3,189
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Protection against Metabolic Associated Fatty Liver Disease by Protocatechuic Acid

, , , , , , , , , & ORCID Icon show all
Article: 2238959 | Received 03 Sep 2022, Accepted 17 Jul 2023, Published online: 28 Jul 2023

References

  • Lim GEH, Tang A, Ng CH, Chin YH, Lim WH, Tan DJH, Yong JN, Xiao J, Lee C-M, Chan M, et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin Gastroenterol Hepatol. 2021;21(3):619–629.e7. doi:10.1016/j.cgh.2021.11.038.
  • Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–16. doi:10.1016/j.metabol.2015.12.012.
  • Wu S, Tan J, Zhang H, Hou D, He J. Tissue-specific mechanisms of fat metabolism that focus on insulin actions. J Adv Res. 2022. doi:10.1016/j.jare.2022.12.009.
  • Kobayashi T, Iwaki M, Nakajima A, Nogami A, Yoneda M. Current research on the pathogenesis of NAFLD/NASH and the gut–liver axis: gut microbiota, dysbiosis, and leaky-gut syndrome. Int J Mol Sci. 2022;23(19):11689. doi:10.3390/ijms231911689.
  • Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, Beyersdorf N, Dandekar T, Rosenstiel P, Geier A. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol J. 2018;6(10):1496–1507. doi:10.1177/2050640618804444.
  • Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC, Martin R, Michel ML, Chong-Nguyen C, Roussel R, Straube M, et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 2018;28(5):737–749 e734. doi:10.1016/j.cmet.2018.07.001.
  • Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019;575(7783):505–511. doi:10.1038/s41586-019-1742-x.
  • Zhao M, Zhao L, Xiong X, He Y, Huang W, Liu Z, Ji L, Pan B, Guo X, Wang L, et al.: TMAVA, a metabolite of intestinal microbes, is increased in plasma from patients with liver steatosis, inhibits gamma-butyrobetaine hydroxylase, and exacerbates fatty liver in mice. Gastroenterology 2020, 158:2266–2281 e2227.
  • Wu S, Yano S, Chen J, Hisanaga A, Sakao K, He X, He J, Hou DX. Polyphenols from Lonicera caerulea L. Berry Inhibit LPS-induced inflammation through dual modulation of inflammatory and antioxidant mediators. J Agric Food Chem. 2017;65(25):5133–5141. doi:10.1021/acs.jafc.7b01599.
  • Wu S, He X, Wu X, Qin S, He J, Zhang S, Hou D-X. Inhibitory effects of blue honeysuckle (Lonicera caerulea L) on adjuvant-induced arthritis in rats: Crosstalk of anti-inflammatory and antioxidant effects. J Funct Foods. 2015;17:514–523. doi:10.1016/j.jff.2015.06.007.
  • Xu C, Yagiz Y, Hsu WY, Simonne A, Lu J, Marshall MR. Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J Agric Food Chem. 2014;62(28):6640–6649. doi:10.1021/jf501073q.
  • Wu S, Yano S, Hisanaga A, He X, He J, Sakao K, Hou DX. Polyphenols from Lonicera caerulea L. berry attenuate experimental nonalcoholic steatohepatitis by inhibiting proinflammatory cytokines productions and lipid peroxidation. Mol Nutr Food Res. 2017;61(4):61. doi:10.1002/mnfr.201600858.
  • Wu S, Hu R, Nakano H, Chen K, Liu M, He X, Zhang H, He J, Hou DX. Modulation of gut microbiota by Lonicera caerulea l. berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules. 2018;23(12):23. doi:10.3390/molecules23123213.
  • Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am J Clin Nutr. 2013;97(5):995–1003. doi:10.3945/ajcn.112.049247.
  • de Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD, de Ferrars RM. The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol. 2014;171(13):3268–3282. doi:10.1111/bph.12676.
  • Amin HP, Czank C, Raheem S, Zhang Q, Botting NP, Cassidy A, Kay CD. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol Nutr Food Res. 2015;59(6):1095–1106. doi:10.1002/mnfr.201400803.
