5,084
Views
0
CrossRef citations to date
0
Altmetric
Review

The influence of the gut microbiome on ovarian aging

ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Article: 2295394 | Received 04 Jul 2023, Accepted 12 Dec 2023, Published online: 03 Jan 2024

References

  • Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–19. doi:10.1038/s41579-020-0433-9.
  • Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, et al. Microbiota in health and diseases. Sig Transduct Target Ther. 2022;7(1):135. doi:10.1038/s41392-022-00974-4.
  • Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022;62(13):3509–3534. doi:10.1080/10408398.2020.1867054.
  • Haran JP, McCormick BA. Aging, frailty, and the microbiome—How dysbiosis Influences human aging and disease. Gastroenterology. 2021;160(2):507–23. doi:10.1053/j.gastro.2020.09.060.
  • Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev. 2017;35:36–45. doi:10.1016/j.arr.2017.01.001.
  • Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, Li Z, Sun Y, Zhen H, Ding J, et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 2022;38(10):110459. doi:10.1016/j.celrep.2022.110459.
  • Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, Earls JC, Zimmer A, Glusman G, Robinson M, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metabolism. 2021;3(2):274–286. doi:10.1038/s42255-021-00348-0.
  • Ke S, Mitchell SJ, MacArthur MR, Kane AE, Sinclair DA, Venable EM, Chadaideh K, Carmody R, Grodstein F, Mitchell J, et al. Gut microbiota predicts healthy late-life aging in male mice. Nutrients. 2021;13(9):3290. doi:10.3390/nu13093290.
  • Parker A, Romano S, Ansorge R, Aboelnour A, Le Gall G, Savva GM, Pontifex MG, Telatin A, Baker D, Jones E, et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome. 2022;10(1):68. doi:10.1186/s40168-022-01243-w.
  • Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM, Gual-Grau A, Spichak S, Olavarría-Ramírez L, Fitzgerald P, Morillas E, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging. 2021;1(8):666–76. doi:10.1038/s43587-021-00093-9.
  • Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30(5):465–493. doi:10.1210/er.2009-0006.
  • Li J, Xiong M, Fu XH, Fan Y, Dong C, Sun X, Zheng F, Wang, SW, Liu L, Xu M, et al. Determining a multimodal aging clock in a cohort of Chinese women. Med (New York, NY). 2023;4(11):825–48.
  • Wu M, Lu Z, Zhu Q, Ma L, Xue L, Li Y, Zhou S, Yan W, Ye W, Zhang J, et al. DDX04+ stem cells in the ovaries of postmenopausal women: existence and differentiation potential. Stem Cells (Dayton, Ohio). 2022;40(1):88–101. doi:10.1093/stmcls/sxab002.
  • Wu M, Huang Y, Zhu Q, Zhu X, Xue L, Xiong J, Chen Y, Wu C, Guo Y, Li Y, et al. Adipose tissue and ovarian aging: Potential mechanism and protective strategies. Ageing Res Rev. 2022;80:101683. doi:10.1016/j.arr.2022.101683.
  • Qi X, Yun C, Pang Y, Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021;13(1):1–21. doi:10.1080/19490976.2021.1894070.
  • Xu B, Qin W, Chen Y, Tang Y, Zhou S, Huang J, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-ovary axis contributed to the follicular development difference between Meishan and landrace × Yorkshire sows. J Anim Sci Biotechnol. 2023;14(1):68. doi:10.1186/s40104-023-00865-w.
  • Nelson HD. Menopause. Lancet (London, England). 2008;371(9614):760–70. doi:10.1016/S0140-6736(08)60346-3.
  • Takahashi TA, Johnson KM. Menopause. Med Clin North Am. 2015;99(3):521–534. doi:10.1016/j.mcna.2015.01.006.
  • Al-Azzawi F, Palacios S. Hormonal changes during menopause. Maturitas. 2009;63(2):135–137. doi:10.1016/j.maturitas.2009.03.009.
  • Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45–53. doi:10.1016/j.maturitas.2017.06.025.
  • Hu S, Ding Q, Zhang W, Kang M, Ma J, Zhao L. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism. Gut Microbes. 2023;15(1):2236749. doi:10.1080/19490976.2023.2236749.
  • Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host & Microbe. 2011;10(4):324–335. doi:10.1016/j.chom.2011.10.003.
  • Santos-Marcos JA, Rangel-Zuñiga OA, Jimenez-Lucena R, Quintana-Navarro GM, Garcia-Carpintero S, Malagon MM, Landa BB, Tena-Sempere M, Perez-Martinez P, Lopez-Miranda J, et al. Influence of gender and menopausal status on gut microbiota. Maturitas. 2018;116:43–53. doi:10.1016/j.maturitas.2018.07.008.
  • Yang M, Wen S, Zhang J, Peng J, Shen X, Xu L. Systematic review and meta-analysis: changes of gut microbiota before and after menopause. Dis Markers. 2022;2022:3767373. doi:10.1155/2022/3767373.
  • Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, Hao L, Bhan AK, Kang JX. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome. 2018;6(1):205. doi:10.1186/s40168-018-0587-0.
  • Nakatsu CH, Armstrong A, Clavijo AP, Martin BR, Barnes S, Weaver CM, Wong V. Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption. PLoS ONE. 2014;9(10):e108924. doi:10.1371/journal.pone.0108924.
