1,941
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Tunable control of B. infantis abundance and gut metabolites by co-administration of human milk oligosaccharides

, , , , , , , & show all
Article: 2304160 | Received 19 Sep 2023, Accepted 08 Jan 2024, Published online: 18 Jan 2024

References

  • U.S. Food and Drug Administration, Center for Biologics Evaluation and Research. Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and Control Information; Guidance for Industry. Silver Spring, MD; 2016. https://www.regulations.gov/docket/FDA-2010-D-0500.
  • Cordaillat-Simmons M, Rouanet A, Pot B. Live biotherapeutic products: the importance of a defined regulatory framework. Experimental & Molecular Medicine. 2020;52(9):1397–16. doi:10.1038/s12276-020-0437-6.
  • Aggarwala V, Mogno I, Li Z, Yang C, Britton GJ, Chen-Liaw A, Mitcham J, Bongers G, Gevers D, Clemente JC. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat Microbiol. 2021;6(10):1309–1318. doi:10.1038/s41564-021-00966-0.
  • Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft CS, Cohen SH, Berenson CS. et al. SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. N Engl J Med. 2022;386(3):220–229. doi:10.1056/NEJMoa2106516.
  • Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol. 2021;18(7):503–513. doi:10.1038/s41575-021-00441-5.
  • Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay P, Knights D, Hutkins RW. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host & Microbe. 2016;20(4):515–526. doi:10.1016/j.chom.2016.09.001.
  • Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, Hohmann EL, Staley C, Khoruts A, Sadowsky MJ. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host & Microbe. 2018;23(2):229–240.e5. doi:10.1016/j.chom.2018.01.003.
  • Alander M, Mättö J, Kneifel W, Johansson M, Kögler B, Crittenden R, Mattila-Sandholm T, Saarela M. Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int Dairy J. 2001;11(10):817–825. doi:10.1016/S0958-6946(01)00100-5.
  • Charbonneau D, Gibb RD, Quigley EMM. Fecal excretion of Bifidobacterium infantis 35624 and changes in fecal microbiota after eight weeks of oral supplementation with encapsulated probiotic. Gut Microbes. 2013;4(3):201–211. doi:10.4161/gmic.24196.
  • Firmesse O, Mogenet A, Bresson J-L, Corthier G, Furet J-P. Lactobacillus rhamnosus R11 Consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction. J Mol Microbiol Biotechnol. 2008;14(1–3):90–99. doi:10.1159/000106087.
  • Frese SA, Hutkins RW, Walter J. Comparison of the colonization ability of autochthonous and allochthonous strains of lactobacilli in the human gastrointestinal tract. Adv Microbiol. 2012;2(03):399–409. doi:10.4236/aim.2012.23051.
  • Malinen E, Matto J, Salmitie M, Alander M, Saarela M, Palva A. PCR-ELISAII: analysis of Bifidobacterium populations in human faecal samples from a consumption trial with Bifidobacterium lactis bb-12 and a galacto-oligosaccharide preparation. Syst Appl Microbiol. 2002;25(2):249–258. doi:10.1016/S0723-2020(04)70109-5.
  • Rattanaprasert M, Roos S, Hutkins RW, Walter J. Quantitative evaluation of synbiotic strategies to improve persistence and metabolic activity of Lactobacillus reuteri DSM 17938 in the human gastrointestinal tract. J Funct Foods. 2014;10:85–94. doi:10.1016/j.jff.2014.05.017.
  • Rochet V, Rigottier-Gois L, Levenez F, Cadiou J, Marteau P, Bresson J-L, Goupil-Feillerat N, Doré J. Modulation of Lactobacillus casei in ileal and fecal samples from healthy volunteers after consumption of a fermented milk containing Lactobacillus casei DN-114 001 Rif. Can J Microbiol. 2008;54(8):660–667. doi:10.1139/W08-050.
  • Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, Kotler E, Zur M, Regev-Lehavi D, Brik R-Z. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388–1405.e21. doi:10.1016/j.cell.2018.08.041.
  • Louie T, Golan Y, Khanna S, Bobilev D, Erpelding N, Fratazzi C, Carini M, Menon R, Ruisi M, Norman JM. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA. 2023;329(16):1356. doi:10.1001/jama.2023.4314.
  • Wong AC, Levy M. New approaches to microbiome-based therapies. mSystems. 2019;4:e00122–19. doi:10.1128/mSystems.00122-19.
  • Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35:8–15. doi:10.1016/j.mib.2016.10.003.
  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–208. doi:10.1038/nature13828.
  • Staley C, Kelly CR, Brandt LJ, Khoruts A, Sadowsky MJ, Blaser MJ. Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. mBio. 2016;7(6):e01965–16. doi:10.1128/mBio.01965-16.
  • Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, Xu G, Davis JCC, Lebrilla CB, Henrick BM. et al. Persistence of supplemented Bifidobacterium longum subsp infantis EVC001 in breastfed infants. Infantis. 2017;2(6):e00501–17. doi:10.1128/mSphere.00501-17. EVC001 in Breastfed Infants. mSphere 2017.
  • Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell. 2021;184(15):3884–3898.e11. doi:10.1016/j.cell.2021.05.030.
  • Dsouza M, Menon R, Crossette E, Bhattarai SK, Schneider J, Kim Y-G, Reddy S, Caballero S, Felix C, Cornacchione L. et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host & Microbe. 2022;30(4):583–598.e8. doi:10.1016/j.chom.2022.03.016.
  • Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, Zhang Z, Bakal JA, Walter J. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host & Microbe. 2020;27(3):389–404.e6. doi:10.1016/j.chom.2020.01.006.
  • Chopra T, Hecht G, Tillotson G. Gut microbiota and microbiota-based therapies for Clostridioides difficile infection. Front Med. 2023;9:1093329. doi:10.3389/fmed.2022.1093329.
  • Renardy M, Prokopienko AJ, Maxwell JR, Flusberg DA, Makaryan S, Selimkhanov J, Vakilynejad M, Subramanian K, Wille L. A quantitative systems pharmacology model describing the cellular kinetic‐pharmacodynamic relationship for a live biotherapeutic product to support microbiome drug development. Clin Pharma And Therapeutics. 2023;114(3):633–643. doi:10.1002/cpt.2952.
  • Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB. et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105(48):18964–18969. doi:10.1073/pnas.0809584105.
  • Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom H-J, Joachimiak A, Lebrilla CB, Mills DA. Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78(3):795–803. doi:10.1128/AEM.06762-11.
  • Garrido D, Kim JH, German JB, Raybould HE, Mills DA, Uversky V. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PloS ONE. 2011;6(3):e17315. doi:10.1371/journal.pone.0017315.
  • Button JE, Autran CA, Reens AL, Cosetta CM, Smriga S, Ericson M, Pierce JV, Cook DN, Lee ML, Sun AK. et al. Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. Cell Host & Microbe. 2022;30(5):712–725.e7. doi:10.1016/j.chom.2022.04.001.
  • Button JE, Cosetta CM, Reens AL, Brooker SL, Rowan-Nask AD, Lavin RC, Saur R, Zheng S, Autran CA, Lee ML. et al. Precision modulation of dysbiotic microbiomes with a synbiotic of human milk sugars and B. infantis reshapes gut microbial composition and metabolites; [Manuscript in press]. Cell Host Microbe:2023p. 31.
  • Mocanu V, Rajaruban S, Dang J, Kung JY, Deehan EC, Madsen KL. Repeated fecal microbial transplantations and antibiotic pre-treatment are linked to improved clinical response and remission in inflammatory bowel disease: a systematic review and pooled proportion meta-analysis. JCM. 2021;10(5):959. doi:10.3390/jcm10050959.
  • Smith M, Dai A, Ghilardi G, Amelsberg KV, Devlin SM, Pajarillo R, Slingerland JB, Beghi S, Herrera PS, Giardina P. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat Med. 2022;28(4):713–723. doi:10.1038/s41591-022-01702-9.
  • Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y, Sung AD, Weber D, Hashimoto D, Slingerland AE, Slingerland JB. et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N Engl J Med. 2020;382(9):822–834. doi:10.1056/NEJMoa1900623.
  • Lawley B, Munro K, Hughes A, Hodgkinson AJ, Prosser CG, Lowry D, Zhou SJ, Makrides M, Gibson RA, Lay C. et al. Differentiation of Bifidobacterium longum subspecies longum and infantis by quantitative PCR using functional gene targets. PeerJ. 2017;5:e3375. doi:10.7717/peerj.3375.
  • Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, Pekmez CT, Rivollier A, Michaelsen KF, Mølgaard C. et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6(11):1367–1382. doi:10.1038/s41564-021-00970-4.