  • Tan J, Li Y, Hou DX, Wu S. The effects and mechanisms of cyanidin-3-glucoside and its phenolic metabolites in maintaining intestinal integrity. Antioxid (Basel). 2019;8. doi:10.3390/antiox8100479.
  • Gok SM, Dagi HT, Kara F, Arslan U, Findik D. Klinik Örneklerden İzole Edilen Enterococcus faecium ve Enterococcus faecalis İzolatlarının Antibiyotik Direnci ve Virülans Faktörlerinin Araştırılması. Mikrobiyol Bul. 2020;54(1):26–39. doi:10.5578/mb.68810.
  • Igawa G, Casey M, Sawabe E, Nukui Y, Okugawa S, Moriya K, Koike R, Tohda S, Saito R. Comparison of agar dilution and broth microdilution methods for Clostridium difficile antimicrobial susceptibility testing. J Glob Antimicrob Resist. 2016;7:43–45. doi:10.1016/j.jgar.2016.07.007.
  • Kaiser SJ, Mutters NT, Blessing B, Gunther F. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa. Fitoterapia. 2017;119:57–63. doi:10.1016/j.fitote.2017.04.006.
  • Tan J, Gong J, Liu F, Li B, Li Z, You J, He J, Wu S. Evaluation of an antibiotic cocktail for fecal microbiota transplantation in mouse. Front Nutr. 2022;9. doi:10.3389/fnut.2022.918098.
  • Kleiner DE, Brunt EM, Van NM, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi:10.1002/hep.20701.
  • Ruiz E, Avila JM, Valero T, Del Pozo S, Rodriguez P, Aranceta-Bartrina J, Gil A, Gonzalez-Gross M, Ortega RM, Serra-Majem L, et al. Energy intake, profile, and dietary sources in the Spanish population: findings of the ANIBES study. Nutrients. 2017;7:4739–4762. doi:10.3390/nu7064739.
  • Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126(1):126–132. doi:10.1161/CIRCULATIONAHA.111.087213.
  • Zhao Q, Liu F, Wang YH, Lai HM, Zhao Q, Luo JY, Ma YT, Li XM, Yang YN. LDL-C: HDL-C ratio and common carotid plaque in Xinjiang Uygur obese adults: a cross-sectional study. BMJ Open. 2018;8:e022757. doi:10.1136/bmjopen-2018-022757.
  • Matias AM, Estevam WM, Coelho PM, Haese D, Kobi J, Lima-Leopoldo AP, Leopoldo AS. Differential effects of high sugar, high lard or a combination of both on nutritional, hormonal and cardiovascular metabolic profiles of rodents. Nutrients. 2018;10(8):10. doi:10.3390/nu10081071.
  • Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):360–369. doi:10.1055/s-0028-1091980.
  • Hu R, Wu S, Li B, Tan J, Yan J, Wang Y, Tang Z, Liu M, Fu C, Zhang H, et al. Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Animal Nutr. 2022;8:144–152. doi:10.1016/j.aninu.2021.06.009.
  • Foley SE, Dente MJ, Lei XQ, Sallis BF, Loew EB, Meza-Segura M, Fitzgerald KA, McCormick BA. Microbial metabolites orchestrate a distinct multi-tiered regulatory network in the intestinal epithelium that directs P-glycoprotein expression. Mbio. 2022;13(4):e01993–22. doi:10.1128/mbio.01993-22.
  • Bishara J, Farah R, Mograbi J, Khalaila W, Abu-Elheja O, Mahamid M, Nseir W. Obesity as a risk factor for Clostridium difficile infection. Clin Infect Dis. 2013;57(4):489–493. doi:10.1093/cid/cit280.
  • Garcia-Solache M, Rice LB. The enterococcus: a model of adaptability to its environment. Clin Microbiol Rev. 2019;32(2):32. doi:10.1128/CMR.00058-18.
  • Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, Mair K, Krueger D, Pruteanu M, Shanahan F, et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology. 2011;141(3):959–971. doi:10.1053/j.gastro.2011.05.035.
