4,194
Views
0
CrossRef citations to date
0
Altmetric
Review

Diets intervene osteoporosis via gut-bone axis

, , , , & ORCID Icon
Article: 2295432 | Received 24 Oct 2023, Accepted 12 Dec 2023, Published online: 04 Jan 2024

References

  • Ayers C, Kansagara D, Lazur B, Fu R, Kwon A, Harrod C. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the American college of physicians. Ann Intern Med. 2023;176(2):182–25. doi:10.7326/M22-0684.
  • Hu Y, Li X, Zhi X, Cong W, Huang B, Chen H, Wang Y, Li Y, Wang L, Fang C, et al. RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep. 2021;22(7):e52481. doi:10.15252/embr.202152481.
  • Li X, Wang L, Huang B, Gu Y, Luo Y, Zhi X, Hu Y, Zhang H, Gu Z, Cui J, et al. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Sci Adv. 2020;6(47):6. doi:10.1126/sciadv.abb7135.
  • Deardorff WJ, Cenzer I, Nguyen B, Lee SJ. Time to benefit of bisphosphonate therapy for the prevention of fractures among postmenopausal women with osteoporosis: a meta-analysis of randomized clinical trials. JAMA Intern Med. 2022;182(1):33–41. doi:10.1001/jamainternmed.2021.6745.
  • Händel MN, Cardoso I, von Bülow C, Rohde JF, Ussing A, Nielsen SM, Christensen R, Body JJ, Brandi ML, Diez-Perez A, et al. Fracture risk reduction and safety by osteoporosis treatment compared with placebo or active comparator in postmenopausal women: systematic review, network meta-analysis, and meta-regression analysis of randomised clinical trials. BMJ. 2023;381:e068033. doi:10.1136/bmj-2021-068033.
  • Zhang YW, Lu PP, Li YJ, Dai GC, Cao MM, Xie T, Zhang C, Shi L, Rui Y-F. Low dietary choline intake is associated with the risk of osteoporosis in elderly individuals: a population-based study. Food Funct. 2021;12(14):6442–51. doi:10.1039/D1FO00825K.
  • Zhang YW, Lu PP, Li YJ, Dai GC, Chen MH, Zhao YK, Cao MM, Rui YF. Prevalence, characteristics, and associated risk factors of the elderly with hip fractures: a cross-sectional analysis of NHANES 2005–2010. CIA. 2021;16:177–85. doi:10.2147/CIA.S291071.
  • Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6(1):34. doi:10.1038/s41413-018-0035-6.
  • Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, Suárez-Zamorano N, Spiljar M, Fabbiano S, Busse B, et al. Warmth prevents bone loss through the gut microbiota. Cell Metab. 2020;32(4):575–90.e7. doi:10.1016/j.cmet.2020.08.012.
  • Bastings J, Venema K, Blaak EE, Adam TC. Influence of the gut microbiota on satiety signaling. Trends Endocrinol Metab. 2023;34(4):243–255. doi:10.1016/j.tem.2023.02.003.
  • Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes. 2023;15(1):2226916. doi:10.1080/19490976.2023.2226916.
  • Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev. 2022;81:101739. doi:10.1016/j.arr.2022.101739.
  • Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022;62(13):3509–3534. doi:10.1080/10408398.2020.1867054.
  • Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection. J Adv Res. 2022;38:223–44. doi:10.1016/j.jare.2021.09.005.
  • Waldbaum JDH, Xhumari J, Akinsuyi OS, Arjmandi B, Anton S, Roesch LFW. Association between dysbiosis in the gut microbiota of primary osteoporosis patients and bone loss. Aging Dis. 2023;14(6):2081. doi:10.14336/AD.2023.0425.
  • He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: a review. Osteoporos Int. 2022;33(12):2495–2506. doi:10.1007/s00198-022-06557-x.
  • Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of “brain–gut–bone” axis. Food Funct. 2021;12(13):5703–18. doi:10.1039/D0FO03468A.
  • Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Zhang C, Shi L, et al. The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr. 2023;63(25):7510–7528. doi:10.1080/10408398.2022.2047005.
  • Zhang YW, Cao MM, Li YJ, Chen XX, Yu Q, Rui YF. A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites. J Transl Med. 2022;20(1):490. doi:10.1186/s12967-022-03700-4.
  • Zhou RX, Zhang YW, Cao MM, Liu CH, Rui YF, Li YJ. Linking the relation between gut microbiota and glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2023;41(2):145–162. doi:10.1007/s00774-023-01415-0.
  • Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q, Rui YF. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab. 2022;40(6):874–89. doi:10.1007/s00774-022-01375-x.
  • Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat. 2022;37:46–60. doi:10.1016/j.jot.2022.08.003.
  • Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, Garcia-Velasquez E, Savastano S, Colao A. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Critic Rev Food Sci Nutr. 2021;61(18):3066–90. doi:10.1080/10408398.2020.1792826.
