2,983
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity

, , , , , & show all
Article: 2292224 | Received 27 Jul 2023, Accepted 04 Dec 2023, Published online: 18 Dec 2023

References

  • Hirai AH, Ko JY, Owens PL, Stocks C, Patrick SW. Neonatal abstinence syndrome and maternal opioid-related diagnoses in the US, 2010-2017. JAMA - J Am Med Assoc. 2021;325(2):146–38. doi:10.1001/jama.2020.24991.
  • Ko JY, D’Angelo DV, Haight SC, Morrow B, Cox S, Salvesen von Essen B, Strahan AE, Harrison L, Tevendale HD, Warner L, et al. Vital signs: prescription opioid pain reliever use during pregnancy — 34 U.S. Jurisdictions, 2019. MMWR Morb Mortal Wkly Rep. 2020;69:897–903.
  • Opioid use and opioid use disorder in pregnancy. Committee Opinion No. 711. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2017:130:e81–94.
  • Minozzi S, Amato L, Jahanfar S, Bellisario C, Ferri M, Davoli M. Maintenance agonist treatments for opiate-dependent pregnant women. Cochrane Database Syst Rev. 2020;2020(11): CD006318. doi:10.1002/14651858.CD006318.pub4.
  • Jones HE, Kaltenbach K, Heil SH, Stine SM, Coyle MG, Arria AM, Ogrady KE, Selby P, Martin PR, Fischer G. Neonatal abstinence syndrome after methadone or buprenorphine exposure. Obstet Gynecol Surv. 2011;66(4):191–193. doi:10.1097/OGX.0b013e318225c419.
  • Abu Y, Roy S. Prenatal opioid exposure and vulnerability to future substance use disorders in offspring. Exp Neurol [Internet]. 2021;339:113621. doi:10.1016/j.expneurol.2021.113621.
  • Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology [Internet]. 2015;40(1):61–87. doi:10.1038/npp.2014.147.
  • McQueen K, Murphy-Oikonen J, Longo DL. Neonatal abstinence syndrome. N Engl J Med. 2016;375(25):2468–2479. doi:10.1056/NEJMra1600879.
  • Ornoy A, Segal J, Bar-Hamburger R, Greenbaum C. Developmental outcome of school-age children born to mothers with heroin dependency: importance of environmental factors. Dev Med Child Neurol. 2001;43(10):668–675. doi:10.1111/j.1469-8749.2001.tb00140.x.
  • Hunt RW, Tzioumi D, Collins E, Jeffery HE. Adverse neurodevelopmental outcome of infants exposed to opiate in-utero. Early Hum Dev. 2008;84(1):29–35. doi:10.1016/j.earlhumdev.2007.01.013.
  • Nygaard E, Slinning K, Moe V, Walhovd KB. Cognitive function of youths born to mothers with opioid and poly-substance abuse problems during pregnancy. Child Neuropsychol [Internet]. 2017;23:159–187. doi:10.1080/09297049.2015.1092509.
  • Ditre JW, Zale EL, Larowe LR. A reciprocal model of pain and substance use: Transdiagnostic Considerations, clinical implications, and future directions. Annu Rev Clin Psychol. 2019;15(1):503–528. doi:10.1146/annurev-clinpsy-050718-095440.
  • Compton P, Charuvastra VC, Kintaudi K, Ling W. Pain responses in methadone-maintained opioid abusers. J Pain Symptom Manage. 2000;20(4):237–245. doi:10.1016/S0885-3924(00)00191-3.
  • Doverty M, White JM, Somogyi AA, Bochner F, Ali R, Ling W. Hyperalgesic responses in methadone maintenance patients. Pain. 2001;90(1):91–96. doi:10.1016/S0304-3959(00)00391-2.
  • Lehofer M, Liebmann PM, Moser M, Legl T, Pernhaupt G, Schauenstein K, Zapotoczky HG. Decreased nociceptive sensitivity: A biological risk marker for opiate dependence? Addiction. 1997;92(2):163–166. doi:10.1111/j.1360-0443.1997.tb03648.x.
  • Compton MA. Cold-pressor pain tolerance in opiate and cocaine abusers: correlates of drug type and use status. J Pain Symptom Manage. 1994;9(7):462–473. doi:10.1016/0885-3924(94)90203-8.
  • Brands B, Blake J, Sproule B, Gourlay D, Busto U. Prescription opioid abuse in patients presenting for methadone maintenance treatment. Drug Alcohol Depend. 2004;73:199–207. doi:10.1016/j.drugalcdep.2003.10.012.
