4,212
Views
0
CrossRef citations to date
0
Altmetric
Review

Multi-omic approaches for host-microbiome data integration

ORCID Icon & ORCID Icon
Article: 2297860 | Received 19 Jul 2023, Accepted 18 Dec 2023, Published online: 02 Jan 2024

References

  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol [Internet]. 2015;21(29):8787–22. doi:10.3748/wjg.v21.i29.8787.
  • Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer [Internet]. 2021;21(1):1325. doi:10.1186/s12885-021-09054-2.
  • Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci Int. 2022;23(7):3464. doi:10.3390/ijms23073464.
  • Breton J, Galmiche M, Déchelotte P. Dysbiotic gut bacteria in obesity: an overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics. Microorganisms. 2022;10(2):452. doi:10.3390/microorganisms10020452.
  • Cheung SG, Goldenthal AR, Uhlemann A-C, Mann JJ, Miller JM, Sublette ME. Systematic review of gut microbiota and major depression. Front Psychiatry [Internet]. 2019;10:34. doi:10.3389/fpsyt.2019.00034.
  • Hiergeist A, Gläsner J, Reischl U, Gessner A. Analyses of Intestinal Microbiota: Culture versus Sequencing: Figure 1. ILAR J [Internet]. 2015;56(2):228–240. doi:10.1093/ilar/ilv017.
  • Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, Surette MG. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med[Internet]. 2016;8(1):72. doi:10.1186/s13073-016-0327-7.
  • Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD, Finn RD. A new genomic blueprint of the human gut microbiota. Nature [Internet]. 2019;568(7753):499–504. doi:10.1038/s41586-019-0965-1.
  • Cao X, Dong A, Kang G, Wang X, Duan L, Hou H, Zhao T, Wu S, Liu X, Huang H, et al. Modeling spatial interaction networks of the gut microbiota. Gut Microbes [Internet]. 2022;14(1):2106103. doi:10.1080/19490976.2022.2106103.
  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature [Internet]. 2019;570(7762):462–467. doi:10.1038/s41586-019-1291-3.
  • Richards AL, Muehlbauer AL, Alazizi A, Burns MB, Findley A, Messina F, Gould TJ, Cascardo C, Pique-Regi R, Blekhman R, et al. Gut microbiota has a widespread and modifiable effect on host gene regulation. mSystems. 2019;4(5). doi: http://dx.doi.org/10.1128/mSystems.00323-18.
  • Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med [Internet]. 2020;12(1):12. doi:10.1186/s13073-020-0710-2.
  • Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nat Microbiol [Internet]. 2022;7(6):780–795. doi:10.1038/s41564-022-01121-z.
  • Nichols RG, Davenport ER. The relationship between the gut microbiome and host gene expression: a review. Hum Genet [Internet]. 2021;140(5):747–760. doi:10.1007/s00439-020-02237-0.
  • Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci [Internet]. 2014;5:209. doi:10.3389/fpls.2014.00209.
  • Thielemann N, Herz M, Kurzai O, Martin R. Analyzing the human gut mycobiome - a short guide for beginners. Comput Struct Biotechnol J [Internet]. 2022;20:608–614. doi:10.1016/j.csbj.2022.01.008.
  • Bai G-H, Lin S-C, Hsu Y-H, Chen S-Y. The human virome: viral metagenomics, relations with human diseases, and therapeutic applications. Viruses [Internet]. 2022;14(2):278. doi:10.3390/v14020278.
  • van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, Vicentini FA, Keenan CM, Ramay HR, Samara J, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun [Internet]. 2020;11(1):2577. doi:10.1038/s41467-020-16431-1.
  • Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT, Yu D. Combining the 5.8S and ITS2 to improve classification of fungi. Methods Ecol Evol [Internet]. 2019;10(10):1702–1711. https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13266.
  • Houshyar Y, Massimino L, Lamparelli LA, Danese S, Ungaro F. Going beyond bacteria: uncovering the role of archaeome and mycobiome in inflammatory bowel disease. Front Physiol [Internet]. 2021;12:783295. doi:10.3389/fphys.2021.783295.
  • Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F. Archaea and the human gut: new beginning of an old story. World J Gastroenterol [Internet]. 2014;20(43):16062–16078. doi:10.3748/wjg.v20.i43.16062.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics [Internet]. 2010;26(1):139–140. doi:http://dx.doi.org/10.1093/bioinformatics/btp616.