  • Serrano J, Smith KR, Crouch AL, Sharma V, Yi F, Vargova V, LaMoia TE, Dupont LM, Serna V, Tang F, et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome. 2021;9(1):11. doi:10.1186/s40168-020-00976-w.
  • Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr. 2023;63(19):3653–3663. doi:10.1080/10408398.2021.1992605.
  • Mitchell CM, Mazzoni C, Hogstrom L, Bryant A, Bergerat A, Cher A, Pochan S, Herman P, Carrigan M, Sharp K, et al. Delivery mode affects stability of early infant gut microbiota. Cell Rep Med. 2020;1(9):100156. doi:10.1016/j.xcrm.2020.100156.
  • Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72(1):180–191. doi:10.1136/gutjnl-2022-328166.
  • Jardon KM, Canfora EE, Goossens GH, Blaak EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut. 2022;71(6):1214–1226. doi:10.1136/gutjnl-2020-323715.
  • Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr. 2022;62(3):738–763. doi:10.1080/10408398.2020.1828263.
  • Radojević D, Bekić M, Gruden-Movsesijan A, Ilić N, Dinić M, Bisenić A, Golić N, Vučević D, Đokić J, Tomić S, et al. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis. Gut Microbes. 2022;14(1):2127455. doi:10.1080/19490976.2022.2127455.
  • Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Sci. 2016;351(6275):351. doi:10.1126/science.aad3311.
  • Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Sci. 2016;351(6275):854–857. doi:10.1126/science.aad8588.
  • Zuo H, Zheng T, Wu K, Yang T, Wang L, Nima Q, Bai H, Dong K, Fan Z, Huang S, et al. High-altitude exposure decreases bone mineral density and its relationship with gut microbiota: results from the China multi-ethnic cohort (CMEC) study. Environ Res. 2022;215:114206. doi:10.1016/j.envres.2022.114206.
  • Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int. 2021;32(1):145–156. doi:10.1007/s00198-020-05728-y.
  • Liu Y, Guo YL, Meng S, Gao H, Sui LJ, Jin S, Li Y, Fan SG. Gut microbiota–dependent trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study. Aging (Albany NY). 2020;12(11):10633–41. doi:10.18632/aging.103283.
  • Zhao F, Guo Z, Kwok LY, Zhao Z, Wang K, Li Y, Sun Z, Zhao J, Zhang H. Bifidobacterium lactis Probio-M8 improves bone metabolism in patients with postmenopausal osteoporosis, possibly by modulating the gut microbiota. Eur J Nutr. 2023;62:965–76. doi:10.1007/s00394-022-03042-3.
  • Lecomte M, Tomassi D, Rizzoli R, Tenon M, Berton T, Harney S, Fança-Berthon P. Effect of a hop extract standardized in 8-prenylnaringenin on bone health and gut microbiome in postmenopausal women with osteopenia: a one-year randomized, double-blind, placebo-controlled trial. Nutr. 2023;15(12):15. doi:10.3390/nu15122688.
  • Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021;9(9):606–21. doi:10.1016/S2213-8587(21)00119-4.
  • Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol. 2021;110(3):525–537. doi:10.1002/JLB.3MR0321-755R.
  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. doi:10.1080/19490976.2015.1134082.
  • Yan J, Takakura A, Zandi-Nejad K, Charles JF. Mechanisms of gut microbiota-mediated bone remodeling. Gut Microbes. 2018;9(1):84–92. doi:10.1080/19490976.2017.1371893.
  • Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA. 2016;113(47):E7554–e63. doi:10.1073/pnas.1607235113.
  • Guan Z, Xuanqi Z, Zhu J, Yuan W, Jia J, Zhang C, Sun T, Leng H, Jiang C, Xu Y, et al. Estrogen deficiency induces bone loss through the gut microbiota. Pharmacol Res. 2023;196:106930. doi:10.1016/j.phrs.2023.106930.
  • Wu M, Chen C, Lei H, Cao Z, Zhang C, Du R, Zhang C, Song Y, Qin M, Zhou J, et al. Dietary isoquercetin ameliorates bone loss via restoration of the gut microbiota and lipopolysaccharide-triggered inflammatory status in ovariectomy mice. J Agric Food Chem. 2023;71(43):15981–90. doi:10.1021/acs.jafc.3c00205.
  • Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, Lima SF, Bicalho RC, Singh A, Ley RE, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32(6):1343–1353. doi:10.1002/jbmr.3114.
  • Dar HY, Perrien DS, Pal S, Stoica A, Uppuganti S, Nyman JS, Jones RM, Weitzmann MN, Pacifici R. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice. J Clin Invest. 2023;133(8). doi:10.1172/JCI166577.
  • Ibáñez L, Rouleau M, Wakkach A, Blin-Wakkach C. Gut microbiome and bone. Joint Bone Spine. 2019;86(1):43–47. doi:10.1016/j.jbspin.2018.02.008.
  • Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, McCabe GP, Weaver CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146(7):1298–306. doi:10.3945/jn.115.227256.