  • Oji-Mmuo CN, Speer RR, Gardner FC, Marvin MM, Hozella AC, Doheny KK. Prenatal opioid exposure heightens sympathetic arousal and facial expressions of pain/distress in term neonates at 24–48 hours post birth. J Matern Neonatal Med [Internet]. 2020;33:3879–3886. doi:10.1080/14767058.2019.1588876.
  • Schubach NE, Mehler K, Roth B, Korsch E, Laux R, Singer D, von der Wense A, Treszl A, Hünseler C. Skin conductance in neonates suffering from abstinence syndrome and unexposed newborns. Eur J Pediatr [Internet]. 2016;175(6):859–868. doi:10.1007/s00431-016-2716-8.
  • Wallin CM, Bowen SE, Roberge CL, Richardson LM, Brummelte S. Gestational buprenorphine exposure: effects on pregnancy, development, neonatal opioid withdrawal syndrome, and behavior in a translational rodent model. Drug Alcohol Depend [Internet]. 2019;205. doi:10.1016/j.drugalcdep.2019.107625.
  • Chiang YC, Ye LC, Hsu KY, Liao CW, Hung TW, Lo WJ, Ho IK, Tao PL. Beneficial effects of co-treatment with dextromethorphan on prenatally methadone-exposed offspring. J Biomed Sci. 2015;22(1):1–12. doi:10.1186/s12929-015-0126-2.
  • Morreale C, Bresesti I, Bosi A, Baj A, Giaroni C, Agosti M, Salvatore S. Microbiota and Pain: Save Your Gut Feeling. Cells. 2022;11(6):1–18. doi:10.3390/cells11060971.
  • Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(1–2):189–195. doi:10.1038/pr.2014.163.
  • Metsälä J, Lundqvist A, Virta LJ, Kaila M, Gissler M, Virtanen SM. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy. 2015;45(1):137–145. doi:10.1111/cea.12356.
  • Kim S, Kim H, Yim YS, Ha S, Atarashi K, Guan T, Longman RS, Littman DR, Choi GB, Jun R, et al. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature. 549:528–532. doi: 10.1038/nature23910.
  • Dunlop AL, Mulle JG, Ferranti EP, Edwards S, Dunn AB, Corwin EJ. Maternal microbiome and pregnancy outcomes that impact infant health: a review. Adv Neonatal Care. 2015;15(6):377–385. doi:10.1097/ANC.0000000000000218.
  • Codagnone MG, Spichak S, O’Mahony SM, O’Leary OF, Clarke G, Stanton C, Dinan TG, Cryan JF. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiatry [Internet]. 2019;85:150–163. doi:10.1016/j.biopsych.2018.06.014.
  • Nyangahu DD, Lennard KS, Brown BP, Darby MG, Wendoh JM, Havyarimana E, Smith P, Butcher J, Stintzi A, Mulder N, et al. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome. 2018;6(1):1–10. doi:10.1186/s40168-018-0511-7.
  • Abu Y, Tao J, Dutta R, Yan Y, Vitari N, Kolli U, Roy S. Brief hydromorphone exposure during pregnancy sufficient to induce maternal and neonatal microbial dysbiosis. J Neuroimmune Pharmacol [Internet]. 2021;17(1–2):367–375. doi:10.1007/s11481-021-10019-2.
  • Antoine D, Singh PK, Tao J, Roy S. Neonatal morphine results in long-lasting alterations to the gut microbiome in adolescence and adulthood in a murine model. Pharmaceutics. 2022;14(9):14. doi:10.3390/pharmaceutics14091879.
  • Lyu Z, Schmidt RR, Martin RE, Green MT, Kinkade JA, Mao J, Bivens NJ, Joshi T, Rosenfeld CS. Long-term effects of developmental exposure to oxycodone on gut microbiota and relationship to adult behaviors. mSystems. 2022;7:1–14. doi:10.1128/msystems.00336-22.
  • Grecco GG, Gao Y, Gao H, Liu Y, Atwood BK. Prenatal opioid administration induces shared alterations to the maternal and offspring gut microbiome: a preliminary analysis. Drug Alcohol Depend. 2022;227:1–13. doi:10.1016/j.drugalcdep.2021.108914.
  • Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci. 2017;10:1–17. doi:10.3389/fnmol.2017.00284.
  • Turner PV, Pang DSJ, Lofgren JLS. A review of pain assessment Methods in laboratory rodents. Comp Med. 2019;69(6):451–467. doi:10.30802/AALAS-CM-19-000042.
  • Gregory N, Harris A, Robinson C, Dougherty P, Fuchs5 P, Sluka K. An overview of animal models of pain: disease models and outcome measures. J Pain [Internet]. 2013;14:1255–1269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf. doi:10.1016/j.jpain.2013.06.008.