  • Mayneris-Perxachs J, Arnoriaga-Rodríguez M, Luque-Córdoba D, Priego-Capote F, Pérez-Brocal V, Moya A, Burokas A, Maldonado R, Fernández-Real J-M. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. Microbiome. 2020;8(1):136. doi:10.1186/s40168-020-00913-x.
  • Zhao H, Chen J, Li X, Sun Q, Qin P, Wang Q. Compositional and functional features of the female premenopausal and postmenopausal gut microbiota. FEBS Lett. 2019;593(18):2655–2664. doi:10.1002/1873-3468.13527.
  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi:10.1038/4441022a.
  • Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, Mehrabian M, Denu JM, Backhed F, Lusis AJ, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat microbiol. 2018;3(12):1461–71. doi:10.1038/s41564-018-0272-x.
  • Chen Y, Liu Y, Wang Y, Chen X, Wang C, Chen X, Yuan X, Liu L, Yang J, Zhou X, et al. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res. 2022;41(1):1. doi:10.1186/s13046-021-02201-4.
  • Konhilas JP, Sanchez JN, Regan JA, Constantopoulos E, Lopez-Pier M, Cannon DK, Skaria R, McKee LA, Chen H, Lipovka Y, et al. Using 4-vinylcyclohexene diepoxide as a model of menopause for cardiovascular disease. Am J Physiol Heart Circ Physiol. 2020;318(6):H1461–H1473. doi:10.1152/ajpheart.00555.2019.
  • Cao LB, Leung CK, Law PW, Lv Y, Ng CH, Liu HB, Lu G, Ma JL, Chan WY. Systemic changes in a mouse model of VCD-induced premature ovarian failure. Life Sci. 2020;262:118543. doi:10.1016/j.lfs.2020.118543.
  • Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell. 2008;3(4):442–455. doi:10.1016/j.stem.2008.07.024.
  • Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H, Kim SK. Lifespan extension by preserving proliferative homeostasis in Drosophila. Plos Genet. 2010;6(10):e1001159. doi:10.1371/journal.pgen.1001159.
  • Ahmed SMH, Maldera JA, Krunic D, Paiva-Silva GO, Pénalva C, Teleman AA, Edgar BA. Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature. 2020;584(7821):415–9. doi:10.1038/s41586-020-2462-y.
  • Xu L, Zhang Q, Dou X, Wang Y, Wang J, Zhou Y, Liu X, Li J. Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice. J Genet Genomics. 2022;49(11):1042–52. doi:10.1016/j.jgg.2022.05.006.
  • Navarro-Pando JM, Alcocer-Gomez E, Castejon-Vega B, Navarro-Villaran E, Condes-Hervas M, Mundi-Roldan M, Muntané J, Pérez-Pulido AJ, Bullon P, Wang C, et al. Inhibition of the NLRP3 inflammasome prevents ovarian aging. Sci Adv. 2021;7(1). doi:10.1126/sciadv.abc7409.
  • Hu C, Liu M, Sun B, Tang L, Zhou X, Chen L. Young fecal transplantation mitigates the toxicity of perfluorobutanesulfonate and potently refreshes the reproductive endocrine system in aged recipients. Environ Int. 2022;167:107418. doi:10.1016/j.envint.2022.107418.
  • Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, Cifkova R, de Muinck Keizer-Schrama S, Hogervorst E, Janse F. ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31:926–37.
  • Webber L, Anderson RA, Davies M, Janse F, Vermeulen N. HRT for women with premature ovarian insufficiency: a comprehensive review. Human Reprod Open. 2017;2017(2):hox007. doi:10.1093/hropen/hox007.
  • Panay N, Anderson RA, Nappi RE, Vincent AJ, Vujovic S, Webber L, Wolfman W. Premature ovarian insufficiency: an international menopause society white paper. Climacteric. 2020;23(5):426–46. doi:10.1080/13697137.2020.1804547.
  • Georgakis MK, Beskou-Kontou T, Theodoridis I, Skalkidou A, Petridou ET. Surgical menopause in association with cognitive function and risk of dementia: a systematic review and meta-analysis. Psychoneuroendocrinology. 2019;106:9–19. doi:10.1016/j.psyneuen.2019.03.013.
  • Honigberg MC, Zekavat SM, Aragam K, Finneran P, Klarin D, Bhatt DL, Januzzi JL, Scott NS, Natarajan P. Association of premature natural and surgical menopause with incident cardiovascular disease. JAMA. 2019;322(24):2411–21. doi:10.1001/jama.2019.19191.
  • Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas. 2010;65(2):161–166. doi:10.1016/j.maturitas.2009.08.003.
  • Jiang L, Fei H, Tong J, Zhou J, Zhu J, Jin X, Shi Z, Zhou Y, Ma X, Yu H, et al. Hormone replacement therapy reverses gut microbiome and serum metabolome alterations in premature ovarian insufficiency. Front Endocrinol (Lausanne). 2021;12:794496. doi:10.3389/fendo.2021.794496.
