1,858
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Incorporating metabolic activity, taxonomy and community structure to improve microbiome-based predictive models for host phenotype prediction

& ORCID Icon
Article: 2302076 | Received 17 May 2023, Accepted 02 Jan 2024, Published online: 12 Jan 2024

References

  • Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–14. doi:10.1038/nature13568.
  • Le Goallec A, Tierney BT, Luber JM, Cofer EM, Kostic AD, Patel CJ, Segata N. A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type. PLoS Comput Biol. 2020;16(5):e1007895. doi:10.1371/journal.pcbi.1007895.
  • Wilmanski T, Kornilov SA, Diener C, Conomos MP, Lovejoy JC, Sebastiani P, Orwoll ES, Hood L, Price ND, Rappaport N. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med. 2022;3(6):388–405.e6. doi:10.1016/j.medj.2022.04.007.
  • Wirbel J, Zych K, Essex M, Karcher N, Kartal E, Salazar G, Bork P, Sunagawa S, Zeller G. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol. 2021;22(1):1–27. doi:10.1186/s13059-021-02306-1.
  • Su Q, Liu Q, Lau RI, Zhang J, Xu Z, Yeoh YK, Leung TWH, Tang W, Zhang L, Liang JQY. et al. Faecal microbiome-based machine learning for multi-class disease diagnosis. Nat Commun. 2022;13(1):1–8. doi:10.1038/s41467-022-34405-3.
  • Oh M, Zhang L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci Rep. 2020;10(1):1–9. doi:10.1038/s41598-020-63159-5.
  • Fioravanti D, Giarratano Y, Maggio V, Agostinelli C, Chierici M, Jurman G, Furlanello C. Phylogenetic convolutional neural networks in metagenomics. BMC Bioinform. 2018;19(S2):1–13. doi:10.1186/s12859-018-2033-5.
  • Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J Biomed Health Inform. 2020;24(10):2993–3001. doi:10.1109/JBHI.2020.2993761.
  • Chen X, Zhu Z, Zhang W, Wang Y, Wang F, Yang J, Wong KC. Human disease prediction from microbiome data by multiple feature fusion and deep learning. Iscience. 2022;25(4):104081. doi:10.1016/j.isci.2022.104081.
  • Fortelny N, Bock C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biol. 2020;21(1):1–36. doi:10.1186/s13059-020-02100-5.
  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24. doi:10.1007/s00394-017-1445-8.
  • Levy R, Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci USA. 2013;110(31):12804–12809. doi:10.1073/pnas.1300926110.
  • Lam TJ, Stamboulian M, Han W, Ye Y, Ouzounis CA. Model-based and phylogenetically adjusted quantification of metabolic interaction between microbial species. PloS Comput Biol. 2020;16(10):e1007951. doi:10.1371/journal.pcbi.1007951.
  • Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, Chia N, Kim PJ. Global metabolic interaction network of the human gut microbiota for context- specific community-scale analysis. Nat Commun. 2017;8(1):1–12. doi:10.1038/ncomms15393.
  • Matchado MS, Lauber M, Reitmeier S, Kacprowski T, Baumbach J, Haller D, List M. Network analysis methods for studying microbial communities: a mini review. Comput Struct Biotechnol J. 2021;19:2687–2698. doi:10.1016/j.csbj.2021.05.001.
  • Jiang D, Armour CR, Hu C, Mei M, Tian C, Sharpton TJ, Jiang Y. Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities. Front Genet. 2019;10:995. doi:10.3389/fgene.2019.00995.
  • Parente E, Zotta T, Ricciardi A. A review of methods for the inference and experimental confirmation of microbial association networks in cheese. Int J Food Microbiol. 2022;368:109618. doi:10.1016/j.ijfoodmicro.2022.109618.
  • Lam TJ, Ye Y. Meta-analysis of microbiome association networks reveal patterns of dysbiosis in diseased microbiomes. Sci Rep. 2022;12(1):17482. doi:10.1038/s41598-022-22541-1.
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi:10.1038/nature08821.
  • Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi:10.1038/nature12198.
  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. 2012;7418. doi:10.1038/nature11450.
  • Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.
  • Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, Habermann N, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecul Systs Biol. 2014;10(11). doi:10.15252/msb.20145645.
  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–546. doi:10.1038/nature12506.
  • Zhu Z, Ren J, Michail S, Sun F. MicroPro: using metagenomic unmapped reads to provide insights into human microbiota and disease associations. Genome Biol. 2019;20(1):1–13. doi:10.1186/s13059-019-1773-5.
  • Alemany M. The problem of nitrogen disposal in the obese. Nutr Res Rev. 2012;25(1):18–28. doi:10.1017/S0954422411000163.
  • Martínez-Cuesta MC, Del Campo R, Garriga-García M, Peláez C, Requena T. Taxo- nomic characterization and short-chain fatty acids production of the obese microbiota. Front Cell Infect Microbiol. 2021;11:598093. doi:10.3389/fcimb.2021.598093.
  • Lovejoy J, Newby F, Gebhart S, DiGirolamo M. Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metabol. 1992;41(1):22–27. doi:10.1016/0026-0495(92)90185-D.
  • Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, Nielsen OH. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomic. 2015;11(1):122–133. doi:10.1007/s11306-014-0677-3.
  • Nardelli C, Granata I, D’Argenio V, Tramontano S, Compare D, Guarracino MR, Nardone G, Pilone V, Sacchetti L. Characterization of the duodenal mucosal microbiome in obese adult sub- jects by 16S rRNA sequencing. Microorgans. 2020;8(4):485. doi:10.3390/microorganisms8040485.
  • Han W, Tang H, Ye Y. Locality-sensitive hashing-based k-mer clustering for identifi- cation of differential microbial markers related to host phenotype. J Comput Biol. 2022;29(7):738–751. doi:10.1089/cmb.2021.0640.
  • Pasolli E, Truong DT, Malik F, Waldron L, Segata N, Eisen JA. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol. 2016;12(7):e1004977. doi:10.1371/journal.pcbi.1004977.
  • Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902–903. doi:10.1038/nmeth.3589.
  • Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104. doi:10.7717/peerj-cs.104.
  • Lin H, Peddada SD. Analysis of microbial compositions: a review of normalization and differential abundance analysis. NPJ Biofilms Microbio. 2020;6(1):60. doi:10.1038/s41522-020-00160-w.
  • Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep. 2022;12(1):8456. doi:10.1038/s41598-022-11819-z.
  • Huang JY, Lee SM, Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe. 2011;17(4):137–141. doi:10.1016/j.anaerobe.2011.05.017.
  • Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40(D1):D136–D143. doi:10.1093/nar/gkr1178.
  • Traag VA, Waltman L, Van Eck NJ. From Louvain to Leiden: guaranteeing well- connected communities. Sci Rep. 2019;9(1):1–12. doi:10.1038/s41598-019-41695-z.
  • Chollet F. Keras. 2015. https://github.com/fchollet/keras.