  • Substance Abuse and Mental Health Services Administration. Clinical guidance for treating pregnant and parenting women with opioid use disorder and their infants. HHS Publication No. (SMA) 18-5054. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2018. https://www.samhsa.gov/resource/ebp/clinical-guidance-treating-pregnant-parenting-women-opioid-use-disorder-their-infants
  • D’Amour F, Smith L. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74–79.
  • Zhang L, Meng J, Ban Y, Jalodia R, Chupikova I, Fernandez I, Brito N, Sharma U, Abreu MT, Ramakrishnan S, et al. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. Proc Natl Acad Sci U S A. 2019;116(27):13523–13532. doi:10.1073/pnas.1901182116.
  • Jalodia R, Kolli U, Braniff RG, Tao J, Abu YF, Chupikova I, Moidunny S, Ramakrishnan S, Roy S. Morphine mediated neutrophil infiltration in intestinal tissue play essential role in histological damage and microbial dysbiosis. Gut Microbes [Internet]. 2022;14(1):1–17. doi:10.1080/19490976.2022.2143225.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi:10.1038/nmeth.3869.
  • Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear JR, Caporaso G, Blekhman R, Knight R, et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv. 2017. doi:10.1016/j.sciaf.2019.e00146.
  • Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc [Internet]. 2020;15(3):799–821. doi:10.1038/s41596-019-0264-1.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):12. doi:10.1186/gb-2011-12-6-r60.
  • Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, Sun Z, Chen X, Zhang G, Zhang H, et al. 2020. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Sci Adv. 6:6. doi: 10.1126/sciadv.aba8555.
  • Kongstorp M, Bogen IL, Stiris T, Andersen JM. High accumulation of methadone compared with buprenorphine in fetal rat brain after maternal exposure. J Pharmacol Exp Ther. 2019;371(1):130–137. doi:10.1124/jpet.119.259531.
  • Fjelldal MF, Hadera MG, Kongstorp M, Austdal LPE, Šulović A, Andersen JM, Paulsen RE. Opioid receptor-mediated changes in the NMDA receptor in developing rat and chicken. Int J Dev Neurosci. 2019;78(1):19–27. doi:10.1016/j.ijdevneu.2019.07.009.
  • Byrnes EM, Vassoler FM. Modeling prenatal opioid exposure in animals: Current findings and future directions. Front Neuroendocrinol. 2018;51:1–13. doi:10.1016/j.yfrne.2017.09.001.
  • Jalodia R, Abu YF, Oppenheimer MR, Herlihy B, Meng J, Chupikova I, Tao J, Ghosh N, Dutta RK, Kolli U, et al. 2022. Opioid use, gut dysbiosis, inflammation, and the nervous system. J Neuroimmune Pharmacol [Internet]. 17:76–93. doi: 10.1007/s11481-021-10046-z.
  • Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol [Internet]. 2021;19(4):241–255. doi:10.1038/s41579-020-00460-0.
  • Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, Xu G, Davis JCC, Lebrilla CB, Henrick BM. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere. 2017;2:1–15. doi:10.1128/mSphere.00501-17.
  • Yousuf EI, Carvalho M, Dizzell SE, Kim S, Gunn E, Twiss J, Giglia L, Stuart C, Hutton EK, Morrison KM, et al. 2020. Persistence of suspected probiotic organisms in preterm infant gut microbiota weeks after probiotic supplementation in the NICU. Front Microbiol. 11:1–11. doi: 10.3389/fmicb.2020.574137.
  • Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, Hoops SL, Soraisham A, Vayalumkal J, Dersch-Mills D, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host & Microbe. 2022;30(5):696–711.e5. doi:10.1016/j.chom.2022.04.005.
  • Hui Y, Smith B, Mortensen MS, Krych L, Sørensen SJ, Greisen G, Krogfelt KA, Nielsen DS. The effect of early probiotic exposure on the preterm infant gut microbiome development. Gut Microbes [Internet]. 2021;13(1):1–15. doi:10.1080/19490976.2021.1951113.
  • Guo R, Chen L, Xing C, Liu T. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br J Anaesth [Internet]. 2019;123:637–654. doi:10.1016/j.bja.2019.07.026.
  • Jantzie LL, Maxwell JR, Newville JC, Yellowhair TR, Kitase Y, Madurai N, Ramachandra S, Bakhireva LN, Northington FJ, Gerner G, et al. 2020. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain Behav Immun [Internet]. 84:45–58. doi: 10.1016/j.bbi.2019.11.007.
  • Gleeson JP, Fein KC, Chaudhary N, Doerfler R, Newby AN, Whitehead KA. The enhanced intestinal permeability of infant mice enables oral protein and macromolecular absorption without delivery technology. Int J Pharm [Internet]. 2021;593:120120. doi:10.1016/j.ijpharm.2020.120120.