  • Flannigan KL, Nieves KM, Szczepanski HE, Serra A, Lee JW, Alston LA, Ramay H, Mani S, Hirota SA. The pregnane X receptor and indole-3-propionic acid shape the intestinal mesenchyme to restrain inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2022;15(3):S765–795. doi:10.1016/j.jcmgh.2022.10.014.
  • Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–652. doi:10.1038/nature24661.
  • Dubberke ER, Lee CH, Orenstein R, Khanna S, Hecht G, Gerding DN. Results from a randomized, placebo-controlled clinical trial of a RBX2660—A microbiota-based drug for the prevention of recurrent Clostridium difficile infection. Clin Infect Dis. 2018;67(8):1198–1204. doi:10.1093/cid/ciy259.
  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med Available from. 2009;1(6). [[cited 2023 Nov 27]] doi:10.1126/scitranslmed.3000322.
  • Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT. et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–799. doi:10.1016/j.cell.2014.09.053.
  • Zhang L, Bahl MI, Roager HM, Fonvig CE, Hellgren LI, Frandsen HL, Pedersen O, Holm J-C, Hansen T, Licht TR. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME J. 2017;11(3):676–690. doi:10.1038/ismej.2016.151.
  • Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, Fontana L, Gordon JI. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host & Microbe. 2017;21(1):84–96. doi:10.1016/j.chom.2016.12.006.
  • Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, Warner BB, Gordon JI. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534(7606):263–266. doi:10.1038/nature17940.
  • Van Den Ham KM, Little MR, Bednarski OJ, Fusco EM, Mandal RK, Mitra R, Li S, Doumbo S, Doumtabe D, Kayentao K. et al. Creation of a non-Western humanized gnotobiotic mouse model through the transplantation of rural African fecal microbiota. Microbiol Spectr. 2023;11(6):e01554–23. doi:10.1128/spectrum.01554-23.
  • Wang Y, Zhang Z, Liu B, Zhang C, Zhao J, Li X, Chen L. A study on the method and effect of the construction of a humanized mouse model of fecal microbiota transplantation. Front Microbiol. 2022;13:1031758. doi:10.3389/fmicb.2022.1031758.
  • Hutchison ER, Kasahara K, Zhang Q, Vivas EI, Cross T-W, Rey FE. Dissecting the impact of dietary fiber type on atherosclerosis in mice colonized with different gut microbial communities. NPJ Biofilms Microbio. 2023;9(1):31. doi:10.1038/s41522-023-00402-7.
  • Li Y, Cao W, Gao NL, Zhao X-M, Chen W-H. Consistent alterations of human fecal microbes after transplantation into germ-free mice. Genomics, Proteomics & Bioinformatics. 2022;20(2):382–393. doi:10.1016/j.gpb.2020.06.024.
  • Xiao Y, Zhao J, Zhang H, Zhai Q, Chen W. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin Nutr. 2020;39(5):1315–1323. doi:10.1016/j.clnu.2019.05.014.
  • Caballero S, Kim S, Carter RA, Leiner IM, Sušac B, Miller L, Kim GJ, Ling L, Pamer EG. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host & Microbe. 2017;21(5):592–602.e4. doi:10.1016/j.chom.2017.04.002.
  • Davis LMG, Martínez I, Walter J, Hutkins R. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int J Food Microbiol. 2010;144(2):285–292. doi:10.1016/j.ijfoodmicro.2010.10.007.
  • Finegold SM, Li Z, Summanen PH, Downes J, Thames G, Corbett K, Dowd S, Krak M, Heber D. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 2014;5(3):436. doi:10.1039/c3fo60348b.
  • Tandon D, Haque MM, Gote M, Jain M, Bhaduri A, Dubey AK, Mande SS. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Sci Rep. 2019;9(1):5473. doi:10.1038/s41598-019-41837-3.
  • Costabile A, Deaville ER, Morales AM, Gibson GR, Riedel CU. Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PloS ONE. 2016;11(1):e0144457. doi:10.1371/journal.pone.0144457.
  • Tran TTT, Cousin FJ, Lynch DB, Menon R, Brulc J, Brown J-M, O’Herlihy E, Butto LF, Power K, Jeffery IB. et al. Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome. 2019;7(1):39. doi:10.1186/s40168-019-0654-1.