  • Wu J, Zhuo Y, Liu Y, Chen Y, Ning Y, Yao J. Association between premature ovarian insufficiency and gut microbiota. BMC Pregnancy Childbirth. 2021;21(1):418. doi:10.1186/s12884-021-03855-w.
  • Ishizuka B. Current understanding of the etiology, symptomatology, and treatment options in Premature Ovarian Insufficiency (POI). Front Endocrinol (Lausanne). 2021;12:626924. doi:10.3389/fendo.2021.626924.
  • Wang Y, Zou Y, Wang W, Zheng Q, Feng Y, Dong H, Tan Z, Zeng X, Zhao Y, Peng D, et al. Knowledge of iatrogenic premature ovarian insufficiency among Chinese obstetricians and gynaecologists: a national questionnaire survey. J Ovarian Res. 2020;13(1):134. doi:10.1186/s13048-020-00739-z.
  • Gargus E, Deans R, Anazodo A, Woodruff TK. Management of primary ovarian insufficiency symptoms in survivors of childhood and adolescent Cancer. J Natl Compr Canc Netw. 2018;16(9):1137–1149. doi:10.6004/jnccn.2018.7023.
  • Cattoni A, Parissone F, Porcari I, Molinari S, Masera N, Franchi M, Cesaro S, Gaudino R, Passoni P, Balduzzi A, et al. Hormonal replacement therapy in adolescents and young women with chemo- or radio-induced premature ovarian insufficiency: practical recommendations. Blood Rev. 2021;45:100730. doi:10.1016/j.blre.2020.100730.
  • van Dorp W, Mulder RL, Kremer LC, Hudson MM, van den Heuvel-Eibrink MM, van den Berg MH, Levine JM, van Dulmen-den Broeder E, di Iorgi N, Albanese A, et al. Recommendations for premature ovarian insufficiency surveillance for female survivors of childhood, adolescent, and young adult cancer: a report from the international late effects of childhood cancer guideline harmonization group in collaboration with the PanCareSurFup consortium. J Clin Oncol. 2016;34(28):3440–50. doi:10.1200/JCO.2015.64.3288.
  • Green DM, Nolan VG, Goodman PJ, Whitton JA, Srivastava D, Leisenring WM, Neglia JP, Sklar CA, Kaste SC, Hudson MM, et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: a report from the childhood Cancer survivor study. Pediatr Blood Cancer. 2014;61(1):53–67. doi:10.1002/pbc.24679.
  • Chemaitilly W, Li Z, Krasin MJ, Brooke RJ, Wilson CL, Green DM, Klosky JL, Barnes N, Clark KL, Farr JB, et al. Premature ovarian insufficiency in childhood Cancer survivors: a report from the St. Jude Lifetime Cohort. J Clin Endocrinol Metab. 2017;102(7):2242–50. doi:10.1210/jc.2016-3723.
  • van Dorp W, Haupt R, Anderson RA, Mulder RL, van den Heuvel-Eibrink MM, van Dulmen-den BE, Su HI, Winther JF, Hudson MM, Levine JM, et al. Reproductive function and outcomes in female survivors of childhood, adolescent, and young adult Cancer: a review. J Clin Oncol. 2018;36(21):2169–80. doi:10.1200/JCO.2017.76.3441.
  • Tong J, Zhang X, Fan Y, Chen L, Ma X, Yu H, Li J, Guan X, Zhao P, Yang J, et al. Changes of intestinal microbiota in ovarian Cancer patients treated with surgery and chemotherapy. Cancer Manag Res 2020; 12:8125–8135. 10.2147/CMAR.S265205.
  • Medina-Contreras J, Villalobos-Molina R, Zarain-Herzberg A, Balderas-Villalobos J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem. 2020;475(1–2):261–276. doi:10.1007/s11010-020-03879-4.
  • Vodegel EV, Guler Z, Ras L, Mackova K, Groeneveld A, Bezuidenhout D, Deprest J, Jeffery ST, Roovers JPWR. Vaginal changes after ovariectomy in ewes: a large animal model for genitourinary syndrome of menopause. Int J Gynaecol Obstet. 2023;162(3):1042–9. doi:10.1002/ijgo.14816.
  • Brent MB. Pharmaceutical treatment of bone loss: from animal models and drug development to future treatment strategies. Pharmacology & Therapeutics. 2023;244:108383. doi:10.1016/j.pharmthera.2023.108383.
  • Diaz Brinton R. Minireview: translational animal models of human menopause: challenges and emerging opportunities. Endocrinology. 2012;153(8):3571–3578. doi:10.1210/en.2012-1340.
  • Xiao HH, Lu L, Poon CC, Chan CO, Wang LJ, Zhu YX, Zhou L-P, Cao S, Yu W-X, Wong KY, et al. The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother. 2021;137:111372. doi:10.1016/j.biopha.2021.111372.
  • Tu MY, Han KY, Chang GR, Lai GD, Chang KY, Chen CF, Lai J-C, Lai C-Y, Chen H-L, Chen C-M, et al. Kefir peptides prevent estrogen deficiency-induced bone loss and modulate the structure of the gut microbiota in ovariectomized mice. Nutrients. 2020;12(11):12. doi:10.3390/nu12113432.
  • Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients. 2017;9(10):1146. doi:10.3390/nu9101146.