  • Jovel J, Dieleman LA, Kao D, Mason AL, Wine E. The Human Gut Microbiome in Health and Disease. Metagenomics Perspectives, Methods, and Applications. Academic Press; 2018. p. 197–213. doi:10.1016/B978-0-08-102268-9.00010-0.
  • Jalodia R, Abu YF, Oppenheimer MR, Herlihy B, Meng J, Chupikova I, Tao J, Ghosh N, Dutta RK, Kolli U, et al. 2022. Opioid use, gut dysbiosis, inflammation, and the nervous system. J Neuroimmune Pharmacol [Internet]. 17:76–93. doi: 10.1007/s11481-021-10046-z.
  • Ghosh N, Kesh K, Ramakrishnan S, Roy S. Opioid use in murine model results in severe gastric pathology that May be attenuated by Proton pump inhibition. Am J Pathol [Internet]. 2022;192:1136–1150. doi:10.1016/j.ajpath.2022.04.005.
  • Wang F, Meng J, Zhang L, Johnson T, Chen C, Roy S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep [Internet]. 2018;8(1):1–15. doi:10.1038/s41598-018-21915-8.
  • Baptista-de-Souza D, Pelarin V, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Interplay between 5-HT 2C and 5-HT 1A receptors in the dorsal periaqueductal gray in the modulation of fear-induced antinociception in mice. Neuropharmacology [Internet]. 2018;140:100–106. doi:10.1016/j.neuropharm.2018.07.027.
  • de Oliveira R, de Oliveira RC, Falconi-Sobrinho LL, da Silva Soares R, Coimbra NC. 5-Hydroxytryptamine2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars α reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior collicul. Behav Brain Res [Internet]. 2017;316:294–304. doi:10.1016/j.bbr.2016.09.016.
  • McGaraughty S, Farr DA, Heinricher MM. Lesions of the periaqueductal gray disrupt input to the rostral ventromedial medulla following microinjections of morphine into the medial or basolateral nuclei of the amygdala. Brain Res. 2004;1009(1–2):223–227. doi:10.1016/j.brainres.2004.02.048.
  • Freund W, Wunderlich AP, Stuber G, Mayer F, Steffen P, Mentzel M, Schmitz B, Weber F. The role of periaqueductal gray and cingulate cortex during suppression of pain in complex regional pain syndrome. Clin J Pain. 2011;27(9):796–804. doi:10.1097/AJP.0b013e31821d9063.
  • Daft JG, Ptacek T, Kumar R, Morrow C, Lorenz RG. Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother. Microbiome. 2015;3(1):3. doi:10.1186/s40168-015-0080-y.
  • Grecco GG, Gao Y, Gao H, Liu Y, Atwood BK. Prenatal opioid administration induces shared alterations to the maternal and offspring gut microbiome: a preliminary analysis. Drug Alcohol Depend [Internet]. 2021;227:108914. doi:10.1016/j.drugalcdep.2021.108914.
  • Takeuchi Y, Mizukami H, Kudoh K, Osonoi S, Sasaki T, Kushibiki H, Ogasawara S, Hara Y, Igawa A, Pan X, et al. 2022. The diversity and abundance of gut microbiota are associated with the pain sensation threshold in the Japanese population. Neurobiol Dis [Internet]. 173:105839. doi: 10.1016/j.nbd.2022.105839.
  • Eeckhaut V, Machiels K, Perrier C, Romero C, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R, Vermeire S, et al. 2013. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut. 62:1745–1752. doi: 10.1136/gutjnl-2012-303611.
  • Yang W, Lee Y, Lu H, Chou C, Id CW. Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by- side challenge model. PLoS ONE. 2019;14:e0205784. doi:10.1371/journal.pone.0205784.
  • Marrs T, Jo J, Perkin MR, Rivett DW, Witney AA, Bruce KD, Logan K, Craven J, Radulovic S, Versteeg SA, et al. 2021. Gut microbiota development during infancy: Impact of introducing allergenic foods. J Allergy Clin Immunol. 147:613–621. doi: 10.1016/j.jaci.2020.09.042.
  • Li YJ, Li J, Dai C. The role of intestinal microbiota and mast cell in a rat model of visceral hypersensitivity. J Neurogastroenterol Motil. 2020;26(4):529–538. doi:10.5056/jnm20004.
  • Liang JQ, Li T, Nakatsu G, Chen Y-X, Yau TO, Chu E, Wong S, Szeto CH, Ng SC, Chan FKL, et al. A novel faecal Lachnoclostridium marker for the non- ­ invasive diagnosis of colorectal adenoma and cancer. Gut. 2020;69(7):1248–1257. doi:10.1136/gutjnl-2019-318532.
  • Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: microbiome control of spinal cord injury pain in humans and rodents. Neurobiol Pain [Internet]. 2021;9:100059. doi:10.1016/j.ynpai.2020.100059.
  • Beller A, Maurice M. Specific microbiota enhances intestinal IgA levels by inducing TGF- β in T follicular helper cells of Peyer ’s patches in mice. Eur J Immunol. 2020;50:783–794. doi:10.1002/eji.201948474.
  • Yang C, Fang X, Zhan G, Huang N, Li S, Bi J, Jiang R, Yang L, Miao L, Zhu B. Key role of gut microbiota in anhedonia- like phenotype in rodents with neuropathic pain. Transl Psychiatry [Internet]. 2019;9(1). doi:10.1038/s41398-019-0379-8.
  • Guimarães MR, Anjo SI, Cunha AM, Esteves M, Sousa N, Almeida A, Manadas B, Leite-Almeida H. Chronic pain susceptibility is associated with anhedonic behavior and alterations in the accumbal ubiquitin-proteasome system. Pain. 2021;162(6):1722–1731. doi:10.1097/j.pain.0000000000002192.
  • Venegas DP, La Fuente MK D, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277.
  • Cirstea M, Radisavljevic N, Finlay BB. Good bug, bad bug: breaking through microbial stereotypes. Cell Host Microbe [Internet]. 2018;23:10–13. doi:10.1016/j.chom.2017.12.008.
  • Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, Trenkwalder C, Oertel WH, Mollenhauer B, Wilmes P. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2018;33(1):88–98. doi:10.1002/mds.27105.
  • Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, et al. 2017. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord. 32:739–749. doi: 10.1002/mds.26942.
  • Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, Liu C, Klotz L, Stauffer U, Baranzini SE, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A. 2017;114(40):10719–10724. doi:10.1073/pnas.1711233114.
  • Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, Kanner R, Bencosme Y, Lee YK, Hauser SL, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A. 2017;114(40):10713–10718. doi:10.1073/pnas.1711235114.
  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep [Internet]. 2017;7(1):1–11. doi:10.1038/s41598-017-13601-y.
  • Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:1–15. doi:10.3389/fimmu.2020.00906.
  • Lee K, Vuong HE, Nusbaum DJ, Hsiao EY, Evans CJ, Taylor AMW. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology [Internet]. 2018;43(13):2606–2614. doi:10.1038/s41386-018-0211-9.
  • Distrutti E, Reilly JO, Mcdonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S. Modulation of intestinal microbiota by the probiotic VSL # 3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE. 2014;9:e106503. doi:10.1371/journal.pone.0106503.
  • Distrutti E, Cipriani S, Mencarelli A, Renga B, Fiorucci S, Tache Y. Probiotics VSL # 3 protect against development of visceral pain in murine model of irritable bowel syndrome. PLoS ONE. 2013;8(5):e63893. doi:10.1371/journal.pone.0063893.
  • Boonma P, Shapiro JM, Hollister EB, Badu S, Wu Q, Weidler EM, Abraham BP, Devaraj S, Shulman RJ. Probiotic VSL # 3 treatment reduces colonic permeability and abdominal pain symptoms in patients with irritable bowel syndrome. Front Pain Res. 2021;2. doi:10.3389/fpain.2021.691689.
  • Cheng F-S, Pan D, Chang B, Jiang M, Sang L-X. Probiotic mixture VSL#3: an overview of basic and clinical studies in chronic diseases. World J Clin Cases. 2020;8:1361–1385. doi:10.12998/wjcc.v8.i8.1361.
  • Blaser MJ, Devkota S, McCoy KD, Relman DA, Yassour M, Young VB. Lessons learned from the prenatal microbiome controversy. Microbiome. 2021;9(1):1–7. doi:10.1186/s40168-020-00946-2.
  • Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017;12(S1):3–17. doi:10.1111/ijpo.12217.
  • de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, Parkhill J, Charnock-Jones DS, Smith GCS. Human placenta has no microbiome but can contain potential pathogens. Nature [Internet]. 2019;572(7769):329–334. doi:http://dx.doi.org/10.1038/s41586-019-1451-5.
  • Aagaard K, Ma J, Antony K, Ganu R, Petrosino J, Versalovic J. The Placenta Harbors a Unique Microbiome. Sci Transl Med. 2014;6(237):229–262. doi:10.1126/scitranslmed.3008599.
  • Mogil JS, Chesler EJ, Wilson SG, Juraska JM, Sternberg WF. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev. 2000;24(3):375–389. doi:10.1016/S0149-7634(00)00015-4.
