1,205
Views
0
CrossRef citations to date
0
Altmetric
Commentary and View

Microbial stars: shedding light on gut microbes’ role in insulin resistance and innovative diabetes therapies

ORCID Icon

References

  • Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–5. doi:10.1038/nature05488.
  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi:10.1038/nature05414.
  • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi:10.1038/nature11450.
  • Takeuchi T, Kubota T, Nakanishi Y, Tsugawa H, Suda W, Kwon AT, Yazaki J, Ikeda K, Nemoto S, Mochizuki Y. et al. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature. 2023;621(7978):389–395. doi:10.1038/s41586-023-06466-x.
  • den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Müller M, Groen AK, Hooiveld GJ, Bakker BM. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol-Gastr L. 2013;305(12):G900–G10. doi:10.1152/ajpgi.00265.2013.
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40. doi:10.1194/jlr.R036012.
  • Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517. doi:10.2337/db08-1637.
  • Lin HV, Frassetto A, Kowalik EJ Jr., Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS ONE. 2012;7(4):e35240. doi:10.1371/journal.pone.0035240.
  • Gold A, Zhu J. Not just a gut feeling: a deep exploration of functional bacterial metabolites that can modulate host health. Gut Microbes. 2022;14(1):14. doi:10.1080/19490976.2022.2125734.
  • Baig S, Parvaresh Rizi E, Chia C, Shabeer M, Aung N, Loh TP, Magkos F, Vidal-Puig A, Seet RCS, Khoo CM. et al. Genes involved in oxidative stress pathways are differentially expressed in circulating mononuclear cells derived from obese insulin-resistant and lean insulin-sensitive individuals following a single mixed-meal challenge. Front Endocrinol (Lausanne). 2019;10:256. doi:10.3389/fendo.2019.00256.
  • Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57(11):3090–8. doi:10.2337/db08-0564.
  • Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128(2):545–55. doi:10.1172/JCI96702.
  • Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299(5):E685–94. doi:10.1152/ajpendo.00283.2010.
  • Chang CH, Curtis JD, Maggi LB Jr., Faubert B, Villarino AV, O’Sullivan D, Huang S-C, van der Windt GW, Blagih J, Qiu J. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153(6):1239–51. doi:10.1016/j.cell.2013.05.016.
  • Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose induces visceral adipose tissue inflammation and insulin resistance even without development of obesity in adult female but not in male rats. Front Nutr. 2021;8. doi:10.3389/fnut.2021.749328.
  • Xiao C, Dash S, Morgantini C, Lewis GF. Novel role of enteral monosaccharides in intestinal lipoprotein production in healthy humans. Arterioscler Thromb Vasc Biol. 2013;33(5):1056–62. doi:10.1161/ATVBAHA.112.300769.
  • Litherland GJ, Hajduch E, Gould GW, Hundal HS. Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. Mol Cell Biochem. 2004;261(1):23–33. doi:10.1023/B:MCBI.0000028734.77867.d2.
  • Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906. doi:10.3389/fimmu.2020.00906.
  • Nagai F, Morotomi M, Watanabe Y, Sakon H, Tanaka R. Alistipes indistinctus sp nov and odoribacter laneus sp nov, common members of the human intestinal microbiota isolated from faeces. Int J Syst Evol Microbiol. 2010;60(6):1296–302. doi:10.1099/ijs.0.014571-0.
  • Rautio M, Eerola E, Vaisanen-Tunkelrott ML, Molitoris D, Lawson P, Collins MD, Jousimies-Somer H. Reclassification of bacteroides putredinis (Weinberg et al, 1937) in a new genus alistipes gen nov, as alistipes putredinis comb nov, and description of alistipes finegoldii sp nov, from human sources. Syst Appl Microbiol. 2003;26(2):182–188. doi:10.1078/072320203322346029.
  • Song Y, Kononen E, Rautio M, Liu C, Bryk A, Eerola E, Finegold SM. Alistipes onderdonkii sp nov and alistipes shahii sp nov, of human origin. Int J Syst Evol Microbiol. 2006;56(8):1985–1990. doi:10.1099/ijs.0.64318-0.
  • Ogata Y, Sakamoto M, Ohkuma M, Hattori M, Suda W, Rasko D. Complete genome sequence of alistipes indistinctus strain 2BBH45, isolated from the feces of a healthy Japanese male. Microbiol Resour Announc. 2021;10(2):10. doi:10.1128/MRA.01284-20.
  • Chiou WC, Lai WH, Cai YL, Du ML, Lai HM, Chen JC, Huang HC, Liu HK, Huang C. Gut microbiota-directed intervention with high-amylose maize ameliorates metabolic dysfunction in diet-induced obese mice. Food Funct. 2022;13(18):9481–9495. doi:10.1039/D2FO01211A.