  • Huang J, Shan W, Li F, Wang Z, Cheng J, Lu F, Guo E, Beejadhursing R, Xiao R, Liu C, et al. Fecal microbiota transplantation mitigates vaginal atrophy in ovariectomized mice. Aging (Albany NY). 2021;13(5):7589–7607. doi:10.18632/aging.202627.
  • Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui Y-F. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat. 2022;37:46–60. doi:10.1016/j.jot.2022.08.003.
  • Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, Suárez-Zamorano N, Spiljar M, Fabbiano S, Busse B, et al. Warmth prevents bone loss through the gut microbiota. Cell Metab. 2020;32(4):575–90.e7. doi:10.1016/j.cmet.2020.08.012.
  • Yuan Y, Yang J, Zhuge A, Li L, Ni S. Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Prolif. 2022;55(3):e13194. doi:10.1111/cpr.13194.
  • Lee HJ, Park MJ, Joo BS, Joo JK, Kim YH, Yang SW, Kim C-W, Kim KH. Effects of coenzyme Q10 on ovarian surface epithelium-derived ovarian stem cells and ovarian function in a 4-vinylcyclohexene diepoxide-induced murine model of ovarian failure. Reprod Biol Endocrinol. 2021;19(1):59. doi:10.1186/s12958-021-00736-x.
  • Secomandi L, Borghesan M, Velarde M, Demaria M. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update. 2022;28(2):172–189. doi:10.1093/humupd/dmab038.
  • Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, Wang Z, Zhu H, Zhang X, Li Z, et al. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022;55(11):e13303. doi:10.1111/cpr.13303.
  • Hao EY, Chen H, Wang DH, Huang CX, Tong YG, Chen YF, Zhou R-Y, Huang R-L. Melatonin regulates the ovarian function and enhances follicle growth in aging laying hens via activating the mammalian target of rapamycin pathway. Poult Sci. 2020;99(4):2185–95. doi:10.1016/j.psj.2019.11.040.
  • Wang Y, Fan L, Huang J, Liang J, Wang X, Ren Y, Li H, Yue T, Gao Z. Evaluation of chemical composition, antioxidant activity, and gut microbiota associated with pumpkin juice fermented by rhodobacter sphaeroides. Food Chem. 2023;401:134122. doi:10.1016/j.foodchem.2022.134122.
  • Zhang L, Zhang Z, Wang J, Lv D, Zhu T, Wang F, Tian X, Yao Y, Ji P, Liu G, et al. Melatonin regulates the activities of ovary and delays the fertility decline in female animals via MT1/AMPK pathway. J Pineal Res. 2019;66(3):e12550. doi:10.1111/jpi.12550.
  • Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res. 2022;15(1):100. doi:10.1186/s13048-022-01032-x.
  • Wang J, Jia R, Gong H, Celi P, Zhuo Y, Ding X, Bai S, Zeng Q, Yin H, Xu S, et al. The effect of oxidative stress on the chicken ovary: involvement of microbiota and Melatonin interventions. Antioxidants (Basel, Switzerland). 2021;10(9):10. doi:10.3390/antiox10091422.
  • Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, et al. Importance of Melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci. 2020;21(3):21. doi:10.3390/ijms21031135.
  • Ivanova AY, Shirokov IV, Toshchakov SV, Kozlova AD, Obolenskaya ON, Mariasina SS, Ivlev VA, Gartseev IB, Medvedev OS. Effects of coenzyme Q10 on the biomarkers (hydrogen, methane, SCFA and TMA) and composition of the gut microbiome in rats. Pharmaceuticals (Basel, Switzerland). 2023;16(5):686. doi:10.3390/ph16050686.
  • Huang P, Jiang A, Wang X, Zhou Y, Tang W, Ren C, Qian X, Zhou Z, Gong A. NMN maintains intestinal homeostasis by regulating the gut microbiota. Front Nutr. 2021;8:714604. doi:10.3389/fnut.2021.714604.
  • Zhu H, Li X, Qiao M, Sun X, Li G, Anderson RM. Resveratrol alleviates inflammation and ER stress through SIRT1/NRF2 to delay ovarian aging in a short-lived fish. J Gerontol A Biol Sci Med Sci. 2023;78(4):596–602. doi:10.1093/gerona/glad009.
  • Spaiser SJ, Culpepper T, Nieves C Jr., Ukhanova M, Mai V, Percival SS, Christman MC, Langkamp-Henken B. Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2 ingestion induces a less inflammatory cytokine profile and a potentially beneficial shift in gut microbiota in older adults: a randomized, Double-blind, placebo-controlled, crossover study. J Am Coll Nutr. 2015;34(6):459–69. doi:10.1080/07315724.2014.983249.
  • Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, Jin XL, Mahbub S, Campbell JM, Habibalahi A, et al. NAD(+) repletion rescues female fertility during reproductive aging. Cell Rep. 2020;30(6):1670–81.e7. doi:10.1016/j.celrep.2020.01.058.
  • Mourad MM, Shahin SA, El-Ratel IT, El Basuini MF. Effect of treating eggs with coenzyme Q10 (CoQ10) on growth variables, histomorphometry, and antioxidant capacity in Red tilapia (Oreochromis aureus × Oreochromis mossambicus) larvae. Animals: An Open Access J MDPI. 2022;12(17):12. doi:10.3390/ani12172219.