  • Ribeiro S, Yang P, REYES-VAZQUEZ C, SWANN A, DAFNY N. Sex differences in tail-flick latencyof non-stressed and stressed rats. Int J Neurosci. 2005;115(10):1383–1395. doi:10.1080/00207450590956404.
  • Traccis F, Frau R, Melis M. Gender differences in the outcome of offspring prenatally exposed to drugs of abuse. Front Behav Neurosci. 2020;14:14. doi:10.3389/fnbeh.2020.00072.
  • Suffet F, Brotman R. A comprehensive Care program for pregnant addicts: obstetrical, neonatal, and Child development outcomes. Int J Addict. 1984;19(2):199–219. doi:10.3109/10826088409057176.
  • Nygaard E, Moe V, Slinning K, Walhovd KB. Longitudinal cognitive development of children born to mothers with opioid and polysubstance use. Pediatr Res. 2015;78(3):330–335. doi:10.1038/pr.2015.95.
  • Terasaki LS, Gomez J, Schwarz JM. An examination of sex differences in the effects of early-life opiate and alcohol exposure. Philos Trans R Soc B Biol Sci. 2016;371:371. doi:10.1098/rstb.2015.0123.
  • Nasiraei-Moghadam S, Sherafat MA, Safari M-S, Moradi F, Ahmadiani A, Dargahi L. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats. J Mol Neurosci. 2013;50(1):58–69. doi:10.1007/s12031-012-9860-z.
  • Hamilton KL, Harris AC, Gewirtz JC, Sparber SB, Schrott LM. HPA axis dysregulation following prenatal opiate exposure and postnatal withdrawal. Neurotoxicol Teratol. 2005;27(1):95–103. doi:10.1016/j.ntt.2004.09.004.
  • Klausz B, Pintér O, Sobor M, Gyarmati Z, Fürst Z, Tímár J, Zelena D. Changes in adaptability following perinatal morphine exposure in juvenile and adult rats. Eur J Pharmacol [Internet]. 2011;654:166–172. doi:10.1016/j.ejphar.2010.11.025.
  • Dennis T, Bendersky M, Ramsay D, Lewis M. Reactivity and regulation in children prenatally exposed to cocaine. Dev Psychol. 2006;42(4):688–697. doi:10.1037/0012-1649.42.4.688.
  • Singer LT, Minnes S, Short E, Arendt R, Farkas K, Lewis B, Klein N, Russ S, Min MO, Kirchner HL. Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA. 2004;291:2448–2456. doi:10.1001/jama.291.20.2448.
  • Bennett D, Bendersky M, Lewis M. Preadolescent health risk behavior as a function of prenatal cocaine exposure and gender. J Dev Behav Pediatr. 2007;28(6):467–472. doi:10.1097/DBP.0b013e31811320d8.
  • Nordstrom Bailey B, Sood BG, Sokol RJ, Ager J, Janisse J, Hannigan JH, Covington C, Delaney-Black V. Gender and alcohol moderate prenatal cocaine effects on teacher-report of child behavior. Neurotoxicol Teratol. 2005;27(2):181–189. doi:10.1016/j.ntt.2004.10.004.
  • LaGasse LL, Derauf C, Smith LM, Newman E, Shah R, Neal C, Arria A, Huestis MA, DellaGrotta S, Lin H, et al. Prenatal methamphetamine exposure and childhood behavior problems at 3 and 5 years of age. Pediatrics. 2012;129(4):681–688. doi:10.1542/peds.2011-2209.
  • Skumlien M, Ibsen IO, Kesmodel US, Nygaard E. Sex differences in early cognitive development after prenatal exposure to opioids. J Pediatr Psychol. 2020;45(5):475–485. doi:10.1093/jpepsy/jsaa008.
  • Moe V, Slinning K. Children prenatally exposed to substances: gender-related differences in outcome from infancy to 3 years of age. Infant Ment Health J. 2001;22(3):334–350. doi:10.1002/imhj.1005.
  • Willoughby M, Greenberg M, Blair C, Stifter C. Neurobehavioral consequences of prenatal exposure to smoking at 6 to 8 months of age. Infancy. 2007;12(3):273–301. doi:10.1111/j.1532-7078.2007.tb00244.x.
  • Sikic A, Frie JA, Khokhar JY, Murray JE. Sex differences in the behavioural outcomes of prenatal Nicotine and tobacco exposure. Front Neurosci. 2022;16:1–9. doi:10.3389/fnins.2022.921429.
  • Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome – brain axis across the lifespan. Philos Trans R Soc L B Biol Sci. 2016;371:371. doi:10.1098/rstb.2015.0122.
