1,199
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Anti-S-layer monoclonal antibodies impact Clostridioides difficile physiology

, , , , , , , , , , , , , , ORCID Icon & show all
Article: 2301147 | Received 11 Sep 2023, Accepted 28 Dec 2023, Published online: 30 Jan 2024

References

  • Poxton IR, McCoubrey J, Blair G. The pathogenicity of clostridium difficile. Clin Microbiol Infect. 2001;7(8):421–16. doi:10.1046/j.1198-743x.2001.00287.x.
  • Péchiné S, Bruxelle JF, Janoir C, Collignon A. Targeting clostridium difficile surface components to develop immunotherapeutic strategies against clostridium difficile infection. Front Microbiol. 2018;9:9. doi:10.3389/fmicb.2018.01009.
  • Fagan RP, Albesa-Jové D, Qazi O, Svergun DI, Brown KA, Fairweather NF. Structural insights into the molecular organization of the S-layer from clostridium difficile. Mol Microbiol. 2009;71(5):1308–1322. doi:10.1111/j.1365-2958.2009.06603.x.
  • Lanzoni-Mangutchi P, Banerji O, Wilson J, Barwinska-Sendra A, Kirk JA, Vaz F, O’Beirne S, Baslé A, El Omari K, Wagner A, et al. Structure and assembly of the S-layer in C. difficile. Nat Commun. 2022;13(1):970. doi:10.1038/s41467-022-28196-w.
  • Kirk JA, Gebhart D, Buckley AM, Lok S, Scholl D, Douce GR, Govoni GR, Fagan RP. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci Transl Med. 2017;9(406):eaah6813. doi:10.1126/scitranslmed.aah6813.
  • Castro-Córdova P, Mora-Uribe P, Reyes-Ramírez R, Cofré-Araneda G, Orozco-Aguilar J, Brito-Silva C, Mendoza-León MJ, Kuehne SA, Minton NP, Pizarro-Guajardo M, et al. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat Commun. 2021;12(1):1140. doi:10.1038/s41467-021-21355-5.
  • Meza-Torres J, Auria E, Dupuy B, Tremblay YDN. Wolf in sheep’s clothing: Clostridioides difficile biofilm as a reservoir for recurrent infections. Microorganisms. 2021;9(9):1922. doi:10.3390/microorganisms9091922.
  • Tremblay YDN, Hathroubi S, Jacques M. Bacterial biofilms: their importance in animal health and public health. Can J Vet Res. 2014;78(2):110–116. doi:10.1111/j.1462-2920.2012.02810.x.
  • Pantaléon V, Soavelomandroso AP, Bouttier S, Briandet R, Roxas B, Chu M, Collignon A, Janoir C, Vedantam G, Candela T, et al. The clostridium difficile protease Cwp84 modulates both biofilm formation and cell-surface properties. PloS ONE. 2015;10(4):e0124971. doi:10.1371/journal.pone.0124971.
  • Calabi E, Calabi F, Phillips AD, Fairweather NF. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun. 2002;70(10):5770–5778. doi:10.1128/IAI.70.10.5770-5778.2002.
  • Emanuela C, Franco C, PA D, FN F. Binding of clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun. 2002;70(10):5770–5778. doi:10.1128/IAI.70.10.5770-5778.2002.
  • Mizrahi A, Bruxelle JF, Péchiné S, Le Monnier A. Prospective evaluation of the adaptive immune response to SlpA in Clostridium difficile infection. Anaerobe. 2018;54:164–168. doi:10.1016/j.anaerobe.2018.09.008.
  • Drudy D, Calabi E, Kyne L, Sougioultzis S, Kelly E, Fairweather N, Kelly CP. Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol. 2004;41(3):237–242. doi:10.1016/j.femsim.2004.03.007.
  • Bruxelle JF, Mizrahi A, Hoys S, Collignon A, Janoir C, Péchiné S. Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe. 2016;37:78–84. doi:10.1016/j.anaerobe.2015.10.010.
  • O’Brien JB, McCabe MS, Athié-Morales V, McDonald GSA, Ní Eidhin DB, Kelleher DP. Passive immunisation of hamsters against clostridium difficile infection using antibodies to surface layer proteins. FEMS Microbiol Lett. 2005;246(2):199–205. doi:10.1016/j.femsle.2005.04.005.