  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol [Internet]. 2004;5(10):R80. doi:10.1186/gb-2004-5-10-r80.
  • Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall L-I, McDonald D, et al. Best practices for analysing microbiomes. Nat Rev Microbiol [Internet]. 2018;16(7):410–422. doi:10.1038/s41579-018-0029-9.
  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, et al. A survey of best practices for RNA-seq data analysis. Genome Biol [Internet]. 2016;17(1):13. doi:10.1186/s13059-016-0881-8.
  • Shakya M, Lo C-C, Chain PSG. Advances and challenges in metatranscriptomic analysis. Front Genet [Internet]. 2019;10:904. doi:10.3389/fgene.2019.00904.
  • Grieneisen L, Dasari M, Gould TJ, Björk JR, Grenier J-C, Yotova V, Jansen D, Gottel N, Gordon JB, Learn NH, et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science [Internet]. 2021;373(6551):181–186. doi:10.1126/science.aba5483.
  • Kockum I, Huang J, Stridh P. Overview of genotyping technologies and methods. Curr Protoc [Internet]. 2023;3(4):e727. doi:10.1002/cpz1.727.
  • Goodrich JK, Davenport ER, Clark AG, Ley RE. The relationship between the human genome and microbiome comes into view. Annu Rev Genet [Internet]. 2017;51(1):413–433. doi:10.1146/annurev-genet-110711-155532.
  • Chong J, Xia J. Computational approaches for integrative analysis of the metabolome and microbiome. Metabolites [Internet]. 2017;7(4):62. doi:10.3390/metabo7040062.
  • Peters DL, Wang W, Zhang X, Ning Z, Mayne J, Figeys D. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics [Internet]. 2019;19(16):e1800363. doi:10.1002/pmic.201800363.
  • Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A Guide to Diet-Microbiome Study Design. Front Nutr [Internet]. 2020;7:79. doi:10.3389/fnut.2020.00079.
  • Marconi S, Durazzo A, Camilli E, Lisciani S, Gabrielli P, Aguzzi A, Gambelli L, Lucarini M, Marletta L. Food composition databases: considerations about complex food matrices. Foods [Internet]. 2018;7(1):2. doi:10.3390/foods7010002.
  • Tong L, Wu H, Wang MD, Wang G. Chapter one - introduction of medical genomics and clinical informatics integration for p-health care. In: Teplow D, editor. Progress in molecular biology and translational science. Academic Press; 2022. pp. 1–37. [Internet].https://www.sciencedirect.com/science/article/pii/S187711732200062X.
  • Sun YV, Hu Y-J. Chapter three - integrative analysis of multi-omics data for discovery and functional studies of complex human diseases [internet]. In: Friedmann T, Dunlap J Goodwin Seditors. Advances in genetics. Academic Press; 2016. pp. 147–190https://www.sciencedirect.com/science/article/pii/S0065266015000516
  • Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, Lerman JA, Lechner A, Sastry A, Bordbar A, et al. Multi-omic data integration enables discovery of hidden biological regularities. Nat Commun [Internet]. 2016;7(1):13091. doi:10.1038/ncomms13091.
  • Wei Z, Han D, Zhang C, Wang S, Liu J, Chao F, Song Z, Chen G. Deep learning-based multi-omics integration robustly predicts relapse in prostate cancer. Front Oncol [Internet]. 2022;12:893424. doi:10.3389/fonc.2022.893424.
  • Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol [Internet]. 2020;16(11):657–668. doi:10.1038/s41581-020-0286-5.
  • Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol [Internet]. 2017;18(1):83. doi:10.1186/s13059-017-1215-1.
  • Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J [Internet]. 2021;19:3735–3746. doi:10.1016/j.csbj.2021.06.030.
  • Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe [Internet]. 2019;26(2):283–95.e8. doi:10.1016/j.chom.2019.07.008.
  • Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol [Internet]. 2014;15(3):R46. doi:10.1186/gb-2014-15-3-r46.
  • Chiarello M, McCauley M, Villéger S, Jackson CR, Moreno-Hagelsieb G. Ranking the biases: the choice of OTUs vs. ASVs in 16S rRNA amplicon data analysis has stronger effects on diversity measures than rarefaction and OTU identity threshold. PLoS One [Internet]. 2022;17(2):e0264443. doi:10.1371/journal.pone.0264443.
  • Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2(2). doi: 10.1128/mSystems.00191-16.
  • Antich A, Palacin C, Wangensteen OS, Turon X. To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinformatics [Internet]. 2021;22(1):177. doi:10.1186/s12859-021-04115-6.
  • Laudadio I, Fulci V, Palone F, Stronati L, Cucchiara S, Carissimi C. Quantitative assessment of Shotgun Metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS [Internet]. 2018;22(4):248–254. doi:10.1089/omi.2018.0013.
  • Stothart MR, McLoughlin PD, Poissant J. Shallow shotgun sequencing of the microbiome recapitulates 16S amplicon results and provides functional insights. Mol Ecol Resour [Internet]. 2023;23(3):549–564. doi:10.1111/1755-0998.13713.
  • Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods [Internet]. 2007;69(2):330–339. doi:10.1016/j.mimet.2007.02.005.
  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol [Internet]. 2017;8:2224. doi:10.3389/fmicb.2017.02224.
  • Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol [Internet]. 2016;26(5):322–329. doi:10.1016/j.annepidem.2016.03.003.
  • Lutz KC, Jiang S, Neugent ML, De Nisco NJ, Zhan X, Li Q. A survey of statistical methods for microbiome data analysis. Front Appl Math stat [Internet]. 2022;8. doi:10.3389/fams.2022.884810.
  • Morton JT, Toran L, Edlund A, Metcalf JL, Lauber C, Knight R, Jansson JK. Uncovering the horseshoe effect in microbial analyses. mSystems. 2017;2(1). doi: 10.1128/mSystems.00166-16.
  • New FN, Baer BR, Clark AG, Wells MT, Brito IL. Collective effects of human genomic variation on microbiome function. Sci Rep [Internet]. 2022;12(1):3839. doi:10.1038/s41598-022-07632-3.
  • Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol [Internet]. 2018;13(2):85–92. doi:10.5114/pg.2018.76005.
  • Vandeputte D, De Commer L, Tito RY, Kathagen G, Sabino J, Vermeire S, Faust K, Raes J. Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nat Commun [Internet]. 2021;12(1):6740. doi:10.1038/s41467-021-27098-7.
  • Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN, Microbiome Class Students P, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe [Internet]. 2019;25(6):789–802.e5. doi:10.1016/j.chom.2019.05.005.
  • Wang Y, Lêcao K-A. Managing batch effects in microbiome data. Brief Bioinform [Internet]. 2020;21(6):1954–1970. doi:10.1093/bib/bbz105.
  • Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR, Martin HC, Lappalainen T, Posthuma D. Genome-wide association studies. Nature Reviews Methods Primers [Internet]. 2021 [[cited 2023 May 31]];1(1):1–21. https://www.nature.com/articles/s43586-021-00056-9.
  • Gomez-Cabrero D, Tarazona S, Ferreirós-Vidal I, Ramirez RN, Company C, Schmidt A, Reijmers T, von S PV, Marabita F, Rodríguez-Ubreva J, et al. Stategra, a comprehensive multi-omics dataset of B-cell differentiation in mouse. Sci Data [Internet]. 2019;6(1):256. doi:10.1038/s41597-019-0202-7.
  • Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature [Internet]. 2019;569(7758):655–662. doi:10.1038/s41586-019-1237-9.
  • Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe [Internet]. 2014;16(3):276–289. doi:10.1016/j.chom.2014.08.014.
  • van Houten CB, Oved K, Eden E, Cohen A, Engelhard D, Boers S, Kraaij R, Karlsson R, Fernandez D, Gonzalez E, et al. Observational multi-centre, prospective study to characterize novel pathogen-and host-related factors in hospitalized patients with lower respiratory tract infections and/or sepsis - the “TAILORED-Treatment” study. BMC Infect Dis [Internet]. 2018;18:377. doi:10.1186/s12879-018-3300-9.
  • Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature [Internet]. 2020;579(7800):567–574. doi:10.1038/s41586-020-2095-1.
  • Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, Lipkin SM, Shen X. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe [Internet]. 2021;29(2):281–98.e5. doi:10.1016/j.chom.2020.12.001.
  • Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, Jones CMA, Wright RJ, Dhanani AS, Comeau AM, et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun [Internet]. 2022;13(1):342. doi:10.1038/s41467-022-28034-z.
  • Arora S, Pattwell SS, Holland EC, Bolouri H. Variability in estimated gene expression among commonly used RNA-seq pipelines. Sci Rep [Internet]. 2020;10(1):2734. doi:10.1038/s41598-020-59516-z.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res [Internet]. 2013;41(D1):D590–6. doi:10.1093/nar/gks1219.
  • Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, et al. HMDB: the human metabolome database. Nucleic Acids Res [Internet]. 2007;35(Database):D521–6. doi:10.1093/nar/gkl923.
  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa MK. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res [Internet]. 1999;27(1):29–34. doi:10.1093/nar/27.1.29.
  • Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol [Internet]. 2016;17(1):217. doi:10.1186/s13059-016-1086-x.
  • Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, Wampach L, Schneider JG, Hogan A, de Beaufort C, et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol [Internet]. 2016;2(1):16180. doi:10.1038/nmicrobiol.2016.180.
  • Ugidos M, Nueda MJ, Prats-Montalbán JM, Ferrer A, Conesa A, Tarazona S, Birol I. MultiBaC: an R package to remove batch effects in multi-omic experiments. Bioinformatics [Internet]. 2022;38(9):2657–2658. doi:10.1093/bioinformatics/btac132.
  • Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, Markó L, Aron-Wisnewsky J, Nielsen T, Moitinho-Silva L, Schmidt TSB, Falony G, Vieira-Silva S, et al. Combinatorial, additive and dose-dependent drug–microbiome associations. Nature [Internet]. 2021;600(7889):500–505. doi:10.1038/s41586-021-04177-9.
  • Zhao H, Jin K, Jiang C, Pan F, Wu J, Luan H, Zhao Z, Chen J, Mou T, Wang Z, et al. A pilot exploration of multi-omics research of gut microbiome in major depressive disorders. Transl Psychiatry [Internet]. 2022;12(1):8. doi:10.1038/s41398-021-01769-x.
  • Silveira CB, Cobián-Güemes AG, Uranga C, Baker JL, Edlund A, Rohwer F, Conrad D. Multi-omics study of keystone species in a cystic fibrosis microbiome. Int J Mol Sci Int. 2021;22(21):12050. doi:10.3390/ijms222112050.
  • Nanga S, Bawah AT, Acquaye BA, Billa M-I, Baeta FD, Odai NA, Obeng SK, Nsiah AD. Review of dimension reduction methods. J Data Anal Inf Process [Internet]. 2021;9(03):189–231. http://www.scirp.org/Journal/Paperabs.aspx?paperid=111638. doi:10.4236/jdaip.2021.93013.
  • Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W, Stegle O. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol [Internet]. 2018;14(6):e8124. doi:10.15252/msb.20178124.
  • Garcia-Etxebarria K, Clos-Garcia M, Telleria O, Nafría B, Alonso C, Iruarrizaga-Lejarreta M, Franke A, Crespo A, Iglesias A, Cubiella J, et al. Interplay between genome, metabolome and microbiome in colorectal cancer. Cancers [Internet]. 2021;13(24):6216. doi:10.3390/cancers13246216.
  • Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform [Internet]. 2016;17(4):628–641. doi:10.1093/bib/bbv108.
  • Wang C, Segal LN, Hu J, Zhou B, Hayes RB, Ahn J, Li H. Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk. Microbiome [Internet]. 2022;10(1):121. doi:10.1186/s40168-022-01310-2.
  • Pfeifer B, Schimek MG. A hierarchical clustering and data fusion approach for disease subtype discovery. J Biomed Inform [Internet]. 2021;113:103636. doi:10.1016/j.jbi.2020.103636.
  • Abu-Jamous B, Kelly S. Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data. Genome Biol [Internet]. 2018;19(1):172. doi:10.1186/s13059-018-1536-8.
  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, et al. Enterotypes of the human gut microbiome. Nature [Internet]. 2011;473(7346):174–180. doi:10.1038/nature09944.
  • Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, de Vos WM, Ehrlich SD, Fraser CM, Hattori M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol [Internet]. 2018;3(1):8–16. doi:10.1038/s41564-017-0072-8.