  • Jašarević E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156(9):3265–3276. doi:10.1210/en.2015-1177.
  • Jašarević E, Howard CD, Misic AM, Beiting DP, Bale TL. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep [Internet]. 2017;7(1):1–13. doi:10.1038/srep44182.
  • Moloney RD, Johnson AC, O’Mahony SM, Dinan TG, Greenwood-Van Meerveld B, Cryan JF. Stress and the microbiota-gut-brain axis in visceral PaRelevance to Irritable bowel syndrome. CNS Neurosci Ther. 2016;22:102–117. doi:10.1111/cns.12490.
  • Green PG, Alvarez P, Levine JD. A role for gut microbiota in early-life stress-induced widespread muscle pain in the adult rat. Mol Pain. 2021;17:17. doi:10.1177/17448069211022952.
  • Berg BM, Waworuntu RV, Neufeld KAM, O’Mahony SM, Dinan TG, Cryan JF. A blend of dietary prebiotics and the probiotic LGG modulate behavioral and cognitive responses to maternal separation stress. Brain Behav Immun [Internet]. 2015;49:e45. doi:10.1016/j.bbi.2015.06.168.
  • Lucarini E, Di Pilato V, Parisio C, Micheli L, Toti A, Pacini A, Bartolucci G, Baldi S, Niccolai E, Amedei A, et al. Visceral sensitivity modulation by faecal microbiota transplantation: the active role of gut bacteria in pain persistence. Pain. 2022;163(5):861–877. doi:10.1097/j.pain.0000000000002438.
  • Radhakrishna U, Nath SK, Vishweswaraiah S, Uppala LV, Forray A, Muvvala SB, Mishra NK, Southekal S, Guda C, Govindamangalam H, et al. 2021. Maternal opioid use disorder: placental transcriptome analysis for neonatal opioid withdrawal syndrome. Genomics [Internet]. 113:3610–3617. doi: 10.1016/j.ygeno.2021.08.001.
  • Guo H, Enters EK, Mcdowell KP, Robinson SE. The effect of prenatal exposure to methadone on neurotransmitters in neonatal rats. Dev Brain Res. 1990;7:290–298. doi:10.1016/0165-3806(90)90056-5.
  • Wu VW, Mo Q, Yabe T, Schwartz JP, Robinson SE. Perinatal opioids reduce striatal nerve growth factor content in rat striatum. Eur J Pharmacol. 2001;414(2–3):211–214. doi:10.1016/S0014-2999(01)00807-X.
  • Robinson SE, Maher JR, Wallace MJ, Kunko PM. Perinatal methadone exposure affects dopamine, norepinephrine, and serotonin in the weanling rat. Neurotoxicol Teratol. 1997;19:295–303. doi:10.1016/S0892-0362(97)00018-4.
  • Wu CC, Hung CJ, Shen CH, Chen WY, Chang CY, Pan HC, Liao SL, Chen CJ. Prenatal buprenorphine exposure decreases neurogenesis in rats. Toxicol Lett [Internet]. 2014;225:92–101. doi:10.1016/j.toxlet.2013.12.001.
  • Erbs E, Faget L, Ceredig RA, Matifas A, Vonesch JL, Kieffer BL, Massotte D. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46–56. doi:10.1016/j.neuroscience.2015.10.022.
  • Alipio JB, Haga C, Fox ME, Arakawa K, Balaji R, Cramer N, Lobo MK, Keller A. Perinatal fentanyl exposure leads to long-lasting impairments in Somatosensory circuit function and behavior. J Neurosci. 2021;41(15):3400–3417. doi:10.1523/JNEUROSCI.2470-20.2020.
  • Vestal-Laborde AA, Eschenroeder AC, Bigbee JW, Robinson SE, Sato-Bigbee C. The opioid system and brain development: effects of methadone on the oligodendrocyte lineage and the early stages of myelination. Dev Neurosci. 2014;36(5):409–421. doi:10.1159/000365074.
  • Sanchez ES, Bigbee JW, Fobbs W, Robinson SE, Sato-Bigbee C. Opioid addiction and pregnancy: perinatal exposure to buprenorphine affects myelination in the developing brain. Glia. 2008;56(9):1017–1027. doi:10.1002/glia.20675.
  • Merhar SL, Jiang W, Parikh NA, Yin W, Zhou Z, Tkach JA, Wang L, Kline-Fath BM, He L, Braimah A, et al. 2021. Effects of prenatal opioid exposure on functional networks in infancy. Dev Cogn Neurosci [Internet]. 51:100996. doi: 10.1016/j.dcn.2021.100996.