  • Billington EO, Mahajan A, Benham JL, Raman M. Effects of probiotics on bone mineral density and bone turnover: a systematic review. Crit Rev Food Sci Nutr. 2023;63(19):4141–4152. doi:10.1080/10408398.2021.1998760.
  • Collins FL, Rios-Arce ND, Schepper JD, Parameswaran N, McCabe LR, Britton RA, Cani PD. The potential of probiotics as a therapy for osteoporosis. Microbiol Spectr. 2017;5(4). doi:10.1128/microbiolspec.BAD-0015-2016.
  • Lan H, Liu WH, Zheng H, Feng H, Zhao W, Hung WL, Li H. Bifidobacterium lactis BL-99 protects mice with osteoporosis caused by colitis via gut inflammation and gut microbiota regulation. Food Funct. 2022;13(3):1482–94. doi:10.1039/D1FO02218K.
  • Yuan S, Shen J. Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice. Bone. 2021;142:115710. doi:10.1016/j.bone.2020.115710.
  • Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res. 2023;11(1):31. doi:10.1038/s41413-023-00264-x.
  • Lee CS, Kim JY, Kim BK, Lee IO, Park NH, Kim SH. Lactobacillus-fermented milk products attenuate bone loss in an experimental rat model of ovariectomy-induced post-menopausal primary osteoporosis. J Appl Microbiol. 2021;130(6):2041–2062. doi:10.1111/jam.14852.
  • Nilsson AG, Sundh D, Bäckhed F, Lorentzon M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med. 2018;284(3):307–317. doi:10.1111/joim.12805.
  • Li P, Ji B, Luo H, Sundh D, Lorentzon M, Nielsen J. One-year supplementation with Lactobacillus reuteri ATCC PTA 6475 counteracts a degradation of gut microbiota in older women with low bone mineral density. NPJ Biofilms Microbio. 2022;8(1):84. doi:10.1038/s41522-022-00348-2.
  • Li J, Li Y, Ivey KL, Wang DD, Wilkinson JE, Franke A, Lee KH, Chan A, Huttenhower C, Hu FB, et al. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut. 2022;71(4):724–733. doi:10.1136/gutjnl-2020-322473.
  • Chen T, Yang CS. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Crit Rev Food Sci Nutr. 2020;60(16):2691–2709. doi:10.1080/10408398.2019.1654430.
  • Farsijani S, Cauley JA, Peddada SD, Langsetmo L, Shikany JM, Orwoll ES, Ensrud KE, Cawthon PM, Newman AB. Relation between dietary protein intake and gut microbiome composition in community-dwelling older men: findings from the osteoporotic fractures in men study (MrOS). J Nutr. 2023;152(12):2877–87. doi:10.1093/jn/nxac231.
  • Guo Y, Kitamoto S, Kamada N. Microbial adaptation to the healthy and inflamed gut environments. Gut Microbes. 2020;12(1):1857505. doi:10.1080/19490976.2020.1857505.
  • Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, Loeber U, Kraft JD, Polizzi A, Martí-Navas M, et al. The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun. 2023;14(1):5329. doi:10.1038/s41467-023-41074-3.
  • Gasmi A, Bjørklund G, Peana M, Mujawdiya PK, Pivina L, Ongenae A, Piscopo S, Severin B. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation. Critic Rev Food Sci Nutr. 2022;62(25):7062–71. doi:10.1080/10408398.2021.1910481.
  • Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Shi L, Zhang C, et al. Dietary protein intake in relation to the risk of osteoporosis in middle-aged and older individuals: a cross-sectional study. J Nutr Health Aging. 2022;26(3):252–258. doi:10.1007/s12603-022-1748-1.
  • Zeng X, Xing X, Gupta M, Keber FC, Lopez JG, Lee YCJ, Roichman A, Wang L, Neinast MD, Donia MS, et al. Gut bacterial nutrient preferences quantified in vivo. Cell. 2022;185(18):3441–56.e19. doi:10.1016/j.cell.2022.07.020.
  • Humpenöder F, Bodirsky BL, Weindl I, Lotze-Campen H, Linder T, Popp A. Projected environmental benefits of replacing beef with microbial protein. Nature. 2022;605(7908):90–96. doi:10.1038/s41586-022-04629-w.
  • Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol metabolism and volatile metabolome of clostridioides difficile. Front Microbiol. 2022;13:864587. doi:10.3389/fmicb.2022.864587.
  • Nie C, Li Y, Qian H, Ying H, Wang L. Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr. 2022;62(11):3103–3115. doi:10.1080/10408398.2020.1863904.
  • Tan R, Jin M, Shao Y, Yin J, Li H, Chen T, Shi D, Zhou S, Li J, Yang D, et al. High-sugar, high-fat, and high-protein diets promote antibiotic resistance gene spreading in the mouse intestinal microbiota. Gut Microbes. 2022;14(1):2022442. doi:10.1080/19490976.2021.2022442.
