2,020
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Phocaeicola vulgatus alleviates diet-induced metabolic dysfunction-associated steatotic liver disease progression by downregulating histone acetylation level via 3-HPAA

, , , , , , , , , , , , & ORCID Icon show all
Article: 2309683 | Received 26 Sep 2023, Accepted 19 Jan 2024, Published online: 05 Feb 2024

References

  • Papatheodoridi M, Cholongitas E. Diagnosis of Non-alcoholic Fatty liver disease (NAFLD): Current concepts. Curr Pharm Des. 2018;24(38):4574–19. doi:10.2174/1381612825666190117102111. PubMed PMID: 30652642.
  • Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11–20. doi:10.1038/nrgastro.2017.109. PubMed PMID: 28930295.
  • Muthiah MD, Sanyal AJ. Current management of non-alcoholic steatohepatitis. Liver Int. 2020 Feb;40 Suppl 1(Suppl 1):89–95. doi:10.1111/liv.14355. PubMed PMID: 32077609; PubMed Central PMCID: PMCPMC7654093.
  • Raza S, Rajak S, Upadhyay A, Tewari A, Sinha, RA. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci. 2021 Jan 1;26(2):206–237. doi:10.2741/4892. PubMed PMID: 33049668; PubMed Central PMCID: PMCPMC7116261.
  • Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021 Jun 5;397(10290):2212–2224. doi:10.1016/S0140-6736(20)32511-3. PubMed PMID: 33894145.
  • Kim BS, Jeon YS, Chun J. Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr. 2013 Jun;16(2):71–9. doi:10.5223/pghn.2013.16.2.71. PubMed PMID: 24010110; PubMed Central PMCID: PMCPMC3760697.
  • Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013 Dec;62(12):1787–94. doi:10.1136/gutjnl-2012-303816. PubMed PMID: 23197411.
  • Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut. 2018 Oct;67(10):1881–1891. doi:10.1136/gutjnl-2017-314307. PubMed PMID: 28774887.
  • Zhang S, Zhao J, Xie F, He H, Johnston LJ, Dai X, Wu C, Ma X. Dietary fiber-derived short-chain fatty acids: a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease. Obes Rev. 2021 Nov;22(11):e13316. doi:10.1111/obr.13316. PubMed PMID: 34279051.
  • Li C, Nie SP, Zhu KX, Ding Q, Li C, Xiong T, Xie M-Y. Lactobacillus plantarum NCU116 improves liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease. Food Funct. 2014 Dec;5(12):3216–3223. doi:10.1039/c4fo00549j. PubMed PMID: 25317840.
  • Carpi RZ, Barbalho SM, Sloan KP, Laurindo LF, Gonzaga HF, Grippa PC, Zutin TLM, Girio RJS, Repetti CSF, Detregiachi CRP. et al. The effects of probiotics, prebiotics and synbiotics in Non-Alcoholic Fat liver disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A systematic review. IJMS. 2022 Aug 8;23(15):8805. doi:10.3390/ijms23158805. PubMed PMID: 35955942; PubMed Central PMCID: PMCPMC9369010.
  • Hong Y, Sheng L, Zhong J, Tao X, Zhu W, Ma J, Yan J, Zhao A, Zheng X, Wu G. et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes. 2021 Jan-Dec;13(1):1–20. doi:10.1080/19490976.2021.1930874. PubMed PMID: 34125646; PubMed Central PMCID: PMCPMC8205104.
  • Loman BR, Hernandez-Saavedra D, An R, Rector, RS. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr Rev. 2018 Nov 1;76(11):822–839. doi:10.1093/nutrit/nuy031. PubMed PMID: 30113661.
  • Koutnikova H, Genser B, Monteiro-Sepulveda M, Faurie J-M, Rizkalla S, Schrezenmeir J, Clément K. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019 Mar 30;9(3):e017995. doi:10.1136/bmjopen-2017-017995. PubMed PMID: 30928918; PubMed Central PMCID: PMCPMC6475231.
  • Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. Gut microbiome–targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. The American Journal Of Clinical Nutrition. 2019 Jul 1;110(1):139–149. doi:10.1093/ajcn/nqz042. PubMed PMID: 31124558; PubMed Central PMCID: PMCPMC6599739.
  • Alves CC, Waitzberg DL, de Andrade LS, dos Santos Aguiar L, Reis MB, Guanabara CC, Júnior OA, Ribeiro DA, Sala P. Prebiotic and synbiotic modifications of beta oxidation and lipogenic gene expression after experimental hypercholesterolemia in rat liver. Front Microbiol. 2017;8:2010. doi:10.3389/fmicb.2017.02010. PubMed PMID: 29089934; PubMed Central PMCID: PMCPMC5650986.
  • Garcia-Lopez M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 type-strain genomes improves taxonomic classification of bacteroidetes. Front Microbiol. 2019;10:2083. doi:10.3389/fmicb.2019.02083. PubMed PMID: 31608019; PubMed Central PMCID: PMCPMC6767994.
  • Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistreri WF. et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010 Sep;52(3):934–44. doi:10.1002/hep.23797. PubMed PMID: 20607689; PubMed Central PMCID: PMCPMC2932817.
  • Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist’s point of view. Biochim Biophys Acta Mol Basis Dis. 2019 May 1;1865(5):943–953. doi:10.1016/j.bbadis.2018.06.023. PubMed PMID: 29990551.
  • Krishnan A, Abdullah TS, Mounajjed T, Hartono S, McConico A, White T, LeBrasseur N, Lanza I, Nair S, Gores G. et al. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2017 Jun 1;312(6):G666–G680. doi:10.1152/ajpgi.00213.2016. PubMed PMID: 28232454; PubMed Central PMCID: PMCPMC6146305.
  • Albadawy R, Agwa SHA, Khairy E, Saad M, El Touchy N, Othman M, Matboli M. Clinical Significance of HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA Panel in NAFLD/NASH Diagnosis: Egyptian Pilot Study. Biomedicines. 2021 Sep 17;9(9):1248. doi:10.3390/biomedicines9091248. PubMed PMID: 34572434; PubMed Central PMCID: PMCPMC8472260.
  • Wang LF, Wang XN, Huang CC, Hu L, Xiao Y-F, Guan X-H, Qian Y-S, Deng K-Y, Xin H-B. Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway. Lipids Health Dis. 2017 Apr 27;16(1):82. doi:10.1186/s12944-017-0464-z. PubMed PMID: 28449683; PubMed Central PMCID: PMCPMC5408374.
  • Cheng C, Liu XH, He J, Gao J, Zhou J-T, Fan J-N, Jin X, Zhang J, Chang L, Xiong Z. et al. Apolipoprotein A4 restricts diet-induced hepatic steatosis via SREBF1-mediated lipogenesis and enhances IRS-PI3K-Akt signaling. Mol Nutr Food Res. 2022 Sep;66(18):e2101034. doi:10.1002/mnfr.202101034. PubMed PMID: 35909347.
  • Camargo FN, Matos SL, Araujo LCC, Carvalho, CR, Amaral, AG, Camporez, JP. Western diet-fed ApoE knockout male mice as an experimental model of Non-Alcoholic Steatohepatitis. Curr Issues Mol Biol. 2022 Oct 8;44(10):4692–4703. doi:10.3390/cimb44100320. PubMed PMID: 36286035; PubMed Central PMCID: PMCPMC9600038.
  • Martinez-Clemente M, Ferre N, Titos E, Horrillo R, González-Périz A, Morán-Salvador E, López-Vicario C, Miquel R, Arroyo VD, Funk C. et al. Disruption of the 12/15-lipoxygenase gene (Alox15) protects hyperlipidemic mice from nonalcoholic fatty liver disease. Hepatology. 2010 Dec;52(6):1980–91. doi:10.1002/hep.23928. PubMed PMID: 20967760.