  • He N, Shen G, Jin X, Li H, Wang J, Xu L, Chen J, Cao X, Fu C, Shi D, et al. Resveratrol suppresses microglial activation and promotes functional recovery of traumatic spinal cord via improving intestinal microbiota. Pharmacol Res. 2022;183:106377. doi:10.1016/j.phrs.2022.106377.
  • Wang J, Jia R, Celi P, Zhuo Y, Ding X, Zeng Q, Bai S, Xu S, Yin H, Lv L, et al. Resveratrol alleviating the ovarian function under oxidative stress by alternating microbiota related tryptophan-kynurenine pathway. Front Immunol. 2022;13:911381. doi:10.3389/fimmu.2022.911381.
  • Zhang Y, Zhang J, Wang S. The role of rapamycin in healthspan extension via the delay of Organ aging. Ageing Res Rev. 2021;70:101376. doi:10.1016/j.arr.2021.101376.
  • Garcia DN, Saccon TD, Pradiee J, Rincon JAA, Andrade KRS, Rovani MT, Mondadori RG, Cruz LAX, Barros CC, Masternak MM, et al. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience. 2019;41(4):395–408. doi:10.1007/s11357-019-00087-x.
  • Dou X, Sun Y, Li J, Zhang J, Hao D, Liu W, Wu R, Kong F, Peng X, Li J, et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell. 2017;16(4):825–836. doi:10.1111/acel.12617.
  • Zhou L, Xie Y, Li S, Liang Y, Qiu Q, Lin H, Zhang Q. Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR Signaling pathway in vivo. J Ovarian Res. 2017;10(1):56. doi:10.1186/s13048-017-0350-3.
  • Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B, Smith K, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife. 2016;5:e16351. doi:10.7554/eLife.16351.
  • Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int. 2022;158:111501. doi:10.1016/j.foodres.2022.111501.
  • Cao S, Yan H, Tang W, Zhang H, Liu J. Effects of dietary coenzyme Q10 supplementation during gestation on the embryonic survival and reproductive performance of high-parity sows. J Anim Sci Biotechnol. 2023;14(1):75. doi:10.1186/s40104-023-00879-4.
  • Schinaman JM, Rana A, Ja WW, Clark RI, Walker DW. Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Drosophila. Sci Rep. 2019;9(1):7824. doi:10.1038/s41598-019-44106-5.
  • Zheng X, Wang S, Jia W. Calorie restriction and its impact on gut microbial composition and global metabolism. Front Med. 2018;12(6):634–644. doi:10.1007/s11684-018-0670-8.
  • Raghu G, Berk M, Campochiaro PA, Jaeschke H, Marenzi G, Richeldi L, Wen F-Q, Nicoletti F, Calverley PMA. The multifaceted therapeutic role of N-Acetylcysteine (NAC) in disorders characterized by oxidative stress. Curr Neuropharmacol. 2021;19(8):1202–24. doi:10.2174/1570159X19666201230144109.
  • Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Sci. 2021;374(6570):eabe7365. doi:10.1126/science.abe7365.
  • Liu J, Liu M, Ye X, Liu K, Huang J, Wang L, Ji G, Liu N, Tang X, Baltz JM, et al. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod. 2012;27(5):1411–20. doi:10.1093/humrep/des019.
  • Zheng J, Yuan X, Zhang C, Jia P, Jiao S, Zhao X, Yin H, Du Y, Liu H. N-Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in high-fat diet-fed mice. J Diabetes. 2019;11(1):32–45. doi:10.1111/1753-0407.12795.
  • Ding Q, Guo R, Pei L, Lai S, Li J, Yin Y, Xu T, Yang W, Song Q, Han Q, et al. N-Acetylcysteine alleviates high fat diet-induced hepatic steatosis and liver injury via regulating the intestinal microecology in mice. Food Funct. 2022;13(6):3368–3380. doi:10.1039/D1FO03952K.
  • Giacomello E, Toniolo L. The potential of calorie restriction and calorie restriction mimetics in delaying aging: focus on experimental models. Nutrients. 2021;13(7):2346. doi:10.3390/nu13072346.
  • Liu T, Lin J, Chen C, Nie X, Dou F, Chen J, Wang Z, Gong Z. MicroRNA-146b-5p overexpression attenuates premature ovarian failure in mice by inhibiting the Dab2ip/Ask1/p38-mapk pathway and γH2A.X phosphorylation. Cell Prolif. 2021;54(1):e12954. doi:10.1111/cpr.12954.
  • Liu T, Jing F, Huang P, Geng Z, Xu J, Li J, Chen D, Zhu Y, Wang Z, Huang W, et al. Thymopentin alleviates premature ovarian failure in mice by activating YY2/Lin28A and inhibiting the expression of let-7 family microRnas. Cell Proliferation. 2021;54(8):e13089. doi:10.1111/cpr.13089.
  • Du Y, Gao Y, Zeng B, Fan X, Yang D, Yang M. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes. 2021;13(1):1994835. doi:10.1080/19490976.2021.1994835.
  • Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, Naranian T, Chi M, Wang Y, Bentov Y, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–895. doi:10.1111/acel.12368.