  • Huang Z, Boekhorst J, Fogliano V, Capuano E, Wells JM. Impact of high-fiber or high-protein diet on the capacity of human gut microbiota to produce tryptophan catabolites. J Agric Food Chem. 2023;71(18):6956–66. doi:10.1021/acs.jafc.2c08953.
  • White BA, Lamed R, Bayer EA, Flint HJ. Biomass utilization by gut microbiomes. Annu Rev Microbiol. 2014;68(1):279–296. doi:10.1146/annurev-micro-092412-155618.
  • Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7(4):2930–2946. doi:10.3390/nu7042930.
  • El-Saadony MT, Umar M, Hassan FU, Alagawany M, Arif M, Taha AE, Elnesr SS, El-Tarabily KA, Abd El-Hack ME. Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Anim Health Res Rev. 2022;23(2):136–46. doi:10.1017/S1466252321000220.
  • Carbone L, Bůžková P, Fink HA, Robbins JA, Barzilay JI, Elam RE, Isales C, Connelly MA, Mukamal KJ. Plasma levels of branched chain amino acids, incident hip fractures and bone mineral density of the hip and spine. J Clin Endocrinol Metab. 2023;108(11):e1358–e1364. doi:10.1210/clinem/dgad275.
  • Chen H, Ye C, Wu C, Zhang J, Xu L, Wang X, Xu C, Zhang J, Guo Y, Yao Q, et al. Berberine inhibits high fat diet-associated colorectal cancer through modulation of the gut microbiota-mediated lysophosphatidylcholine. Int J Biol Sci. 2023;19(7):2097–2113. doi:10.7150/ijbs.81824.
  • Robertson RC, Seira Oriach C, Murphy K, Moloney GM, Cryan JF, Dinan TG, Paul Ross R, Stanton C. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav Immun. 2017;59:21–37. doi:10.1016/j.bbi.2016.07.145.
  • Wang M, Ma LJ, Yang Y, Xiao Z, Wan JB. N-3 polyunsaturated fatty acids for the management of alcoholic liver disease: a critical review. Crit Rev Food Sci Nutr. 2019;59(sup1):S116–s29. doi:10.1080/10408398.2018.1544542.
  • Robertson RC, Kaliannan K, Strain CR, Ross RP, Stanton C, Kang JX. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota. Microbiome. 2018;6(1):95. doi:10.1186/s40168-018-0476-6.
  • Takeuchi T, Kameyama K, Miyauchi E, Nakanishi Y, Kanaya T, Fujii T, Kato T, Sasaki T, Tachibana N, Negishi H, et al. Fatty acid overproduction by gut commensal microbiota exacerbates obesity. Cell Metab. 2023;35(2):361–75.e9. doi:10.1016/j.cmet.2022.12.013.
  • Zhang Z, Lin T, Meng Y, Hu M, Shu L, Jiang H, Gao R, Ma J, Wang C, Zhou X, et al. FOS/GOS attenuates high-fat diet induced bone loss via reversing microbiota dysbiosis, high intestinal permeability and systemic inflammation in mice. Metabolism. 2021;119:154767. doi:10.1016/j.metabol.2021.154767.
  • Lu L, Tang M, Li J, Xie Y, Li Y, Xie J, Zhou L, Liu Y, Yu X. Gut microbiota and serum metabolic signatures of high-fat-induced bone loss in mice. Front Cell Infect Microbiol. 2021;11:788576. doi:10.3389/fcimb.2021.788576.
  • Eaimworawuthikul S, Tunapong W, Chunchai T, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Altered gut microbiota ameliorates bone pathology in the mandible of obese–insulin-resistant rats. Eur J Nutr. 2020;59(4):1453–62. doi:10.1007/s00394-019-02002-8.
  • McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N, Ciancio M. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone. 2019;118:20–31. doi:10.1016/j.bone.2018.03.024.
  • Qiao J, Wu Y, Ren Y. The impact of a high fat diet on bones: potential mechanisms. Food Funct. 2021;12(3):963–975. doi:10.1039/D0FO02664F.
  • Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG, Peterson CB, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Sci. 2021;374(6575):1632–1640. doi:10.1126/science.aaz7015.
  • Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe. 2018;23(6):705–715. doi:10.1016/j.chom.2018.05.012.
  • Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M, et al. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes. 2022;13(2):95–168. doi:10.3920/BM2021.0090.
  • Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. doi:10.4161/gmic.19897.
  • Zhou T, Wang M, Ma H, Li X, Heianza Y, Qi L. Dietary fiber, genetic variations of gut microbiota-derived short-chain fatty acids, and bone health in UK biobank. J Clin Endocrinol Metab. 2021;106(1):201–210. doi:10.1210/clinem/dgaa740.
  • Martiniakova M, Babikova M, Mondockova V, Blahova J, Kovacova V, Omelka R. The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis. Nutrients. 2022;14(3):14. doi:10.3390/nu14030523.
  • Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–215. doi:10.1038/nature16504.