  • Cui S, Gu J, Liu X, Li D, Mao B, Zhang H, Zhao J, Chen W. Lactulose significantly increased the relative abundance of Bifidobacterium and Blautia in mice feces as revealed by 16S rRNA amplicon sequencing. J Sci Food Agric. 2021;101(13):5721–5729. doi:10.1002/jsfa.11181.
  • Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 2017;8(5):1966–1978. doi:10.1039/C7FO00031F.
  • Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem. 2011;286(40):34583–34592. doi:10.1074/jbc.M111.248138.
  • Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(9):5334–5340. doi:10.1021/jf9044205.
  • Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van Den Abbeele P. HMOs exert marked bifidogenic effects on children’s gut microbiota ex vivo, due to age-related Bifidobacterium species composition. Nutrients. 2023;15(7):1701. doi:10.3390/nu15071701.
  • Yu Z-T, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23(11):1281–1292. doi:10.1093/glycob/cwt065.
  • Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol. 2018;49:129–139. doi:10.1016/j.copbio.2017.08.008.
  • Cantu-Jungles TM, Hamaker BR. Erratum for Cantu-Jungles and Hamaker, “New view on dietary fiber selection for predictable shifts in gut microbiota”. mBio. 2020;11(3):e02179–19. doi:10.1128/mBio.00747-20.
  • Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, Henrissat B, Le Gall S, Saulnier L, Hayashi DK. et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell. 2019;179(1):59–73.e13. doi:10.1016/j.cell.2019.08.011.
  • Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature. 2018;557(7705):434–438. doi:10.1038/s41586-018-0092-4.
  • Cantu-Jungles TM, Bulut N, Chambry E, Ruthes A, Iacomini M, Keshavarzian A, Johnson TA, Hamaker BR, Zambrano MM. Dietary fiber hierarchical specificity: the missing link for predictable and strong shifts in gut bacterial communities. mBio. 2021;12(3):e01028–21. doi:10.1128/mBio.01028-21.
  • van Lingen E, Terveer EM, van der Meulen-de Jong AE, Vendrik KEW, Verspaget HW, Kuijper EJ, Kassam Z, Keller JJ. Advances in stool banking. Microbiota In Health And Disease [Internet]. [cited 2023 Nov 30]; 2020; 2. 10.26355/mhd_20201_182. Available from
  • Cui B, Li P, Xu L, Peng Z, Zhao Y, Wang H, He Z, Zhang T, Ji G, Wu K. et al. Fecal microbiota transplantation is an effective rescue therapy for refractory inflammatory bowel disease. Inflamm Cell Signal. 2015;2:e757.
  • Varga A, Kocsis B, Sipos D, Kása P, Vigvári S, Pál S, Dembrovszky F, Farkas K, Péterfi Z. How to apply FMT more effectively, conveniently and flexible – a comparison of FMT methods. Front Cell Infect Microbiol. 2021;11:657320. doi:10.3389/fcimb.2021.657320.
  • Halkjær SI, Christensen AH, BZS L, Browne PD, Günther S, Hansen LH, Petersen AM. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. 2018;67(12):2107–2115. doi:10.1136/gutjnl-2018-316434.
  • Lee P-C, Chang T-E, Wang Y-P, Lee K-C, Lin Y-T, Chiou J-J, Huang C-W, Yang U-C, Li F-Y, Huang H-C. et al. Alteration of gut microbial composition associated with the therapeutic efficacy of fecal microbiota transplantation in Clostridium difficile infection. J Formos Med Assoc. 2022;121(9):1636–1646. doi:10.1016/j.jfma.2021.11.001.
  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–236. doi:10.1038/nature12331.
  • Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer BC, Mills DA, German JB. et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host & Microbe. 2011;10(5):507–514. doi:10.1016/j.chom.2011.10.007.
  • NCSS. PASS 2023 power analysis and sample size software [Internet]. 2023; Available from: ncss.com/software/pass
  • Furet J-P, Firmesse O, Gourmelon M, Bridonneau C, Tap J, Mondot S, Doré J, Corthier G. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR: human and farm animal faecal microbiota. FEMS Microbiol Ecol. 2009;68(3):351–362. doi:10.1111/j.1574-6941.2009.00671.x.
  • Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2015;854:86–94. doi:10.1016/j.aca.2014.11.015.
  • Xu L, Spink DC. Analysis of steroidal estrogens as pyridine-3-sulfonyl derivatives by liquid chromatography electrospray tandem mass spectrometry. Anal Biochem. 2008;375(1):105–114. doi:10.1016/j.ab.2007.11.028.