  • Xu Y, Nisenblat V, Lu C, Li R, Qiao J, Zhen X, Wang S. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol. 2018;16(1):29. doi:10.1186/s12958-018-0343-0.
  • Sharideh H, Zhandi M, Zeinoaldini S, Zaghari M, Sadeghi M, Akhlaghi A, Peebles ED. Beneficial effects of dietary coenzyme Q10 on the productive and reproductive variables of broiler breeder hens. Anim Reprod Sci. 2020;213:106256. doi:10.1016/j.anireprosci.2019.106256.
  • Florou P, Anagnostis P, Theocharis P, Chourdakis M, Goulis DG. Does coenzyme Q(10) supplementation improve fertility outcomes in women undergoing assisted reproductive technology procedures? A systematic review and meta-analysis of randomized-controlled trials. J Assist Reprod Genet. 2020;37(10):2377–87. doi:10.1007/s10815-020-01906-3.
  • Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product - promises and safety concerns. J Adv Res. 2022;37:267–78. doi:10.1016/j.jare.2021.08.003.
  • Liu S, Kang W, Mao X, Ge L, Du H, Li J, Hou L, Liu D, Yin Y, Liu Y, et al. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice. J Pineal Res. 2022;73(2):e12812. doi:10.1111/jpi.12812.
  • Yin J, Li Y, Han H, Chen S, Gao J, Liu G, Wu X, Deng J, Yu Q, Huang X, et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res. 2018;65(4):e12524. doi:10.1111/jpi.12524.
  • Huang P, Zhou Y, Tang W, Ren C, Jiang A, Wang X, Qian X, Zhou Z, Gong A. Long-term treatment of nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J Nutr Biochem. 2022;101:108911. doi:10.1016/j.jnutbio.2021.108911.
  • Liu M, Yin Y, Ye X, Zeng M, Zhao Q, Keefe DL, Liu L. Resveratrol protects against age-associated infertility in mice. Hum Reprod. 2013;28(3):707–17. doi:10.1093/humrep/des437.
  • Özcan P, Fıçıcıoğlu C, Yıldırım ÖK, Özkan F, Akkaya H, Aslan İ. Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague–Dawley rats. Reprod Biomed Online. 2015;31(3):404–10. doi:10.1016/j.rbmo.2015.06.007.
  • Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. 2020;44(1):213–25. doi:10.1038/s41366-019-0332-1.
  • Guo J, Zhang T, Guo Y, Sun T, Li H, Zhang X, Yin H, Cao G, Yin Y, Wang H, et al. Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc Natl Acad Sci USA. 2018;115(23):E5326–e33. doi:10.1073/pnas.1800352115.
  • Rehnitz J, Messmer B, Bender U, Nguyen XP, Germeyer A, Hinderhofer K, Strowitzki T, Capp E. Activation of AKT/mammalian target of rapamycin signaling in the peripheral blood of women with premature ovarian insufficiency and its correlation with FMR1 expression. Reprod Biol Endocrinol. 2022;20(1):44. doi:10.1186/s12958-022-00919-0.
  • Zhou XL, Xu JJ, Ni YH, Chen XC, Zhang HX, Zhang XM, Liu W-J, Luo L-L, Fu Y-C. SIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling. J Ovarian Res. 2014;7(1):97. doi:10.1186/s13048-014-0097-z.
  • Duan H, Li J, Yu L, Fan L. The road ahead of dietary restriction on anti-aging: focusing on personalized nutrition. Crit Rev Food Sci Nutr. 2022:1–18. doi:10.1080/10408398.2022.2110034.
  • Isola JVV, Zanini BM, Hense JD, Alvarado-Rincon JA, Garcia DN, Pereira GC, Vieira AD, Oliveira TL, Collares T, Gasperin BG, et al. Mild calorie restriction, but not 17α-estradiol, extends ovarian reserve and fertility in female mice. Exp Gerontol. 2022;159:111669. doi:10.1016/j.exger.2021.111669.
  • Słuczanowska-Głąbowska S, Laszczyńska M, Piotrowska K, Grabowska M, Grymuła K, Ratajczak MZ. Caloric restriction increases ratio of estrogen to androgen receptors expression in murine ovaries–potential therapeutic implications. J Ovarian Res. 2015;8(1):57. doi:10.1186/s13048-015-0185-8.
  • Li L, Fu YC, Xu JJ, Lin XH, Chen XC, Zhang XM, Luo L-L. Caloric restriction promotes the reserve of follicle pool in adult female rats by inhibiting the activation of mammalian target of rapamycin signaling. Reprod Sci. 2015;22(1):60–7. doi:10.1177/1933719114542016.
  • Cox LM, Schafer MJ, Sohn J, Vincentini J, Weiner HL, Ginsberg SD, Blaser MJ. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci Rep. 2019;9(1):17904. doi:10.1038/s41598-019-54187-x.
  • Li L, Fu YC, Xu JJ, Chen XC, Lin XH, Luo LL. Caloric restriction promotes the reproductive capacity of female rats via modulating the level of insulin-like growth factor-1 (IGF-1). Gen Comp Endocr. 2011;174(2):232–237. doi:10.1016/j.ygcen.2011.09.005.