  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Sci. 2011;334(6052):105–108. doi:10.1126/science.1208344.
  • Wallace TC, Marzorati M, Spence L, Weaver CM, Williamson PS. New frontiers in fibers: innovative and emerging research on the gut microbiome and bone health. J Am Coll Nutr. 2017;36(3):218–222. doi:10.1080/07315724.2016.1257961.
  • Ringe JD. Plain vitamin D or active vitamin D in the treatment of osteoporosis: where do we stand today? Arch Osteoporos. 2020;15(1):182. doi:10.1007/s11657-020-00842-0.
  • Hu J, Li Y, Wang Z, Li X, Hou T, Ning Z, Huang R, Ma C, Yuan X, Wang D, et al. Association of plant-based dietary patterns with the risk of osteoporosis in community-dwelling adults over 60 years: a cross-sectional study. Osteoporos Int. 2023;34(5):915–923. doi:10.1007/s00198-023-06700-2.
  • Shan Z, Wang F, Li Y, Baden MY, Bhupathiraju SN, Wang DD, Sun Q, Rexrode KM, Rimm EB, Qi L, et al. Healthy eating patterns and risk of total and cause-specific mortality. JAMA Intern Med. 2023;183(2):142–153. doi:10.1001/jamainternmed.2022.6117.
  • Wallace TC, Bailey RL, Lappe J, O’Brien KO, Wang DD, Sahni S, Weaver CM. Dairy intake and bone health across the lifespan: a systematic review and expert narrative. Crit Rev Food Sci Nutr. 2021;61(21):3661–707. doi:10.1080/10408398.2020.1810624.
  • Yang M, Qi X, Li N, Kaifi JT, Chen S, Wheeler AA, Kimchi ET, Ericsson AC, Rector RS, Staveley-O’Carroll KF, et al. Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol. Nat Commun. 2023;14(1):228. doi:10.1038/s41467-023-35861-1.
  • Biver E, Herrou J, Larid G, Legrand MA, Gonnelli S, Annweiler C, Chapurlat R, Coxam V, Fardellone P, Thomas T, et al. Dietary recommendations in the prevention and treatment of osteoporosis. Joint Bone Spine. 2023;90(3):105521. doi:10.1016/j.jbspin.2022.105521.
  • Lomax TM, Ashraf S, Yilmaz G, Harmancey R. Loss of uncoupling protein 3 attenuates Western diet–induced obesity, systemic inflammation, and insulin resistance in rats. Obesity (Silver Spring). 2020;28(9):1687–97. doi:10.1002/oby.22879.
  • Di Giosia P, Stamerra CA, Giorgini P, Jamialahamdi T, Butler AE, Sahebkar A. The role of nutrition in inflammaging. Ageing Res Rev. 2022;77:101596. doi:10.1016/j.arr.2022.101596.
  • Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, Griffiths A, Malcomson FC, Joel A, Houghton D, et al. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: a systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr. 2022;63(27):8698–8719. doi:10.1080/10408398.2022.2057416.
  • Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, Ivey KL, Shai I, Willett WC, Hu FB, et al. The gut microbiome modulates the protective association between a mediterranean diet and cardiometabolic disease risk. Nat Med. 2021;27(2):333–343. doi:10.1038/s41591-020-01223-3.
  • Rinott E, Meir AY, Tsaban G, Zelicha H, Kaplan A, Knights D, Tuohy K, Scholz MU, Koren O, Stampfer MJ, et al. The effects of the green-mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med. 2022;14(1):29. doi:10.1186/s13073-022-01015-z.
  • Kahleova H, Sutton M, Maracine C, Nichols D, Monsivais P, Holubkov R, Barnard ND. Vegan diet and food costs among adults with overweight: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2023;6(9):e2332106. doi:10.1001/jamanetworkopen.2023.32106.
  • Yu Y, Li X, Zheng M, Zhou L, Zhang J, Wang J, Sun B. The potential benefits and mechanisms of protein nutritional intervention on bone health improvement. Crit Rev Food Sci Nutr. 2023:1–15. doi:10.1080/10408398.2023.2168250.
  • He W, Xie Z, Thøgersen R, Rasmussen MK, Zachariassen LF, Jørgensen NR, Nørgaard JV, Andersen HJ, Nielsen DS, Hansen AK, et al. Effects of calcium source, inulin, and lactose on gut-bone associations in an ovarierectomized rat model. Mol Nutr Food Res. 2022;66(8):e2100883. doi:10.1002/mnfr.202100883.
  • Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Ando F, Yano M. Bone mineral density in post-menopausal female subjects is associated with serum antioxidant carotenoids. Osteoporos Int. 2008;19(2):211–219. doi:10.1007/s00198-007-0457-2.
  • Mohammadisima N, Farshbaf-Khalili A, Ostadrahimi A, Pourmoradian S. Positive relation between dietary inflammatory index and osteoporosis in postmenopausal women. Int J Vitam Nutr Res. 2022. doi:10.1024/0300-9831/a000773.
