2,144
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

B. thetaiotaomicron-derived acetic acid modulate immune microenvironment and tumor growth in hepatocellular carcinoma

, , , , , , , & show all
Article: 2297846 | Received 25 Jun 2023, Accepted 18 Dec 2023, Published online: 25 Jan 2024

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;70:313. doi:10.3322/caac.21492.
  • El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73 e1. doi:10.1053/j.gastro.2011.12.061.
  • Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight, R. The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol. 2018;15(7):397–17. doi:10.1038/s41575-018-0011-z.
  • Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527–39. doi:10.1038/nrgastro.2017.72.
  • Lin RS, Lee FY, Lee SD, Tsai YT, Lin HC, Lu RH. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophaegeal varices, and hyperdynamic circulation. J Hepatol. 1995;22(2):165–172. doi:10.1016/0168-8278(95)80424-2.
  • Achiwa K, Ishigami M, Ishizu Y, Kuzuya T, Honda T, Hayashi K, Hirooka Y, Katano Y, Goto H. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model. Biochem Biophys Res Commun. 2016;470(1):15–21. doi:10.1016/j.bbrc.2015.12.012.
  • Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101. doi:10.1038/nature12347.
  • Li J, Sung CY, Lee N, Ni Y, Pihlajamaki J, Panagiotou G. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A. 2016;113(9):E1306–15. doi:10.1073/pnas.1518189113.
  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Sci. 2003;299(5615):2074–2076. doi:10.1126/science.1080029.
  • Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol. 2004;5(1):104–112. doi:10.1038/ni1018.
  • Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, et al. Bacteroides thetaiotaomicron and faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013;11(1):61. doi:10.1186/1741-7007-11-61.
  • Liou CS, Sirk SJ, Diaz CAC, Klein AP, Fischer CR, Higginbottom SK. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell. 2020;180(4):717–28 e19. doi:10.1016/j.cell.2020.01.023.
  • Hansen R, Sanderson IR, Muhammed R, Allen S, Tzivinikos C, Henderson P. A double-blind, placebo-controlled trial to assess safety and tolerability of (thetanix) bacteroides thetaiotaomicron in adolescent Crohn’s disease. Clin Transl Gastroenterol. 2020;12:e00287. doi:10.14309/ctg.0000000000000287.
  • Wexler AG, Goodman AL. An insider’s perspective: bacteroides as a window into the microbiome. Nat microbiol. 2017;2:17026. doi:10.1038/nmicrobiol.2017.26.
  • Wang X, Cai Z, Wang Q, Wu C, Sun Y, Wang Z, Xu X, Xue W, Cao Z, Zhang M, et al. Bacteroides methylmalonyl-CoA mutase produces propionate that promotes intestinal goblet cell differentiation and homeostasis. Cell Host & Microbe. 2023. doi:10.1016/j.chom.2023.11.005.
  • Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9. doi:10.1038/nature11552.
  • Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, Yang H-B, Jiang S-X, Yan G-Q, Wang D, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7(1):11960. doi:10.1038/ncomms11960.
  • Qiu J, Villa M, Sanin DE, Buck MD, O’Sullivan D, Ching R. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep. 2019;27(7):2063–74 e5. doi:10.1016/j.celrep.2019.04.022.
  • Reilly NA, Lutgens E, Kuiper J, Heijmans BT, Wouter Jukema J. Effects of fatty acids on T cell function: role in atherosclerosis. Nat Rev Cardiol. 2021;18(12):824–37. doi:10.1038/s41569-021-00582-9.
  • Yaqoob P, Calder PC. Fatty acids and immune function: new insights into mechanisms. Br J Nutr. 2007;98:S41–5.
  • Menegaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: the rise of PUFAs. Atherosclerosis. 2019;291:52–61. doi:10.1016/j.atherosclerosis.2019.10.002.
  • Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. 2022;19(3):384–408. doi:10.1038/s41423-021-00791-9.
  • Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008;659(1–2):40–8. doi:10.1016/j.mrrev.2008.02.004.
  • Cheng Y, He C, Wang M, Ma X, Mo F, Yang S. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4(1):62. doi:10.1038/s41392-019-0095-0.
  • Yen CY, Huang HW, Shu CW, Hou MF, Yuan SS, Wang HR, Chang Y-T, Farooqi AA, Tang J-Y, Chang H-W, et al. DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers. Cancer Lett. 2016;373(2):185–92. doi:10.1016/j.canlet.2016.01.036.
  • Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet. 2019;10:514. doi:10.3389/fgene.2019.00514.
  • Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem. 2006;2(2):169–174. doi:10.2174/157340606776056133.
  • Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients. 2019;11(10):11. doi:10.3390/nu11102376.
  • Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a MicroRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol. 2016;171:1–38.
  • Rodriguez-Castano GP, Dorris MR, Liu X, Bolling BW, Acosta-Gonzalez A, Rey FE. Bacteroides thetaiotaomicron Starch Utilization Promotes Quercetin Degradation and Butyrate Production by Eubacterium ramulus. Front Microbiol. 2019;10:1145. doi:10.3389/fmicb.2019.01145.