220:1532–1544. doi:10.1016/j.ijbiomac.2022.09.018.
  • Sun CP, Yan JK, Yi J, Zhang X-Y, Yu Z-L, Huo X-K, Liang J-H, Ning J, Feng L, Wang C, et al. The study of inhibitory effect of natural flavonoids toward β-glucuronidase and interaction of flavonoids with β-glucuronidase. Int J Biol Macromol. 2020;143:349–358. doi:10.1016/j.ijbiomac.2019.12.057.
  • Bai Y, Chen L, Cao YF, Hou X-D, Jia S-N, Zhou Q, He Y-Q, Hou J. Beta-glucuronidase inhibition by constituents of Mulberry Bark. Planta Med. 2021;87(08):631–641. doi:10.1055/a-1402-6431.
  • Marlatt KL, Beyl RA, Redman LM. A qualitative assessment of health behaviors and experiences during menopause: A cross-sectional, observational study. Maturitas. 2018;116:36–42. doi:10.1016/j.maturitas.2018.07.014.
  • Chu K, Song Y, Chatooah ND, Weng Q, Ying Q, Ma L, Qu F, Zhou J. The use and discontinuation of hormone replacement therapy in women in South China. Climacteric. 2018;21(1):47–52. doi:10.1080/13697137.2017.1397622.
  • Seyed Hameed AS, Rawat PS, Meng X, Liu W. Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol Adv. 2020;43:107576. doi:10.1016/j.biotechadv.2020.107576.
  • Rowland I, Faughnan M, Hoey L, Wähälä K, Williamson G, Cassidy A. Bioavailability of phyto-oestrogens. Br J Nutr. 2003;89(Suppl S1):S45–58. doi:10.1079/BJN2002796.
  • Setchell KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2002;76(2):447–453. doi:10.1093/ajcn/76.2.447.
  • Mayo B, Vázquez L, Flórez AB. Equol: A bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019;11(9):11. doi:10.3390/nu11092231.
  • Liu C, He D, Yu A, Deng Y, Wang L, Song Z. Correlation analysis between gut microbiota characteristics and melasma. Front Microbiol. 2022;13:1051653. doi:10.3389/fmicb.2022.1051653.
  • Guadamuro L, Dohrmann AB, Tebbe CC, Mayo B, Delgado S. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones. BMC Microbiol. 2017;17(1):93. doi:10.1186/s12866-017-1001-y.
  • Dai S, Pan M, El-Nezami HS, Wan JMF, Wang MF, Habimana O, Lee JCY, Louie JCY, Shah NP. Effects of lactic acid bacteria-fermented soymilk on isoflavone metabolites and short-chain fatty acids excretion and their modulating effects on gut microbiota. J Food Sci. 2019;84(7):1854–1863. doi:10.1111/1750-3841.14661.
  • Yuan L, Wagatsuma C, Yoshida M, Miura T, Mukoda T, Fujii H, Sun B, Kim J-H, Surh Y-J. Inhibition of human breast cancer growth by GCP™ (genistein combined polysaccharide) in xenogeneic athymic mice: involvement of genistein biotransformation by β-glucuronidase from tumor tissues. Mutat Res. 2003;523-524:55–62. doi:10.1016/S0027-5107(02)00321-4.
  • Sawane K, Nagatake T, Hosomi K, Kunisawa J. Anti-allergic property of dietary phytoestrogen secoisolariciresinol diglucoside through microbial and β-glucuronidase-mediated metabolism. J Nutr Biochem. 2023;112:109219. doi:10.1016/j.jnutbio.2022.109219.
  • Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol. 2020;17(4):232–250. doi:10.1038/s41585-020-0286-z.
  • Lim EY, Song EJ, Kim JG, Jung SY, Lee S-Y, Shin HS, Nam Y-D, Kim YT. Lactobacillus intestinalis YT2 restores the gut microbiota and improves menopausal symptoms in ovariectomized rats. Benef Microbes. 2021;12(5):503–516. doi:10.3920/BM2020.0217.
  • Farvid MS, Spence ND, Holmes MD, Barnett JB. Fiber consumption and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Cancer. 2020;126(13):3061–3075. doi:10.1002/cncr.32816.
  • Zengul AG, Demark-Wahnefried W, Barnes S, Morrow CD, Bertrand B, Berryhill TF, Frugé AD. Associations between dietary fiber, the fecal microbiota and estrogen metabolism in postmenopausal women with breast cancer. Nutr Cancer. 2021;73(7):1108–1117. doi:10.1080/01635581.2020.1784444.
  • Arts CJ, de Bie AT, van den Berg H, van ’t Veer P, Bunnik GSJ, Thijssen JHH. Influence of wheat bran on NMU-induced mammary tumor development, plasma estrogen levels and estrogen excretion in female rats. J Steroid Biochem Molecular Biol. 1991;39(2):193–202. doi:10.1016/0960-0760(91)90063-B.
  • Jeong SY, Kang S, Hua CS, Ting Z, Park S. Synbiotic effects of β-glucans from cauliflower mushroom and Lactobacillus fermentum on metabolic changes and gut microbiome in estrogen-deficient rats. Genes Nutr. 2017;12(1):31. doi:10.1186/s12263-017-0585-z.
  • Wu X, Kim MJ, Yang HJ, Park S. Chitosan alleviated menopausal symptoms and modulated the gut microbiota in estrogen-deficient rats. Eur J Nutr. 2021;60(4):1907–1919. doi:10.1007/s00394-020-02382-2.
  • Lønning PE, Haynes BP, Straume AH, Dunbier A, Helle H, Knappskog S, Dowsett M. Exploring breast cancer estrogen disposition: the basis for endocrine manipulation. Clin Cancer Res. 2011;17(15):4948–4958. doi:10.1158/1078-0432.CCR-11-0043.
  • Challa AP, Hu X, Zhang YQ, Hymes J, Wallace BD, Karavadhi S, Sun H, Patnaik S, Hall MD, Shen M, et al. Virtual screening for the discovery of microbiome β-glucuronidase inhibitors to alleviate cancer drug toxicity. J Chem Inf Model. 2022;62(7):1783–1793. doi:10.1021/acs.jcim.1c01414.