  • Zhao S, Gao W, Li J, Sun M, Fang J, Tong L, He Y, Wang Y, Zhang Y, Xu Y, et al. Dietary inflammatory index and osteoporosis: the National health and nutrition examination survey, 2017–2018. Endocrine. 2022;78(3):587–96. doi:10.1007/s12020-022-03178-6.
  • Wang L, Ye C, Zhao F, Wu H, Wang R, Zhang Z, Li J. Association between the dietary inflammatory index and the risk of fracture in Chinese adults: longitudinal study. JMIR Public Health Surveill. 2023;9:e43501. doi:10.2196/43501.
  • Maldonado-Contreras A, Noel SE, Ward DV, Velez M, Mangano KM. Associations between diet, the gut microbiome, and short-chain fatty acid production among older caribbean latino adults. J Acad Nutr Diet. 2020;120(12):2047–60.e6. doi:10.1016/j.jand.2020.04.018.
  • Xu X, Ding J, Wu X, Huang Z, Kong G, Liu Q, Yang, Z., Huang, Z., Zhu, Q. Bone microstructure and metabolism changes under the combined intervention of ketogenic diet with intermittent fasting: an in vivo study of rats. Exp Anim. 2019;68(3):371–380. doi:10.1538/expanim.18-0084.
  • Liu Q, Xu X, Yang Z, Liu Y, Wu X, Huang Z, Liu J, Huang Z, Kong G, Ding J, et al. Metformin alleviates the bone loss induced by ketogenic diet: an in vivo study in mice. Calcif Tissue Int. 2019;104(1):59–69. doi:10.1007/s00223-018-0468-3.
  • Dahlin M, Singleton SS, David JA, Basuchoudhary A, Wickström R, Mazumder R, Prast-Nielsen S. Higher levels of bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. EBioMedicine. 2022;80:104061. doi:10.1016/j.ebiom.2022.104061.
  • Jang YJ, Kim WK, Han DH, Lee K, Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes. 2019;10(6):696–711. doi:10.1080/19490976.2019.1589281.
  • Shin S, Joung H. A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br J Nutr. 2013;110(10):1926–1933. doi:10.1017/S0007114513001219.
  • Park H, Lee M, Jeong D, Park S, Ji Y, Todorov SD, Holzapfel WH. Safety evaluation and in vivo strain-specific functionality of bacillus strains isolated from Korean traditional fermented foods. Probiot Antimicrob Proteins. 2021;13(1):60–71. doi:10.1007/s12602-020-09672-5.
  • Guo Y, Luo S, Ye Y, Yin S, Fan J, Xia M. Intermittent fasting improves cardiometabolic risk factors and alters gut microbiota in metabolic syndrome patients. J Clin Endocrinol Metab. 2021;106(1):64–79. doi:10.1210/clinem/dgaa644.
  • Matison AP, Mather KA, Flood VM, Reppermund S. Associations between nutrition and the incidence of depression in middle-aged and older adults: a systematic review and meta-analysis of prospective observational population-based studies. Ageing Res Rev. 2021;70:101403. doi:10.1016/j.arr.2021.101403.
  • Zeng FF, Wu BH, Fan F, Xie HL, Xue WQ, Zhu HL, Chen YM. Dietary patterns and the risk of hip fractures in elderly Chinese: a matched case-control study. J Clin Endocrinol Metab. 2013;98(6):2347–55. doi:10.1210/jc.2013-1190.
  • van den Berg FF, van Dalen D, Hyoju SK, van Santvoort HC, Besselink MG, Wiersinga WJ, Zaborina O, Boermeester MA, Alverdy J. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate. Gut. 2021;70(5):915–27. doi:10.1136/gutjnl-2019-320430.
  • Norde MM, Collese TS, Giovannucci E, Rogero MM. A posteriori dietary patterns and their association with systemic low-grade inflammation in adults: a systematic review and meta-analysis. Nutr Rev. 2021;79(3):331–350. doi:10.1093/nutrit/nuaa010.
  • Las Heras V, Melgar S, MacSharry J, Gahan CGM. The influence of the Western diet on microbiota and gastrointestinal immunity. Annu Rev Food Sci Technol. 2022;13(1):489–512. doi:10.1146/annurev-food-052720-011032.
  • Turpin W, Dong M, Sasson G, Raygoza Garay JA, Espin-Garcia O, Lee SH, Neustaeter A, Smith MI, Leibovitzh H, Guttman DS, et al. Mediterranean-like dietary pattern associations with gut microbiome composition and subclinical gastrointestinal inflammation. Gastroenterol. 2022;163(3):685–698. doi:10.1053/j.gastro.2022.05.037.
  • Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, Giacco R, Mennella I, Ferracane R, Pons N, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69(7):1258–1268. doi:10.1136/gutjnl-2019-320438.
  • Clark JS, Simpson BS, Murphy KJ. The role of a mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. Br J Nutr. 2022;128(7):1299–1314. doi:10.1017/S0007114521003251.