  • Luo LL, Chen XC, Fu YC, Xu JJ, Li L, Lin XH, Xiang Y-F, Zhang X-M. The effects of caloric restriction and a high-fat diet on ovarian lifespan and the expression of SIRT1 and SIRT6 proteins in rats. Aging Clin Exp Res. 2012;24(2):125–33. doi:10.1007/BF03654792.
  • Tang D, Zeng T, Wang Y, Cui H, Wu J, Zou B, Tao Z, Zhang L, Garside GB, Tao S, et al. Dietary restriction increases protective gut bacteria to rescue lethal methotrexate-induced intestinal toxicity. Gut Microbes. 2020;12(1):1714401. doi:10.1080/19490976.2020.1714401.
  • Sbierski-Kind J, Grenkowitz S, Schlickeiser S, Sandforth A, Friedrich M, Kunkel D, Glauben R, Brachs S, Mai K, Thürmer A, et al. Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome. 2022;10(1):57. doi:10.1186/s40168-022-01249-4.
  • Pan F, Zhang L, Li M, Hu Y, Zeng B, Yuan H, Zhao L, Zhang C. Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome. 2018;6(1):54. doi:10.1186/s40168-018-0440-5.
  • Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19(2):77–94. doi:10.1038/s41579-020-0438-4.
  • Kok DEG, Rusli F, van der Lugt B, Lute C, Laghi L, Salvioli S, Picone G, Franceschi C, Smidt H, Vervoort J, et al. Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice. J Nutr Biochem. 2018;56:152–164. doi:10.1016/j.jnutbio.2018.01.001.
  • Fabbiano S, Suarez-Zamorano N, Chevalier C, Lazarevic V, Kieser S, Rigo D, Leo S, Veyrat-Durebex C, Gaïa N, Maresca M, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic Improvements. Cell Metab. 2018;28(6):907–921.e7. doi:10.1016/j.cmet.2018.08.005.
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–278. doi:10.1016/j.cell.2022.11.001.
  • Finamore A, Roselli M, Donini L, Brasili DE, Rami R, Carnevali P, Mistura L, Pinto A, Giusti A, Mengheri E, et al. Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice. Nutrition (Burbank, Los Angeles County, Calif). 2019;63-64:184–192. doi:10.1016/j.nut.2019.02.005.
  • Dardmeh F, Alipour H, Gazerani P, van der Horst G, Brandsborg E, Nielsen HI, Fam B. Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model. Plos One. 2017;12(10):e0185964. doi:10.1371/journal.pone.0185964.
  • Barbonetti A, Cinque B, Vassallo MR, Mineo S, Francavilla S, Cifone MG, Francavilla F. Effect of vaginal probiotic lactobacilli on in vitro–induced sperm lipid peroxidation and its impact on sperm motility and viability. Fertil Steril. 2011;95(8):2485–8. doi:10.1016/j.fertnstert.2011.03.066.
  • Valcarce DG, Genovés S, Riesco MF, Martorell P, Herráez MP, Ramón D, Robles V. Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef Microbes. 2017;8(2):193–206. doi:10.3920/BM2016.0122.
  • Poutahidis T, Springer A, Levkovich T, Qi P, Varian BJ, Lakritz JR, Ibrahim YM, Chatzigiagkos A, Alm EJ, Erdman SE, et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. Plos One. 2014;9(1):e84877. doi:10.1371/journal.pone.0084877.
  • Song C, Peng W, Yin S, Zhao J, Fu B, Zhang J, Mao T, Wu H, Zhang Y. Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice. Sci Rep. 2016;6(1):35165. doi:10.1038/srep35165.
  • Wang P, Gao J, Ke W, Wang J, Li D, Liu R, Jia Y, Wang X, Chen X, Chen F, et al. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic Biol Med. 2020;156:83–98. doi:10.1016/j.freeradbiomed.2020.04.013.
  • Anderson EM, Rozowsky JM, Fazzone BJ, Schmidt EA, Stevens BR, O’Malley KA, Scali ST, Berceli SA. Temporal dynamics of the intestinal microbiome following short-term dietary restriction. Nutrients. 2022;14(14):14. doi:10.3390/nu14142785.
  • Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S, et al. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes. 2018;9(2):104–114. doi:10.1080/19490976.2017.1371894.
  • Long X, Yang Q, Qian J, Yao H, Yan R, Cheng X, Zhang Q, Gu C, Gao F, Wang H, et al. Obesity modulates cell-cell interactions during ovarian folliculogenesis. iScience. 2022;25(1):103627. doi:10.1016/j.isci.2021.103627.
  • Fan Z, Zhang X, Shang Y, Zou M, Zhou M, Q E, Fei S, Chen W, Li J, Zhang X, et al. Intestinal flora changes induced by a high-fat diet promote activation of primordial follicles through macrophage infiltration and inflammatory factor secretion in Mouse ovaries. Int J Mol Sci. 2022;23(9):23. doi:10.3390/ijms23094797.
  • Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabo N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, et al. High-fat diet and female fertility across lifespan: a comparative lesson from mammal models. Nutrients. 2022;14(20):14. doi:10.3390/nu14204341.
  • Wang N, Luo LL, Xu JJ, Xu MY, Zhang XM, Zhou XL, Liu W-J, Fu Y-C. Obesity accelerates ovarian follicle development and follicle loss in rats. Metabolism. 2014;63(1):94–103. doi:10.1016/j.metabol.2013.09.001.