  • Chen HH, Chiang YC, Yuan ZF, Kuo CC, Lai MD, Hung TW, Ho IK, Chen ST. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats. Neuropsychiatr Dis Treat. 2015;11:609–618. doi:10.2147/NDT.S70585.
  • Van Wagoner S, Risser J, Moyer M, Lasky D. Effect of maternally administered methadone on discrimination learning of rat offspring. Percept Mot Skills. 1980;50(3_suppl):1119–1124. doi:10.2466/pms.1980.50.3c.1119.
  • Alipio JB, Brockett AT, Fox ME, Tennyson SS, deBettencourt CA, El-Metwally D, Francis NA, Kanold PO, Lobo MK, Roesch MR, et al. Enduring consequences of perinatal fentanyl exposure in mice. Addict Biol. 2021;26:1–13.
  • Martin RE, Green MT, Kinkade JA, Schmidt RR, Willemse TE, Schenk AK, Mao J, Rosenfeld CS. Maternal oxycodone treatment results in neurobehavioral disruptions in mice offspring. eNeuro. 2021;8(4):ENEURO.0150–21.2021. doi:10.1523/ENEURO.0150-21.2021.
  • Yang SN, Liu C-A, Chung M-Y, Huang H-C, Yeh G-C, Wong C-S, Lin W-W, Yang C-H, Tao P-L. Alterations of Postsynaptic density proteins in the hippocampus of rat offspring from the morphine-addicted mother: beneficial effect of dextromethorphan. Hippocampus. 2006;16(6):521–530. doi:10.1002/hipo.20179.
  • Monnelly VJ, Hamilton R, Chappell FM, Mactier H, Boardman JP. Childhood neurodevelopment after prescription of maintenance methadone for opioid dependency in pregnancy: a systematic review and meta-analysis. Dev Med Child Neurol. 2019;61(7):750–760. doi:10.1111/dmcn.14117.
  • Yeoh SL, Eastwood J, Wright IM, Morton R, Melhuish E, Ward M, Oei JL. Cognitive and motor outcomes of children with prenatal opioid exposure: a systematic review and meta-analysis. JAMA Netw Open. 2019;2:1–14. doi:10.1001/jamanetworkopen.2019.7025.
  • Arter SJ, Tyler B, McAllister J, Kiel E, Güler A, Cameron Hay M. Longitudinal outcomes of children exposed to opioids in-utero: a systematic review. J Nurs Scholarsh. 2021;53(1):55–64. doi:10.1111/jnu.12609.
  • Lee SJ, Bora S, Austin NC, Westerman A, Henderson JMT. Neurodevelopmental outcomes of children born to opioid-dependent mothers: a systematic review and meta-analysis. Acad Pediatr [Internet]. 2020;20:308–318. doi:10.1016/j.acap.2019.11.005.
  • Nelson LF, Yocum VK, Patel KD, Qeadan F, Hsi A, Weitzen S. Cognitive outcomes of young children after prenatal exposure to medications for opioid use disorder: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:1–14. doi:10.1001/jamanetworkopen.2020.1195.
  • Andersen JM, Høiseth G, Nygaard E. Prenatal exposure to methadone or buprenorphine and long-term outcomes: a meta-analysis. Early Hum Dev [Internet]. 2020;143:104997. doi:10.1016/j.earlhumdev.2020.104997.
  • Meng X, Zhang Y, Lao L, Saito R, Li A, Bäckman CM, Berman BM, Ren K, Wei PK, Zhang RX. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain [Internet]. 2013;154(2):294–305. doi:10.1016/j.pain.2012.10.022.
  • Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol. 2006;200(2):480–485. doi:10.1016/j.expneurol.2006.03.014.
  • Noma N, Khan J, Chen IF, Markman S, Benoliel R, Hadlaq E, Imamura Y, Eliav E. Interleukin-17 levels in rat models of nerve damage and neuropathic pain. Neurosci Lett [Internet]. 2011;493:86–91. doi:10.1016/j.neulet.2011.01.079.
  • Kim CF, Moalem-Taylor G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain [Internet]. 2011;12:370–383. doi:10.1016/j.jpain.2010.08.003.
  • McNamee KE, Alzabin S, Hughes JP, Anand P, Feldmann M, Williams RO, Inglis JJ. IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain [Internet]. 2011;152(8):1838–1845. doi:10.1016/j.pain.2011.03.035.
  • Pinto LG, Cunha TM, Vieira SM, Lemos HP, Verri WA, Cunha FQ, Ferreira SH. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain [Internet]. 2010;148(2):247–256. doi:10.1016/j.pain.2009.11.006.
  • Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol [Internet]. 2014;35:507–517. doi:10.1016/j.it.2014.07.010.