  • Lehtinen MJ, Hibberd AA, Männikkö S, Yeung N, Kauko T, Forssten S, Lehtoranta L, Lahtinen SJ, Stahl B, Lyra A, et al. Nasal microbiota clusters associate with inflammatory response, viral load, and symptom severity in experimental rhinovirus challenge. Sci Rep [Internet]. 2018;8(1):11411. doi:10.1038/s41598-018-29793-w.
  • Abdel-Aziz MI, Vijverberg SJH, Neerincx AH, Brinkman P, Wagener AH, Riley JH, Sousa AR, Bates S, Wagers SS, De Meulder B, et al. A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes. Eur Respir J Internet. 2022;59(1):2102603. doi:10.1183/13993003.02603-2021.
  • Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res [Internet]. 2018;46(20):10546–10562. doi:10.1093/nar/gky889.
  • Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics [Internet]. 2009;25(22):2906–2912. doi:10.1093/bioinformatics/btp543.
  • Yuan Y, Savage RS, Markowetz F, Markel S. Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput Biol [Internet]. 2011;7(10):e1002227. doi:10.1371/journal.pcbi.1002227.
  • Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res [Internet]. 2018;24(6):1248–1259. doi:10.1158/1078-0432.CCR-17-0853.
  • Wu D, Wang D, Zhang MQ, Gu J. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics [Internet]. 2015;16(1):1022. doi:10.1186/s12864-015-2223-8.
  • von Luxburg U. A tutorial on spectral clustering. Stat Comput [Internet]. 2007;17(4):395–416. doi:10.1007/s11222-007-9033-z.
  • Zhang S, Leistico JR, Cho RJ, Cheng JB, Song JS, Martelli PL. Spectral clustering of single-cell multi-omics data on multilayer graphs. Bioinformatics [Internet]. 2022;38(14):3600–3608. doi:10.1093/bioinformatics/btac378.
  • Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J, Dunbrack RL Jr. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol [Internet]. 2015;11(3):e1004075. doi:10.1371/journal.pcbi.1004075.
  • Liu J, Tang W, Chen G, Lu Y, Feng C, Tu XM. Correlation and agreement: overview and clarification of competing concepts and measures. Shanghai Arch Psychiatry [Internet]. 2016;28:115–120. doi:10.11919/j.issn.1002-0829.216045.
  • Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, Pollard KS, Sharpton TJ, Guigo R. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS Comput Biol [Internet]. 2015;11(11):e1004573. doi:10.1371/journal.pcbi.1004573.
  • Friedman J, Alm EJ, von Mering C. Inferring correlation networks from genomic survey data. PLoS Comput Biol [Internet]. 2012;8(9):e1002687. doi:10.1371/journal.pcbi.1002687.
  • Ban Y, An L, Jiang H. Investigating microbial co-occurrence patterns based on metagenomic compositional data. Bioinformatics [Internet]. 2015;31(20):3322–3329. doi:10.1093/bioinformatics/btv364.
  • Tackmann J, Matias Rodrigues JF, von Mering C. Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Syst [Internet]. 2019;9(3):286–96.e8. doi:10.1016/j.cels.2019.08.002.
  • Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK, Menni C, Bell JT, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun [Internet]. 2018;9(1):2655. doi:10.1038/s41467-018-05184-7.
  • Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C, Ouzounis CA. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol [Internet]. 2012;8(7):e1002606. doi:10.1371/journal.pcbi.1002606.
  • You Y, Liang D, Wei R, Li M, Li Y, Wang J, Wang X, Zheng X, Jia W, Chen T. Evaluation of metabolite-microbe correlation detection methods. Anal Biochem [Internet]. 2019;567:106–111. doi:10.1016/j.ab.2018.12.008.
  • Wang Q, Ye J, Fang D, Lv L, Wu W, Shi D, Li Y, Yang L, Bian X, Wu J, et al. Multi-omic profiling reveals associations between the gut mucosal microbiome, the metabolome, and host DNA methylation associated gene expression in patients with colorectal cancer. BMC Microbiol [Internet]. 2020;20(S1):83. doi:10.1186/s12866-020-01762-2.