  • Kendel Jovanovic G, Mrakovcic-Sutic I, Pavicic Zezelj S, Susa B, Rahelic D, Klobucar Majanovic S. The efficacy of an energy-restricted anti-inflammatory diet for the management of obesity in younger adults. Nutrients. 2020;12(11):12. doi:10.3390/nu12113583.
  • Liu WJ, Zhang XM, Wang N, Zhou XL, Fu YC, Luo LL. Calorie restriction inhibits ovarian follicle development and follicle loss through activating SIRT1 signaling in mice. Eur J Med Res. 2015;20(1):22. doi:10.1186/s40001-015-0114-8.
  • Stanislawski MA, Frank DN, Borengasser SJ, Ostendorf DM, Ir D, Jambal P, Bing K, Wayland L, Siebert JC, Bessesen DH, et al. The gut microbiota during a behavioral weight loss intervention. Nutrients. 2021;13(9):3248. doi:10.3390/nu13093248.
  • von Schwartzenberg RJ, Bisanz JE, Lyalina S, Spanogiannopoulos P, Ang QY, Cai J, Dickmann S, Friedrich M, Liu S-Y, Collins SL, et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature. 2021;595(7866):272–7. doi:10.1038/s41586-021-03663-4.
  • Lliberos C, Liew SH, Zareie P, La Gruta NL, Mansell A, Hutt K. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep. 2021;11(1):278. doi:10.1038/s41598-020-79488-4.
  • Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host & Microbe. 2022;30(3):289–300. doi:10.1016/j.chom.2022.02.004.
  • Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, et al. Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. Front Immunol. 2022;13:796288. doi:10.3389/fimmu.2022.796288.
  • Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Buttner J, Kellerer T, Clavel T, Rychlik M, Haller D, et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep. 2017;7(1):11955. doi:10.1038/s41598-017-12109-9.
  • Guo X, Zhu Y, Guo L, Qi Y, Liu X, Wang J, Zhang J, Cui L, Shi Y, Wang Q, et al. BCAA insufficiency leads to premature ovarian insufficiency via ceramide-induced elevation of ROS. EMBO Mol Med. 2023;15(4):e17450. doi:10.15252/emmm.202317450.
  • Zheng H, Liang X, Zhou H, Zhou T, Liu X, Duan J, Duan J-A, Zhu Y. Integrated gut microbiota and fecal metabolome analyses of the effect of Lycium barbarum polysaccharide on D-galactose-induced premature ovarian insufficiency. Food Funct. 2023;14(15):7209–21. doi:10.1039/D3FO01659E.
  • Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, Wang L, Zhang Y, Liang X, Wang L, et al. Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25(8):1225–33. doi:10.1038/s41591-019-0509-0.
  • Zhang Y, Bai J, Cui Z, Li Y, Gao Q, Miao Y, Xiong B. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging. Nat Aging. 2023;3(11):1372–86. doi:10.1038/s43587-023-00498-8.
  • Shan X, Yu T, Yan X, Wu J, Fan Y, Guan X, Fang F, Lin Y, Zhang Y, Li Y, et al. Proteomic analysis of healthy and atretic porcine follicular granulosa cells. J Proteomics. 2021;232:104027. doi:10.1016/j.jprot.2020.104027.
  • Sharma R, Padwad Y. Probiotic bacteria as modulators of cellular senescence: emerging concepts and opportunities. Gut Microbes. 2020;11(3):335–349. doi:10.1080/19490976.2019.1697148.
  • Xu HY, Li QC, Zhou WJ, Zhang HB, Chen ZX, Peng N, Gong S-Y, Liu B, Zeng F. Anti-oxidative and anti-aging effects of probiotic Fermented Ginseng by modulating gut microbiota and metabolites in Caenorhabditis elegans. Plant Foods Human Nutr (Dordrecht, Netherlands). 2023;78(2):320–8. doi:10.1007/s11130-023-01055-9.
  • Ishaq M, Khan A, Bacha AS, Shah T, Hanif A, Ahmad AA, Ke W, Li F, Ud Din A, Ding Z, et al. Microbiota targeted interventions of probiotic Lactobacillus as an anti-ageing approach: a review. Antioxidants (Basel, Switzerland). 2021;10(12):10. doi:10.3390/antiox10121930.
  • Lew LC, Hor YY, Jaafar MH, Lau ASY, Ong JS, Chuah LO, Yap KP, Azzam G, Azlan A, Liong MT, et al. Lactobacilli modulated AMPK activity and prevented telomere shortening in ageing rats. Benef Microbes. 2019;10(8):883–892. doi:10.3920/BM2019.0058.
  • Mounir M, Ibijbijen A, Farih K, Rabetafika HN, Razafindralambo HL. Synbiotics and their antioxidant properties, mechanisms, and benefits on human and animal health: a narrative review. Biomolecules. 2022;12(10):12. doi:10.3390/biom12101443.
  • Lim MY, Nam YD. Gut microbiome in healthy aging versus those associated with frailty. Gut Microbes. 2023;15(2):2278225. doi:10.1080/19490976.2023.2278225.