  • Wiegerinck M, Hyoju SK, Mao J, Zaborin A, Adriaansens C, Salzman E, Hyman NH, Zaborina O, van Goor H, Alverdy JC. Novel de novo synthesized phosphate carrier compound ABA-PEG20k-Pi20 suppresses collagenase production in Enterococcus faecalis and prevents colonic anastomotic leak in an experimental model. Br J Surg. 2018;105(10):1368–1376. doi:10.1002/bjs.10859.
  • La Rosa SL, Casey PG, Hill C, Diep DB, Nes IF, Brede DA. In vivo assessment of growth and virulence gene expression during commensal and pathogenic lifestyles of luxABCDE-tagged Enterococcus faecalis strains in murine gastrointestinal and intravenous infection models. Appl Environ Microbiol. 2013;79(13):3986–3997. doi:10.1128/AEM.00831-13.
  • Yin W, Liu S, Dong M, Liu Q, Shi C, Bai H, Wang Q, Yang X, Niu W, Wang L. A new NLRP3 inflammasome inhibitor, dioscin, promotes osteogenesis. Small. 2020;16(1):e1905977. doi:10.1002/smll.201905977.
  • Chai Y, Gu X, Wu Q, Guo B, Qi Y, Wang X, Zhou X, Li J, Han M, Zhong F. Genome sequence analysis reveals potential for virulence genes and multi-drug resistance in an Enterococcus faecalis 2A (XJ05) strain that causes lamb encephalitis. BMC Vet Res. 2019;15(1):235. doi:10.1186/s12917-019-1936-3.
  • Llorente C, Jepsen P, Inamine T, Wang L, Bluemel S, Wang HJ, Loomba R, Bajaj JS, Schubert ML, Sikaroodi M, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat Commun. 2017;8(1):837. doi:10.1038/s41467-017-00796-x.
  • Rydzik AM, Chowdhury R, Kochan GT, Williams ST, McDonough MA, Kawamura A, Schofield CJ. Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ-butyrobetaine hydroxylase. Chem Sci. 2014;5(5):1765–1771. doi:10.1039/C4SC00020J.
  • Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M, Fernandez-Fernandez C, Mourino-Bayolo D. Mitochondrial beta-oxidation of saturated fatty acids in humans. Mitochondrion. 2019;46:73–90. doi:10.1016/j.mito.2018.02.009.
  • Hyoju SK, Adriaansens C, Wienholts K, Sharma A, Keskey R, Arnold W, van Dalen D, Gottel N, Hyman N, Zaborin A, et al. Low-fat/high-fibre diet prehabilitation improves anastomotic healing via the microbiome: an experimental model. Br J Surg. 2020;107(6):743–755. doi:10.1002/bjs.11388.
  • Qiao Y, Sun J, Ding Y, Le G, Shi Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol. 2013;97(4):1689–1697. doi:10.1007/s00253-012-4323-6.
  • Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct. 2014;5(6):1241–1249. doi:10.1039/c3fo60630a.
  • Ali L, Wang YQ, Zhang J, Ajmal M, Xiao Z, Wu J, Chen JL, Yu D. Nutrient-induced antibiotic resistance in Enterococcus faecalis in the eutrophic environment. J Glob Antimicrob Resist. 2016;7:78–83. doi:10.1016/j.jgar.2016.07.014.
  • Lu Y, Cai X, Zheng Y, Lyv Q, Wu J. Dominant bacteria and influencing factors of early intestinal colonization in very low birth weight infants: A prospective cohort study. J Clin Lab Anal. 2022;36(3):e24290. doi:10.1002/jcla.24290.
  • Fatimah ZH, Kabiru S, Ramat SH, Taofeek OA, Judith NU, Oluwayemisi BI, Najeeb OA, Hikmat OA, Sharafa AB, Hamdalat FM, et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiologyopen. 2017;6(4):e00472. doi:10.1002/mbo3.472.
  • Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res. 2009;48(1):1–26. doi:10.1016/j.plipres.2008.08.001.
  • Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15(5):585–594. doi:10.1016/j.cmet.2012.04.002.
  • Pagadala M, Kasumov T, McCullough AJ, Zein NN, Kirwan JP. Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab. 2012;23(8):365–371. doi:10.1016/j.tem.2012.04.005.
  • Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, Qin D. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24(21):12813–12825. doi:10.1111/jcmm.15872.