  • Abdel-Aziz MI, Kermani NZ, Neerincx AH, Vijverberg SJH, Guo Y, Howarth P, Dahlen S-E, Djukanovic R, Sterk PJ, Kraneveld AD, et al. Association of endopeptidases, involved in SARS-CoV-2 infection, with microbial aggravation in sputum of severe asthma. Allergy [Internet]. 2021;76(6):1917–1921. doi:10.1111/all.14731.
  • Mu Y, Qi W, Zhang T, Zhang J, Mao S, Ishaq SL. Multi-omics analysis revealed coordinated responses of rumen microbiome and epithelium to high-grain-induced subacute Rumen acidosis in lactating dairy cows. mSystems. 2022;7(1):e0149021. doi:10.1128/msystems.01490-21.
  • Sankaran K, Holmes SP. Multitable Methods for Microbiome Data Integration. Front Genet [Internet]. 2019;10:627. doi:10.3389/fgene.2019.00627.
  • Hardoon DR, Shawe-Taylor J. Sparse canonical correlation analysis. Mach Learn [Internet]. 2011;83(3):331–353. doi:10.1007/s10994-010-5222-7.
  • Park CH, Hong C, Lee A-R, Sung J, Hwang TH. Multi-omics reveals microbiome, host gene expression, and immune landscape in gastric carcinogenesis. iSci. 2022;25(3):103956. doi:10.1016/j.isci.2022.103956.
  • Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat Appl Genet Mol Biol [Internet]. 2009;8(1):1–27. doi:10.2202/1544-6115.1470.
  • Galié S, Papandreou C, Arcelin P, Garcia D, Palau-Galindo A, Gutiérrez-Tordera L, À F, Bulló M. Examining the interaction of the gut microbiome with host metabolism and cardiometabolic health in metabolic syndrome. Nutr. 2021;13(12):4318. doi:10.3390/nu13124318.
  • Lisboa FJG, Peres-Neto PR, Chaer GM, da C JE, Mitchell RJ, Chapman SJ, Berbara RLL, Dalby AR. Much beyond Mantel: bringing procrustes association metric to the plant and soil ecologist’s toolbox. PLoS One [Internet]. 2014;9(6):e101238. doi:10.1371/journal.pone.0101238.
  • Tipton L, Cuenco KT, Huang L, Greenblatt RM, Kleerup E, Sciurba F, Duncan SR, Donahoe MP, Morris A, Ghedin E. Measuring associations between the microbiota and repeated measures of continuous clinical variables using a lasso-penalized generalized linear mixed model. BioData Min [Internet]. 2018;11(1):12. doi:10.1186/s13040-018-0173-9.
  • Saji N, Niida S, Murotani K, Hisada T, Tsuduki T, Sugimoto T, Kimura A, Toba K, Sakurai T. Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan. Sci Rep [Internet]. 2019;9(1):1008. doi:10.1038/s41598-018-38218-7.
  • Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, Gibbons SM, Magis AT. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun [Internet]. 2020;11(1):5206. doi:10.1038/s41467-020-18871-1.
  • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol [Internet]. 1996;58(1):267–288. http://www.jstor.org/stable/2346178. doi:10.1111/j.2517-6161.1996.tb02080.x.
  • Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics [Internet]. 2000;42(1):80–86. http://www.jstor.org/stable/1271436. doi:10.1080/00401706.2000.10485983.
  • Zou H, Hastie T. Regularization and variable selection via the Elastic Net. J R Stat Soc Series B Stat Methodol [Internet]. 2005 [[cited 2023 Jun 29]];67(2):301–320. https://academic.oup.com/jrsssb/article/67/2/301/7109482.
  • Lynch J, Tang K, Priya S, Sands J, Sands M, Tang E, Mukherjee S, Knights D, Blekhman R. HOMINID: a framework for identifying associations between host genetic variation and microbiome composition. Gigascience [Internet]. 2017;6(12):1–7. doi:10.1093/gigascience/gix107.
  • Ghaemi MS, DiGiulio DB, Contrepois K, Callahan B, Ngo TTM, Lee-McMullen B, Lehallier B, Robaczewska A, Mcilwain D, Rosenberg-Hasson Y, et al. Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics [Internet]. 2019;35(1):95–103. doi:10.1093/bioinformatics/bty537.
  • Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, Batachari LE, Malfavon M, Zhu Q, Weldon K, et al. Multi-omics analyses of the ulcerative colitis gut microbiome link bacteroides vulgatus proteases with disease severity. Nat Microbiol [Internet]. 2022;7(2):262–276. doi:10.1038/s41564-021-01050-3.