  • Kandalaft H, Hussack G, Aubry A, van Faassen H, Guan Y, Arbabi-Ghahroudi M, MacKenzie R, Logan SM, Tanha J. Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol. 2015;99(20):8549–8562. doi:10.1007/s00253-015-6594-1.
  • Moor K, Fadlallah J, Toska A, Sterlin D, Balmer ML, Macpherson AJ, Gorochov G, Larsen M, Slack E. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nat Protoc. 2016;11(8):1531–1553. doi:10.1038/nprot.2016.091.
  • Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G, et al. Proteomic and genomic characterization of highly infectious clostridium difficile 630 spores. J Bacteriol. 2009;191(17):5377–5386. doi:10.1128/JB.00597-09.
  • Jose S, Madan R. Neutrophil-mediated inflammation in the pathogenesis of clostridium difficile infections. Anaerobe. 2016;41:85–90. doi:10.1016/j.anaerobe.2016.04.001.
  • El Feghaly RE, Stauber JL, Deych E, Gonzalez C, Tarr PI, Haslam DB. Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in clostridium difficile infection. Clin Infect Dis. 2013;56(12):1713–1721. doi:10.1093/cid/cit147.
  • Wang Y, Krémer V, Iannascoli B, Goff ORL, Mancardi DA, Ramke L, de Chaisemartin L, Bruhns P, Jönsson F. Specificity of mouse and human Fcgamma receptors and their polymorphic variants for IgG subclasses of different species. Eur J Immunol. 2022;52(5):753–759. doi:10.1002/eji.202149766.
  • Oatley P, Kirk JA, Ma S, Jones S, Fagan RP. Spatial organization of Clostridium difficile S-layer biogenesis. Sci Rep. 2020;10(1):14089. doi: 10.1038/s41598-020-71059-x.
  • Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc. 2018;2018(6):pdb.prot095497. doi:10.1101/pdb.prot095497.
  • Usui Y, Ayibieke A, Kamiichi Y, Okugawa S, Moriya K, Tohda S, Saito R. Impact of deoxycholate on Clostridioides difficile growth, toxin production, and sporulation. Heliyon. 2020;6(4):e03717. doi:10.1016/j.heliyon.2020.e03717.
  • Dubois T, Tremblay YDN, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M, Briandet R, Dupuy B. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbio. 2019;5(1):14. doi:10.1038/s41522-019-0087-4.
  • Cohen SH, Tang YJ, Silva J Jr. Analysis of the pathogenicity locus in clostridium difficile strains. J Infect Dis. 2000;181(2):659–663. doi:10.1086/315248.
  • Lawry BM, Johnson CL, Flanagan K, Spoors JA, McNeil CJ, Wipat A, Keegan N. Species-specific detection of C. difficile using targeted antibody design. Anal Chem. 2018;90(22):13475–13482. doi:10.1021/acs.analchem.8b03349.
  • Péchiné S, Janoir C, Boureau H, Gleizes A, Tsapis N, Hoys S, Fattal E, Collignon A. Diminished intestinal colonization by clostridium difficile and immune response in mice after mucosal immunization with surface proteins of clostridium difficile. Vaccine. 2007;25(20):3946–3954. doi:10.1016/j.vaccine.2007.02.055.
  • Fioravanti A, Van Hauwermeiren F, Van der Verren SE, Jonckheere W, Goncalves A, Pardon E, Steyaert J, De Greve H, Lamkanfi M, Remaut H. et al. Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. Nat Microbiol. 2019;4(11):1805–1814. doi:10.1038/s41564-019-0499-1.
  • Majumdar A, Govind R. Regulation of Clostridioides difficile toxin production. Curr Opin Microbiol. 2022;65:95–100. doi:10.1016/j.mib.2021.10.018.
  • Govind R, Dupuy B, Cheung A. Secretion of Clostridium difficile toxins a and B requires the Holin-like protein TcdE. PloS Pathog. 2012;8(6):e1002727. doi:10.1371/journal.ppat.1002727.
  • Girinathan BP, Ou J, Dupuy B, Govind R, Koehler TM. Pleiotropic roles of Clostridium difficile sin locus. PloS Pathog. 2018;14(3):e1006940. doi:10.1371/journal.ppat.1006940.
  • Ciftci Y, Girinathan BP, Dhungel BA, Hasan MK, Govind R. Clostridioides difficile SinR’ regulates toxin, sporulation and motility through protein-protein interaction with SinR. Anaerobe. 2019;59:1–7. doi:10.1016/j.anaerobe.2019.05.002.