  • Zhu C, Sawrey-Kubicek L, Beals E, Rhodes CH, Houts HE, Sacchi R, Zivkovic AM. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and mediterranean diet in 4 days: a pilot study. Nutr Res. 2020;77:62–72. doi:10.1016/j.nutres.2020.03.005.
  • De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, et al. High-level adherence to a mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–1821. doi:10.1136/gutjnl-2015-309957.
  • Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, Abraham K, Weikert C. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit Rev Food Sci Nutr. 2020;60(17):2990–3004. doi:10.1080/10408398.2019.1676697.
  • Xie HL, Wu BH, Xue WQ, He MG, Fan F, Ouyang WF, Tu SL, Zhu HL, Chen YM. Greater intake of fruit and vegetables is associated with a lower risk of osteoporotic hip fractures in elderly Chinese: a 1: 1 matched case–control study. Osteoporos Int. 2013;24(11):2827–36. doi:10.1007/s00198-013-2383-9.
  • Seel W, Reiners S, Kipp K, Simon MC, Dawczynski C. Role of dietary fiber and energy intake on gut microbiome in vegans, vegetarians, and flexitarians in comparison to omnivores—insights from the nutritional evaluation (NuEva) study. Nutr. 2023;15(8):15. doi:10.3390/nu15081914.
  • Zhang C, Björkman A, Cai K, Liu G, Wang C, Li Y, Xia H, Sun L, Kristiansen K, Wang J, et al. Impact of a 3-months vegetarian diet on the gut microbiota and immune repertoire. Front Immunol. 2018;9:908. doi:10.3389/fimmu.2018.00908.
  • Orchard T, Yildiz V, Steck SE, Hébert JR, Ma Y, Cauley JA, Li W, Mossavar-Rahmani Y, Johnson KC, Sattari M, et al. Dietary inflammatory index, bone mineral density, and risk of fracture in postmenopausal women: results from the women’s health initiative. J Bone Miner Res. 2017;32(5):1136–1146. doi:10.1002/jbmr.3070.
  • Ruiz-Saavedra S, Salazar N, Suárez A, de Los Reyes-Gavilán CG, Gueimonde M, González S. Comparison of different dietary indices as predictors of inflammation, oxidative stress and intestinal microbiota in middle-aged and elderly subjects. Nutrients. 2020;12(12):12. doi:10.3390/nu12123828.
  • Zheng J, Hoffman KL, Chen JS, Shivappa N, Sood A, Browman GJ, Dirba DD, Hanash S, Wei P, Hebert JR, et al. Dietary inflammatory potential in relation to the gut microbiome: results from a cross-sectional study. Br J Nutr. 2020;124(9):931–942. doi:10.1017/S0007114520001853.
  • Garofalo V, Barbagallo F, Cannarella R, Calogero AE, La Vignera S, Condorelli RA. Effects of the ketogenic diet on bone health: a systematic review. Front Endocrinol (Lausanne). 2023;14:1042744. doi:10.3389/fendo.2023.1042744.
  • Jiang Z, Wang X, Zhang H, Yin J, Zhao P, Yin Q, Wang Z. Ketogenic diet protects MPTP-induced mouse model of Parkinson’s disease via altering gut microbiota and metabolites. MedComm. 2023;4(3):e268. doi:10.1002/mco2.268.
  • Movassagh EZ, Vatanparast H. Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr. 2017;8(1):1–16. doi:10.3945/an.116.013326.
  • Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutiérrez-Grijalva EP, Cabanillas-Bojórquez LA, Shin HS, Patra JK. Korean traditional foods as antiviral and respiratory disease prevention and treatments: a detailed review. Trends Food Sci Technol. 2021;116:415–33. doi:10.1016/j.tifs.2021.07.037.
  • Wu X, Unno T, Kang S, Park S. A Korean-style balanced diet has a potential connection with ruminococcaceae enterotype and reduction of metabolic syndrome incidence in Korean adults. Nutrients. 2021;13(2):495. doi:10.3390/nu13020495.
  • Saji N, Tsuduki T, Murotani K, Hisada T, Sugimoto T, Kimura A, Niida S, Toba K, Sakurai T. Relationship between the Japanese-style diet, gut microbiota, and dementia: a cross-sectional study. Nutrition. 2022;94:111524. doi:10.1016/j.nut.2021.111524.
  • Wan MLY, Co VA, El-Nezami H. Dietary polyphenol impact on gut health and microbiota. Crit Rev Food Sci Nutr. 2021;61(4):690–711. doi:10.1080/10408398.2020.1744512.
  • Kong CY, Li ZM, Chen HL, Mao YQ, Han B, Guo JJ, Wang LS. An energy-restricted diet including yogurt, fruit, and vegetables alleviates high-fat diet–induced metabolic syndrome in mice by modulating the gut microbiota. J Nutr. 2022;152(11):2429–40. doi:10.1093/jn/nxac181.