  • Gomez-Llorente MA, Martínez-Cañavate A, Chueca N, de la C RM, Romero R, Anguita-Ruiz A, Aguilera CM, Gil-Campos M, Mesa MD, Khakimov B, et al. A multi-omics approach reveals new signatures in obese allergic asthmatic children. Biomedicines Int. 2020;8(9):359. doi:10.3390/biomedicines8090359.
  • Zeybel M, Arif M, Li X, Altay O, Yang H, Shi M, Akyildiz M, Saglam B, Gonenli MG, Yigit B, et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv Sci [Internet]. 2022;9(11):e2104373. doi:10.1002/advs.202104373.
  • Bodein A, Scott-Boyer M-P, Perin O, Cao K-A L, Droit A. Interpretation of network-based integration from multi-omics longitudinal data. Nucleic Acids Res [Internet]. 2022;50(5):e27. doi:10.1093/nar/gkab1200.
  • Matchado MS, Lauber M, Reitmeier S, Kacprowski T, Baumbach J, Haller D, List M. Network analysis methods for studying microbial communities: a mini review. Comput Struct Biotechnol J [Internet]. 2021;19:2687–2698. doi:10.1016/j.csbj.2021.05.001.
  • Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics [Internet]. 2020;17(4):243–255. doi:10.1080/14789450.2020.1766975.
  • Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W. Learning from Co-expression networks: possibilities and challenges. Front Plant Sci [Internet]. 2016;7:444. doi:10.3389/fpls.2016.00444.
  • Loftus M, Hassouneh S-D, Yooseph S. Bacterial associations in the healthy human gut microbiome across populations. Sci Rep [Internet]. 2021;11(1):2828. doi:10.1038/s41598-021-82449-0.
  • Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol [Internet]. 2017;25(3):217–228. doi:10.1016/j.tim.2016.11.008.
  • Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform [Internet]. 2018;19:1370–1381. doi:10.1093/bib/bbx066.
  • Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform [Internet]. 2021;22(2):1639–1655. doi:10.1093/bib/bbaa005.
  • Cantoni C, Lin Q, Dorsett Y, Ghezzi L, Liu Z, Pan Y, Chen K, Han Y, Li Z, Xiao H, et al. 2022. Alterations of host-gut microbiome interactions in multiple sclerosis. EBioMedicine [Internet]. 76:103798. doi: 10.1016/j.ebiom.2021.103798.
  • Pfalzer AC, Kamanu FK, Parnell LD, Tai AK, Liu Z, Mason JB, Crott JW. Interactions between the colonic transcriptome, metabolome, and microbiome in mouse models of obesity-induced intestinal cancer. Physiol Genomics [Internet]. 2016;48(8):545–553. doi:10.1152/physiolgenomics.00034.2016.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics [Internet]. 2008;9(1):559. doi:10.1186/1471-2105-9-559.
  • Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet [Internet]. 2008;40(7):854–861. doi:10.1038/ng.167.
  • Su C, Andrew A, Karagas MR, Borsuk ME. Using Bayesian networks to discover relations between genes, environment, and disease. BioData Min [Internet]. 2013;6(1):6. doi:10.1186/1756-0381-6-6.
  • Chella Krishnan K, Kurt Z, Barrere-Cain R, Sabir S, Das A, Floyd R, Vergnes L, Zhao Y, Che N, Charugundla S, et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in Non-alcoholic Fatty liver disease. Cell Syst [Internet]. 2018;6(1):103–15.e7. doi:10.1016/j.cels.2017.12.006.
  • Shi H, Shi Q, Grodner B, Lenz JS, Zipfel WR, Brito IL, De Vlaminck I. Highly multiplexed spatial mapping of microbial communities. Nature [Internet]. 2020;588(7839):676–681. doi:10.1038/s41586-020-2983-4.
  • Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, Protsyuk I, Bouslimani A, Lim YW, Wong R, Humphrey G, et al. Three-dimensional microbiome and metabolome cartography of a diseased human lung. Cell Host Microbe [Internet]. 2017;22(5):705–16.e4. doi:10.1016/j.chom.2017.10.001.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature [Internet]. 2014;505(7484):559–563. doi:10.1038/nature12820.
  • Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, Tang X, Sun Z, Kalari KR, Korem T, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell [Internet]. 2020;182(6):1460–73.e17. doi:10.1016/j.cell.2020.08.007.
  • Mihindukulasuriya KA, Mars RAT, Johnson AJ, Ward T, Priya S, Lekatz HR, Kalari KR, Droit L, Zheng T, Blekhman R, et al. Multi-Omics Analyses Show disease, diet, and transcriptome interactions with the virome. Gastroenterology [Internet]. 2021;161(4):1194–207.e8. doi:10.1053/j.gastro.2021.06.077.
  • Ruiz-Perez D, Lugo-Martinez J, Bourguignon N, Mathee K, Lerner B, Bar-Joseph Z, Narasimhan G, Korem T. Dynamic bayesian networks for integrating multi-omics time series microbiome data. mSystems. 2021;6(2). doi: 10.1128/mSystems.01105-20.
  • Brumfield KD, Leddy M, Usmani M, Cotruvo JA, Tien C-T, Dorsey S, Graubics K, Fanelli B, Zhou I, Registe N, et al. Microbiome Analysis for Wastewater Surveillance during COVID-19. MBio [Internet]. 2022;13(4):e0059122. doi:10.1128/mbio.00591-22.
  • Herold M, Martínez Arbas S, Narayanasamy S, Sheik AR, Kleine-Borgmann LAK, Lebrun LA, Kunath BJ, Roume H, Bessarab I, Williams RBH, et al. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nat Commun [Internet]. 2020;11(1):5281. doi:10.1038/s41467-020-19006-2.
  • Muñoz-Benavent M, Hartkopf F, Van Den Bossche T, Piro VC, García-Ferris C, Latorre A, Renard BY, Muth T. gNOMO: a multi-omics pipeline for integrated host and microbiome analysis of non-model organisms. NAR Genom Bioinform [Internet]. 2020;2(3):lqaa058. doi:10.1093/nargab/lqaa058.
  • Blakeley-Ruiz JA, Kleiner M. Considerations for constructing a protein sequence database for metaproteomics.Comput struct. Biotechnol J [Internet]. 2022;20:937–952. doi:10.1016/j.csbj.2022.01.018.
  • Ankrah NYD, Bernstein DB, Biggs M, Carey M, Engevik M, García-Jiménez B, Lakshmanan M, Pacheco AR, Sulheim S, Medlock GL, et al. Enhancing microbiome research through genome-scale metabolic modeling. mSystems [Internet]. 2021;6(6):e0059921. doi:10.1128/mSystems.00599-21.
  • Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jäger C, Baginska J, Wilmes P, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35(1):81–89. doi:10.1038/nbt.3703.
  • Heinken A, Hertel J, Thiele I. Metabolic modelling reveals broad changes in gut microbial metabolism in inflammatory bowel disease patients with dysbiosis. NPJ Syst Biol Appl [Internet]. 2021;7(1):19. doi:10.1038/s41540-021-00178-6.
  • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics [Internet]. 2010;26(12):i255–60. doi:10.1093/bioinformatics/btq183.
  • Kuntz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends Pharmacol Sci [Internet]. 2017;38(1):81–91. doi:10.1016/j.tips.2016.10.001.
  • Petrosino JF. The microbiome in precision medicine: the way forward. Genome Med [Internet]. 2018;10(1):12. doi:10.1186/s13073-018-0525-6.
  • Santiago-Rodriguez TM, Hollister EB. Multi ‘omic data integration: A review of concepts, considerations, and approaches. Semin Perinatol [Internet]. 2021;45(6):151456. doi:10.1016/j.semperi.2021.151456.
  • Vahabi N, Michailidis G. Unsupervised multi-omics data integration methods: a comprehensive review. Front Genet [Internet]. 2022;13:854752. doi:10.3389/fgene.2022.854752.
  • Genome Atlas Research Network C, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The cancer genome atlas pan-cancer analysis project. Nat Genet [Internet]. 2013;45(10):1113–1120. doi:10.1038/ng.2764.
  • Project Consortium ENCODE, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, Kawli T, Davis CA, Dobin A, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature [Internet]. 2020;583(7818):699–710. doi:10.1038/s41586-020-2493-4.