  • Kuipers F, Jong MC, Lin Y, Eck M, Havinga R, Bloks V, Verkade HJ, Hofker MH, Moshage H, Berkel TJ. et al. Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes. J Clin Invest. 1997 Dec 1;100(11):2915–22. doi:10.1172/JCI119841. PubMed PMID: 9389759; PubMed Central PMCID: PMCPMC508499.
  • Debnath N, Kumar R, Kumar A, Mehta, PK, Yadav, AK. Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnol Genet Eng Rev. 2021 Oct;37(2):105–153. doi:10.1080/02648725.2021.1989847. PubMed PMID: 34678130.
  • Dias P, Pourova J, Voprsalova M, Nejmanová I, Mladěnka P. 3-hydroxyphenylacetic acid: a blood pressure-reducing flavonoid metabolite. Nutrients. 2022 Jan 13;14(2):328. doi:10.3390/nu14020328. PubMed PMID: 35057508; PubMed Central PMCID: PMCPMC8781193.
  • Porras D, Nistal E, Martinez-Florez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med. 2017 Jan;102:188–202. doi:10.1016/j.freeradbiomed.2016.11.037. PubMed PMID: 27890642.
  • Jang YG, Ko EB, Choi KC. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J Nutr Biochem. 2020 Oct;84:108444. doi:10.1016/j.jnutbio.2020.108444. PubMed PMID: 32615369.
  • Lee J, Song JH, Chung MY, Lee J-H, Nam T-G, Park JH, Hwang J-T, Choi H-K. 3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity. Acta Pharmacol Sin. 2021 Sep;42(9):1449–1460. doi:10.1038/s41401-020-00571-7. PubMed PMID: 33303988; PubMed Central PMCID: PMCPMC8379200.
  • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997 Sep 25;389(6649):349–52. doi:10.1038/38664. PubMed PMID: 9311776.
  • Liu D, Wong CC, Fu L, Chen H, Zhao L, Li C, Zhou Y, Zhang Y, Xu W, Yang Y. et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci Transl Med. 2018 Apr 18;10(437):eaap9840. doi:10.1126/scitranslmed.aap9840. PubMed PMID: 29669855.
  • Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70(1):81–120. doi:10.1146/annurev.biochem.70.1.81. PubMed PMID: 11395403.
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python Bindings. J Chem Inf Model. 2021 Aug 23;61(8):3891–3898. doi:10.1021/acs.jcim.1c00203. PubMed PMID: 34278794.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455–61. doi:10.1002/jcc.21334. PubMed PMID: 19499576; PubMed Central PMCID: PMCPMC3041641.
  • Yu Y, Lu J, Sun L, Lyu X, Chang X-Y, Mi X, Hu M-G, Wu C, Chen X. Akkermansia muciniphila: a potential novel mechanism of nuciferine to improve hyperlipidemia. Biomed Pharmacother. 2021 Jan;133:111014. doi:10.1016/j.biopha.2020.111014. PubMed PMID: 33246225.
  • Juarez-Fernandez M, Porras D, Petrov P, Román-Sagüillo S, García-Mediavilla MV, Soluyanova P, Martínez-Flórez S, González-Gallego J, Nistal E, Jover R. et al. The synbiotic combination of akkermansia muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation. Antioxid (Basel). 2021 Dec 15;10(12):2001. doi:10.3390/antiox10122001. PubMed PMID: 34943104; PubMed Central PMCID: PMCPMC8698339.
  • Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host & Microbe. 2008 Nov 13;4(5):447–57. doi:10.1016/j.chom.2008.09.007. PubMed PMID: 18996345; PubMed Central PMCID: PMCPMC2605320.
  • Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, Hoshi N, Hatano N, Ozawa G, Sasaki N. et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation. 2018 Nov 27;138(22):2486–2498. doi:10.1161/CIRCULATIONAHA.118.033714. PubMed PMID: 30571343.