  • Haji-Ghazi Tehrani L, Mousavi SN, Chiti H, Afshar D. Effect of Atkins versus a low-fat diet on gut microbiota, and cardiometabolic markers in obese women following an energy-restricted diet: randomized, crossover trial. Nutr Metab Cardiovasc Dis. 2022;32(7):1734–1741. doi:10.1016/j.numecd.2022.04.007.
  • Netto Cândido TL, da Silva LE, Cândido FG, Valente FX, da Silva JS, Gomes Lopes DR, Do Carmo Gouveia Peluzio M, Mantovani HC, de Cássia Gonçalves Alfenas R. Effect of the ingestion of vegetable oils associated with energy-restricted normofat diet on intestinal microbiota and permeability in overweight women. Food Res Int. 2021;139:109951. doi:10.1016/j.foodres.2020.109951.
  • Xie S, Guan C, Huang T, Liu Y, Yuan F, Xu D. Intermittent fasting promotes repair of rotator cuff injury in the early postoperative period by regulating the gut microbiota. J Orthop Translat. 2022;36:216–24. doi:10.1016/j.jot.2022.09.006.
  • Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. 2023;21(4):236–247. doi:10.1038/s41579-022-00805-x.
  • Cronin O, Lanham-New SA, Corfe BM, Gregson CL, Darling AL, Ahmadi KR, Gibson PS, Tobias JH, Ward KA, Traka MH, et al. Role of the microbiome in regulating bone metabolism and susceptibility to osteoporosis. Calcif Tissue Int. 2022;110(3):273–284. doi:10.1007/s00223-021-00924-2.
  • Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13(1):1–24. doi:10.1080/19490976.2021.1897212.
  • Perler BK, Friedman ES, Wu GD. The role of the gut microbiota in the relationship between diet and human health. Annu Rev Physiol. 2023;85(1):449–468. doi:10.1146/annurev-physiol-031522-092054.
  • Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, Bevilacqua A. How diet and physical activity modulate gut microbiota: evidence, and perspectives. Nutrients. 2022;14(12):14. doi:10.3390/nu14122456.
  • Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary patterns with gut microbial composition and function. Gut Microbes. 2017;8(2):113–129. doi:10.1080/19490976.2016.1270809.
  • Wang P, Song M, Eliassen AH, Wang M, Fung TT, Clinton SK, Rimm EB, Hu FB, Willett WC, Tabung FK, et al. Optimal dietary patterns for prevention of chronic disease. Nat Med. 2023;29(3):719–728. doi:10.1038/s41591-023-02235-5.
  • Malinowska AM, Kok DE, Steegenga WT, Hooiveld G, Chmurzynska A. Human gut microbiota composition and its predicted functional properties in people with western and healthy dietary patterns. Eur J Nutr. 2022;61(8):3887–3903. doi:10.1007/s00394-022-02928-6.
  • Fabiani R, Naldini G, Chiavarini M. Dietary patterns in relation to low bone mineral density and fracture risk: a systematic review and meta-analysis. Adv Nutr. 2019;10(2):219–36. doi:10.1093/advances/nmy073.
  • Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: recent insights into metabolic health. Crit Rev Food Sci Nutr. 2023:1–23. doi:10.1080/10408398.2023.2202750.
  • Ruigrok R, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes. 2023;15(1):2201155. doi:10.1080/19490976.2023.2201155.
  • Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W, et al. Interaction of beta-glucans with gut microbiota: dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr. 2023:1–26. doi:10.1080/10408398.2023.2217727.
  • Chung E, Elmassry MM, Cao JJ, Kaur G, Dufour JM, Hamood AN, Shen CL. Beneficial effect of dietary geranylgeraniol on glucose homeostasis and bone microstructure in obese mice is associated with suppression of proinflammation and modification of gut microbiome. Nutr Res. 2021;93:27–37. doi:10.1016/j.nutres.2021.07.001.
  • Zhang J, Yu H, Wang Q, Cai H, Shen F, Ruan S, Wu Y, Liu T, Feng F, Zhao M, et al. Dietary additive octyl and decyl glycerate modulates metabolism and inflammation under different dietary patterns with the contribution of the gut microbiota. Food Funct. 2023;14(1):525–540. doi:10.1039/D2FO03059D.
  • Rautava S, Selma-Royo M, Oksanen T, Collado MC, Isolauri E. Shifting pattern of gut microbiota in pregnant women two decades apart – an observational study. Gut Microbes. 2023;15(1):2234656. doi:10.1080/19490976.2023.2234656.
  • Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ, et al. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr. 2023:1–19. doi:10.1080/10408398.2023.2254383.
  • Fernández-Murga ML, Olivares M, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 reverses the adverse effects of diet-induced obesity through the gut-bone axis. Bone. 2020;141:115580. doi:10.1016/j.bone.2020.115580.
  • Shimizu Y. Gut microbiota in common elderly diseases affecting activities of daily living. World J Gastroenterol. 2018;24(42):4750–4758. doi:10.3748/wjg.v24.i42.4750.