  • Bradshaw WJ, Kirby JM, Roberts AK, Shone CC, Acharya KR. Cwp2 from clostridium difficile exhibits an extended three domain fold and cell adhesion in vitro. FEBS J. 2017;284(17):2886–2898. doi:10.1111/febs.14157.
  • Vuotto C, Donelli G, Buckley A, Chilton C. Clostridium difficile Biofilm. Updates Clostridium Difficile Europe: Adv Microbiol, Infect Dis Public Health. 2018:97–115. doi:10.1007/978-3-319-72799-8_7.
  • Soavelomandroso AP, Gaudin F, Hoys S, Nicolas V, Vedantam G, Janoir C, Bouttier S. Biofilm structures in a mono-associated mouse model of clostridium difficile infection. Front Microbiol. 2017;8:8. doi:10.3389/fmicb.2017.02086.
  • Normington C, Moura IB, Bryant JA, Ewin DJ, Clark EV, Kettle MJ, Harris HC, Spittal W, Davis G, Henn MR, et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbio. 2021;7(1):16. doi:10.1038/s41522-021-00184-w.
  • Semenyuk EG, Laning ML, Foley J, Johnston PF, Knight KL, Gerding DN, Driks A. Spore formation and toxin production in clostridium difficile biofilms. PloS ONE. 2014;9(1):e87757. doi:10.1371/journal.pone.0087757.
  • Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW, Popoff MR. Characterisation of clostridium difficile biofilm formation, a role for Spo0A. PloS ONE. 2012;7(12):e50527. doi:10.1371/journal.pone.0050527.
  • Beganović J, Frece J, Kos B, Leboš Pavunc A, Habjanič K, Šušković J. Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie Van Leeuwenhoek. 2011;100(1):43–53. doi:10.1007/s10482-011-9563-4.
  • Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What’s a biofilm?—how the choice of the biofilm model impacts the protein inventory of Clostridioides difficile. Front Microbiol. 2021;12:12. doi:10.3389/fmicb.2021.682111.
  • Taggart MG, Snelling WJ, Naughton PJ, La Ragione RM, Dooley JSG, Ternan NG, Blumenthal A. Biofilm regulation in Clostridioides difficile: novel systems linked to hypervirulence. PloS Pathog. 2021;17(9):e1009817. doi:10.1371/journal.ppat.1009817.
  • Rollenske T, Burkhalter S, Muerner L, von Gunten S, Lukasiewicz J, Wardemann H, Macpherson AJ. Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature. 2021;598(7882):657–661. doi:10.1038/s41586-021-03973-7.
  • Macdonald LE, Karow M, Stevens S, Auerbach W, Poueymirou WT, Yasenchak J, Frendewey D, Valenzuela DM, Giallourakis CC, Alt FW, et al. Precise and in situ genetic humanization of 6 mb of mouse immunoglobulin genes. Proc Natl Acad Sci USA. 2014;111(14):5147–5152. doi:10.1073/pnas.1323896111.
  • Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, Huang TT, Poueymirou WT, Esau L, Meola M, et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci USA. 2014;111(14):5153–5158. doi:10.1073/pnas.1324022111.
  • Balbino B, Herviou P, Godon O, Stackowicz J, Goff ORL, Iannascoli B, Sterlin D, Brûlé S, Millot GA, Harris FM, et al. The anti-IgE mAb omalizumab induces adverse reactions by engaging Fcγ receptors. J Clin Invest. 2020;130(3):1330–1335. doi:10.1172/JCI129697.
  • Hussain HA, Roberts AP, Mullany P. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Δerm) and demonstration that the conjugative transposon Tn916ΔE enters the genome of this strain at multiple sites. J Med Microbiol. 2005;54(2):137–141. doi:10.1099/jmm.0.45790-0.
  • Babakhani F, Bouillaut L, Gomez A, Sears P, Nguyen L, Sonenshein AL. Fidaxomicin inhibits spore production in clostridium difficile. Clin Infect Dis. 2012;55(suppl_2):S162–S169. doi:10.1093/cid/cis453.
  • Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, Rode DKH, Vidakovic L, Díaz-Pascual F, Fong JCN, et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol. 2021;6(2):151–156. doi:10.1038/s41564-020-00817-4.