  • Liu L, Xu M, Lan R, Hu D, Li X, Qiao L, Zhang S, Lin X, Yang J, Ren Z. et al. Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses. Front Immunol. 2022;13:1036196. doi:10.3389/fimmu.2022.1036196. PubMed PMID: 36531989; PubMed Central PMCID: PMCPMC9750758.
  • Wang C, Xiao Y, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Protective effects of different bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. J Adv Res. 2022 Feb;36:27–37. doi:10.1016/j.jare.2021.06.012. PubMed PMID: 35127162; PubMed Central PMCID: PMCPMC8799915.
  • Waidmann M, Bechtold O, Frick JS, Lehr H-A, Schubert S, Dobrindt U, Loeffler J, Bohn E, Autenrieth IB. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology. 2003 Jul;125(1):162–177. doi:10.1016/s0016-5085(03)00672-3. PubMed PMID: 12851881.
  • Debedat J, Le Roy T, Voland L, Belda E, Alili R, Adriouch S, Bel Lassen P, Kasahara K, Hutchison E, Genser L. et al. The human gut microbiota contributes to type-2 diabetes non-resolution 5-years after roux-en-Y gastric bypass. Gut Microbes. 2022 Jan-Dec;14(1):2050635. doi:10.1080/19490976.2022.2050635. PubMed PMID: 35435140; PubMed Central PMCID: PMCPMC9037437.
  • Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, Forslund SK, Assmann K, Valles-Colomer M, Nguyen TTD. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature. 2020 May;581(7808):310–315. doi:10.1038/s41586-020-2269-x. PubMed PMID: 32433607.
  • Leite AZ, Rodrigues NC, Gonzaga MI, Paiolo JCC, de Souza CA, Stefanutto NAV, Omori WP, Pinheiro DG, Brisotti JL, Matheucci Junior E. et al. Detection of increased plasma interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients. Front Immunol. 2017;8:1107. doi:10.3389/fimmu.2017.01107. PubMed PMID: 28966614; PubMed Central PMCID: PMCPMC5605568.
  • Coppola S, Avagliano C, Calignano A, Berni Canani R. The protective role of butyrate against obesity and obesity-related diseases. Molecules. 2021 Jan 28;26(3):682. doi:10.3390/molecules26030682. PubMed PMID: 33525625; PubMed Central PMCID: PMCPMC7865491.
  • Gottlieb A, Canbay A. Why bile acids are so important in Non-Alcoholic Fatty liver disease (NAFLD) progression. Cells. 2019 Oct 30;8(11):1358. doi:10.3390/cells8111358. PubMed PMID: 31671697; PubMed Central PMCID: PMCPMC6912605.
  • Zhou Q, Deng J, Pan X, Meng D, Zhu Y, Bai Y, Shi C, Duan Y, Wang T, Li X. et al. Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome. 2022 May 31;10(1):82. doi:10.1186/s40168-022-01271-6. PubMed PMID: 35637497; PubMed Central PMCID: PMCPMC9153113.
  • Liu Y, Myojin T, Li K, Kurita A, Seto M, Motoyama A, Liu X, Satoh A, Munemasa S, Murata Y. et al. A Major intestinal catabolite of quercetin glycosides, 3-hydroxyphenylacetic acid, protects the hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the enhancement of the total Aldehyde dehydrogenase activity. Int J Mol Sci. 2022 Feb 3;23(3):1762. doi:10.3390/ijms23031762. PubMed PMID: 35163684; PubMed Central PMCID: PMCPMC8836260.
  • Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem. 2018 Apr;82(4):600–610. doi:10.1080/09168451.2018.1444467. PubMed PMID: 29504827.
  • Li K, Wu H, Kidawara M, Lin Y, Satoh A, Zhang G, Munemasa S, Murata Y, Nakamura T, Nakamura Y. et al. The microbiota catabolites of quercetin glycosides concertedly enhance the resistance against acetaldehyde-induced oxidative stress. Free Radic Res. 2022 Sep-Oct;56(9–10):607–616. doi:10.1080/10715762.2022.2159820. PubMed PMID: 36576903.
  • Fu S, Yu M, Tan Y, Liu D. Role of histone deacetylase on nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2021 Apr;15(4):353–361. doi:10.1080/17474124.2021.1854089. PubMed PMID: 33213187.
  • Shen Y, Wei W, Zhou DX. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 2015 Oct;20(10):614–621. doi:10.1016/j.tplants.2015.07.005. PubMed PMID: 26440431.
  • Hou T, Tian Y, Cao Z, Zhang J, Feng T, Tao W, Sun H, Wen H, Lu X, Zhu Q. et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation. Mol Cell. 2022 Nov 3;82(21):4099–4115.e9. doi:10.1016/j.molcel.2022.09.018. PubMed PMID: 36208627.
  • Zhou B, Jia L, Zhang Z, Xiang L, Yuan Y, Zheng P, Liu B, Ren X, Bian H, Xie L. et al. The Nuclear Orphan Receptor NR2F6 promotes hepatic steatosis through upregulation of fatty acid transporter CD36. Adv Sci (Weinh). 2020 Nov;7(21):2002273. doi:10.1002/advs.202002273. PubMed PMID: 33173745; PubMed Central PMCID: PMCPMC7610302.
  • Kimura H. Histone modifications for human epigenome analysis. J Hum Genet. 2013 Jul;58(7):439–45. doi:10.1038/jhg.2013.66. PubMed PMID: 23739122.
  • Ma J, You D, Chen S, Fang N, Yi X, Wang Y, Lu X, Li X, Zhu M, Xue M. et al. Epigenetic association study uncovered H3K27 acetylation enhancers and dysregulated genes in high-fat-diet-induced nonalcoholic fatty liver disease in rats. Epigenomics. 2022 Dec;14(23):1523–1540. doi:10.2217/epi-2022-0362. PubMed PMID: 36851897.
  • Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W. et al. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut. 2022 Nov;71(11):2253–2265. doi:10.1136/gutjnl-2021-325851. PubMed PMID: 35232776; PubMed Central PMCID: PMCPMC9554078.
  • Muller PA, Matheis F, Schneeberger M, Kerner Z, Jové V, Mucida D. Microbiota-modulated CART + enteric neurons autonomously regulate blood glucose. Sci. 2020 Oct 16;370(6514):314–321. doi:10.1126/science.abd6176. PubMed PMID: 32855216; PubMed Central PMCID: PMCPMC7886298.
  • Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin J-B, Flockton AR, Macklin WB, Belkind-Gerson J, Hirota SA, Sharkey KA. et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome. 2021 Oct 26;9(1):210. doi:10.1186/s40168-021-01165-z. PubMed PMID: 34702353; PubMed Central PMCID: PMCPMC8549243.
  • Win S, Min RWM, Zhang J, Kanel G, Wanken B, Chen Y, Li M, Wang Y, Suzuki A, Aung FWM. et al. Hepatic mitochondrial SAB deletion or knockdown alleviates diet-induced metabolic syndrome, steatohepatitis, and hepatic fibrosis. Hepatology. 2021 Dec;74(6):3127–3145. doi:10.1002/hep.32083. PubMed PMID: 34331779; PubMed Central PMCID: PMCPMC8639630.
  • Ferre N, Martinez-Clemente M, Lopez-Parra M, González-Périz A, Horrillo R, Planagumà A, Camps J, Joven J, Tres A, Guardiola F. et al. Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE-deficient mice: potential involvement of oxysterols. Am J Physiol Gastrointest Liver Physiol. 2009 Mar;296(3):G553–62. doi:10.1152/ajpgi.00547.2007. PubMed PMID: 19136384.
  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010 Jun 29;8(6):e1000412. doi:10.1371/journal.pbio.1000412. PubMed PMID: 20613859; PubMed Central PMCID: PMCPMC2893951.